# **Reduced Ordered Binary Decision Diagrams**

#### **Lecture #13 of Advanced Model Checking**

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 5, 2012



#### **Switching functions**

- Let  $Var = \{z_1, \dots, z_m\}$  be a finite set of Boolean variables
- An evaluation is a function  $\eta: Var \rightarrow \{0, 1\}$ 
  - let  $Eval(z_1, \ldots, z_m)$  denote the set of evaluations for  $z_1, \ldots, z_m$
  - shorthand  $[z_1=b_1,\ldots,z_m=b_m]$  for  $\eta(z_1)=b_1,\ldots,\eta(z_m)=b_m$
- $f : \textit{Eval}(\textit{Var}) \rightarrow \{0,1\}$  is a switching function for  $\textit{Var} = \{z_1, \dots, z_m\}$
- Logical operations and quantification are defined by:

```
\begin{array}{lll} f_1(\cdot) \wedge f_2(\cdot) & = & \min\{f_1(\cdot), f_2(\cdot)\} \\ f_1(\cdot) \vee f_2(\cdot) & = & \max\{f_1(\cdot), f_2(\cdot)\} \\ & \exists z. \, f(\cdot) & = & f(\cdot)|_{z=0} \vee f(\cdot)|_{z=1}, \text{ and} \\ & \forall z. \, f(\cdot) & = & f(\cdot)|_{z=0} \wedge f(\cdot)|_{z=1} \end{array}
```



#### **Ordered Binary Decision Diagram**

Let  $\wp$  be a variable ordering for Var where  $z_1 <_{\wp} \ldots <_{\wp} z_m$ 

An  $\wp$ -OBDD is a tuple  $\mathfrak{B} = (V, V_I, V_T, succ_0, succ_1, var, val, v_0)$  with

- a finite set V of nodes, partitioned into  $V_I$  (inner) and  $V_T$  (terminals)
  - and a distinguished root  $v_0 \in V$
- successor functions  $succ_0$ ,  $succ_1: V_I \to V$ 
  - such that each node  $v \in V \setminus \{v_0\}$  has at least one predecessor
- labeling functions  $var: V_I \rightarrow Var$  and  $val: V_T \rightarrow \{0,1\}$  satisfying

$$v \in V_I \land w \in \{ \mathit{succ}_0(v), \mathit{succ}_1(v) \} \cap V_I \Rightarrow \mathit{var}(v) <_{\wp} \mathit{var}(w) \}$$



#### **Transition relation as an OBDD**



An example OBDD representing  $f_{
ightarrow}$  for our example using  $x_1 < x_2 < x_1' < x_2'$ 



# Symbolic composition operators



#### Consistent co-factors in OBDDs

- Let f be a switching function for Var
- Let  $\wp = (z_1, \ldots, z_m)$  a variable ordering for Var, i.e.,  $z_1 <_{\wp} \ldots <_{\wp} z_m$
- Switching function g is a  $\wp$ -consistent cofactor of f if

$$g = f|_{z_1 = b_1, \dots, z_i = b_i}$$
 for some  $i \in \{0, 1, \dots, m\}$ 

- Then it holds that:
  - 1. for each node v of an  $\wp$ -OBDD  $\mathfrak{B}$ ,  $f_v$  is a  $\wp$ -consistent cofactor of  $f_{\mathfrak{B}}$
  - 2. for each  $\wp$ -consistent cofactor g of  $f_{\mathfrak{B}}$  there is a node  $v \in \mathfrak{B}$  with  $f_v = g$



#### **Reduced OBDDs**

A  $\wp$ -OBDD  $\mathfrak{B}$  is *reduced* if for every pair (v, w) of nodes in  $\mathfrak{B}$ :

$$v \neq w$$
 implies  $f_v \neq f_w$ 

(A reduced  $\wp$ -OBDD is abbreviated as  $\wp$ -ROBDD)

⇒ ℘-ROBDDs any ℘-consistent cofactor is represented by exactly one node



#### Transition relation as an ROBDD







(b) ordering 
$$x_1 <' x_1' <' x_2 <' x_2'$$



# Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and  $\wp$  a variable ordering for Var. Then:

- (a) For each switching function f for Var there exists a  $\wp$ -ROBDD  $\mathfrak B$  with  $f_{\mathfrak B}=f$
- (b) Any  $\wp$ -ROBDDs  $\mathfrak B$  and  $\mathfrak C$  with  $f_{\mathfrak B}=f_{\mathfrak C}$  are isomorphic

Any  $\wp$ -OBDD  $\mathfrak B$  for f is reduced iff  $size(\mathfrak B) \leqslant size(\mathfrak C)$  for each  $\wp$ -OBDD  $\mathfrak C$  for f



#### **Reducing OBDDs**

- Generate an OBDD (or BDT) for a switching function, then reduce
  - by means of a recursive descent over the OBDD
- Elimination of duplicate leafs
  - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- Elimination of "don't care" (non-leaf) vertices
  - if  $succ_0(v) = succ_1(v) = w$ , delete v and redirect all its incoming edges to w
- Elimination of isomorphic subtrees
  - if  $v \neq w$  are roots of isomorphic subtrees, remove w and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter



#### How to reduce an OBDD?



elimination of duplicated leaves



#### How to reduce an OBDD?



becomes



isomorphism rule



#### How to reduce an OBDD?



becomes



elimination rule



#### Soundness and completeness

if  $\mathfrak C$  arises from a  $\wp$ -OBDD  $\mathfrak B$  by applying the elimination or isomorphism rule, then:  $\mathfrak C$  is a  $\wp$ -OBDD with  $f_{\mathfrak B}=f_{\mathfrak C}$ 

 $\wp$ -OBDD  $\mathfrak B$  is reduced if and only if no reduction rule is applicable to  $\mathfrak B$ 

 $\bigcirc$  JPK



# **Proof**



#### Variable ordering

- ROBDDs are canonical for a fixed variable ordering
  - the size of the ROBDD crucially depends on the variable ordering
  - # nodes in ROBDD  $\mathfrak{B}$  = # of  $\wp$ -consistent co-factors of f
- Some switching functions have linear and exponential ROBDDs
  - e.g., the addition function, or the stable function
- Some switching functions only have polynomial ROBDDs
  - this holds, e.g., for symmetric functions (see next)
  - examples  $f(\ldots) = x_1 \oplus \ldots \oplus x_n$ , or  $f(\ldots) = 1$  iff  $\geqslant k$  variables  $x_i$  are true
- Some switching functions only have exponential ROBDDs
  - this holds, e.g., for the middle bit of the multiplication function



## The function stable with exponential ROBDD



The ROBDD of  $f_{stab}(\overline{x},\overline{y})=(x_1\leftrightarrow y_1) \ \land \ \ldots \ \land \ (x_n\leftrightarrow y_n)$ 

has  $3 \cdot 2^n - 1$  vertices under ordering  $x_1 < \ldots < x_n < y_1 < \ldots < y_n$ 



#### The function stable with linear ROBDD



The ROBDD of  $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \wedge \ldots \wedge (x_n \leftrightarrow y_n)$ 

has  $3 \cdot n + 2$  vertices under ordering  $x_1 < y_1 < \ldots < x_n < y_n$ 



## Another function with an exponential ROBDD



ROBDD for  $f_3(\overline{z}, \overline{y}) = (z_1 \wedge y_1) \vee (z_2 \wedge y_2) \vee (z_3 \wedge y_3)$  for the variable ordering  $z_1 < z_2 < z_3 < y_1 < y_2 < y_3$ 



## And an optimal linear ROBDD



- ROBDD for  $f_3(\cdot) = (z_1 \wedge y_1) \vee (z_2 \wedge y_2) \vee (z_3 \wedge y_3)$
- for ordering  $z_1 < y_1 < z_2 < y_2 < z_3 < y_3$
- ullet as all variables are essential for f, this ROBDD is optimal
- that is, for no variable ordering a smaller ROBDD exists



# Symmetric functions

 $f \in \mathit{Eval}(z_1, \ldots, z_m)$  is symmetric if and only if

$$f([z_1 = b_1, \dots, z_m = b_m]) = f([z_1 = b_{i_1}, \dots, z_m = b_{i_m}])$$

for each permutation  $(i_1,\ldots,i_m)$  of  $(1,\ldots,m)$ 

E.g.:  $z_1 \vee z_2 \vee \ldots \vee z_m$ ,  $z_1 \wedge z_2 \wedge \ldots \wedge z_m$ , the parity function, and the majority function

If f is a symmetric function with m essential variables, then for each variable ordering  $\wp$  the  $\wp$ -ROBDD has size  $\mathcal{O}(m^2)$ 



# The even parity function

 $f_{even}(x_1,\ldots,x_n)=1$  iff the number of variables  $x_i$  with value 1 is even

truth table or propositional formula for  $f_{\it even}$  has exponential size but an ROBDD of linear size is possible



# The multiplication function

- Consider two *n*-bit integers
  - let  $b_{n-1}b_{n-2}...b_0$  and  $c_{n-1}c_{n-2}...c_0$
  - where  $b_{n-1}$  is the most significant bit, and  $b_0$  the least significant bit
- Multiplication yields a 2n-bit integer
  - the ROBDD  $\mathfrak{B}_{f_{n-1}}$  has at least  $1.09^n$  vertices
  - where  $f_{n-1}$  denotes the (n-1)-st output bit of the multiplication



#### Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine p such that the ROBDD has minimal size?
  - to check whether a variable ordering is optimal is NP-hard
  - polynomial reduction from the 3SAT problem

[Bollig & Wegener, 1996]

- There are many switching functions with large ROBDDs
  - for almost all switching functions the minimal size is in  $\Omega(\frac{2^n}{n})$
- How to deal with this problem in practice?
  - guess a variable ordering in advance
  - rearrange the variable ordering during the ROBDD manipulations
  - not necessary to test all n! orderings, best known algorithm in  $\mathcal{O}(3^n \cdot n^2)$



# Variable swapping



#### Sifting algorithm

[Rudell, 1993]

#### Dynamic variable ordering using variable swapping:

- 1. Select a variable  $x_i$  in OBDD at hand
- 2. Successively swap  $x_i$  to determine  $size(\mathfrak{B})$  at any position for  $x_i$
- 3. Shift  $x_i$  to position for which  $size(\mathfrak{B})$  is minimal
- 4. Go back to the first step until no improvement is made
  - Characteristics:
    - a variable may change position several times during a single sifting iteration
    - often yields a local optimum, but works well in practice



## Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The interleaved variable ordering:
  - for encodings  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_n$  of state s and t respectively:

$$x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n$$

- This variable ordering yields compact ROBDDs for binary relations
  - for transition relation with  $z_1 \dots z_m$  be the encoding of action  $\alpha$ , take:

$$\underbrace{z_1 < z_2 < \ldots < z_m}_{\text{encoding of } \alpha} < \underbrace{x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n}_{\text{interleaved order of states}}$$



# Symbolic model checking

- Take a symbolic representation of a transition system ( $\Delta$  and  $\chi_B$ )
- Backward reachability  $Pre^*(B) = \{ s \in S \mid s \models \exists \Diamond B \}$
- Initially:  $f_0 = \chi_B$  characterizes the set  $T_0 = B$
- Then, successively compute the functions  $f_{j+1} = \chi_{T_{j+1}}$  for:

$$T_{j+1} = T_j \cup \{s \in S \mid \exists s' \in S. \ s' \in \textit{Post}(s) \land s' \in T_j \}$$

- The second set i the above union is given by:  $\exists \overline{x}'. (\underbrace{\Delta(\overline{x}, \overline{x}')}_{s' \in \mathit{Post}(s)} \land \underbrace{f_j(\overline{x}')}_{s' \in T_j})$ 
  - $f_j(\overline{x}')$  arises from  $f_j$  by renaming the variables  $x_i$  into their primed copies  $x_i'$



# Symbolic computation of $Sat(\exists (C \cup B))$

```
\begin{split} f_0(\overline{x}) &:= \chi_B(\overline{x}); \\ j &:= 0; \\ \text{repeat} \\ f_{j+1}(\overline{x}) &:= f_j(\overline{x}) \ \lor \ \big( \chi_C(\overline{x}) \ \land \ \exists \overline{x}'. \left( \ \Delta(\overline{x}, \overline{x}') \ \land \ f_j(\overline{x}') \ \big) \, \big); \\ j &:= j+1 \\ \text{until } f_j(\overline{x}) &= f_{j-1}(\overline{x}); \\ \text{return } f_j(\overline{x}). \end{split}
```



# **Symbolic computation of** $Sat(\exists \Box B)$

Compute the largest set  $T \subseteq B$  with  $Post(t) \cap T \neq \emptyset$  for all  $t \in T$ 

Take 
$$T_0 = B$$
 and  $T_{j+1} = T_j \cap \{s \in S \mid \exists s' \in S. \ s' \in \textit{Post}(s) \land s' \in T_j \}$ 

Symbolically this amounts to:

```
f_0(\overline{x}) := \chi_B(\overline{x});
j := 0;
repeat
f_{j+1}(\overline{x}) := f_j(\overline{x}) \wedge \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \wedge f_j(\overline{x}'));
j := j+1
until f_j(\overline{x}) = f_{j-1}(\overline{x});
return f_j(\overline{x}).
```

Symbolic model checkers mostly use ROBDDs to represent switching functions



# **Synthesis of ROBDDs**

- Construct a  $\wp$ -ROBDD for  $f_1$  op  $f_2$  given  $\wp$ -ROBDDs for  $f_1$  and  $f_2$ 
  - where op is a Boolean connective such as disjunction, implication, etc.
- Idea: use a single ROBDD with (global) variable ordering  $\wp$  to represent several switching functions
- This yields a shared OBDD, which is:
  - a combination of several ROBDDs with variable ordering  $\wp$  by sharing nodes for common  $\wp$ -consistent cofactors
- The size of  $\wp$ -SOBDD  $\overline{\mathfrak{B}}$  for functions  $f_1,\ldots,f_k$  is at most  $N_{f_1}+\ldots+N_{f_k}$  where  $N_f$  denotes the size of the  $\wp$ -ROBDD for f



#### Implementation: shared OBDDs

A shared  $\wp$ -OBDD is an OBDD with multiple roots



Shared OBDD representing 
$$\underbrace{z_1 \land \neg z_2}_{f_1}$$
,  $\underbrace{\neg z_2}_{f_2}$ ,  $\underbrace{z_1 \oplus z_2}_{f_3}$  and  $\underbrace{\neg z_1 \lor z_2}_{f_4}$ 

Main underlying idea: combine several OBDDs with same variable ordering such that common  $\wp$ -consistent co-factors are shared



#### **Synthesizing shared ROBDDs**

#### Relies on the use of two tables

- The unique table
  - keeps track of ROBDD nodes that already have been created
  - table entry  $\langle var(v), succ_1(v), succ_0(v) \rangle$  for each inner node v
  - main operation:  $find\_or\_add(z, v_1, v_0)$  with  $v_1 \neq v_0$ 
    - \* return v if there exists a node  $v = \langle z, v_1, v_0 \rangle$  in the ROBDD
    - \* if not, create a new z-node v with  $succ_0(v) = v_0$  and  $succ_1(v) = v_1$
  - implemented using hash functions (expected access time is  $\mathcal{O}(1)$ )

#### • The computed table

- keeps track of tuples for which ITE has been executed (memoization)
- ⇒ realizes a kind of dynamic programming



#### Using shared OBDDs for model checking $\Phi$

#### Use a single SOBDD for:

- $\Delta(\overline{x}, \overline{x}')$  for the transition relation
- $f_a(\overline{x})$ ,  $a \in AP$ , for the satisfaction sets of the atomic propositions
- The satisfaction sets  $\textit{Sat}(\Psi)$  for the state subformulae  $\Psi$  of  $\Phi$

In practice, often the interleaved variable order for  $\Delta$  is used.



#### ITE normal form

The ITE (if-then-else) operator:  $ITE(g, f_1, f_2) = (g \wedge f_1) \vee (\neg g \wedge f_2)$ 

The ITE operator and the representation of the SOBDD nodes in the unique table:

$$f_v = ITE(z, f_{SUCC_1(v)}, f_{SUCC_0(v)})$$

Then:

$$\neg f = ITE(f, 0, 1)$$
 $f_1 \lor f_2 = ITE(f_1, 1, f_2)$ 
 $f_1 \land f_2 = ITE(f_1, f_2, 0)$ 
 $f_1 \oplus f_2 = ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2)$ 

If  $g, f_1, f_2$  are switching functions for  $Var, z \in Var$  and  $b \in \{0, 1\}$ , then

$$ITE(g, f_1, f_2)|_{z=b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$$



#### **ITE-operator on shared OBDDs**

- A node in a  $\wp$ -SOBDD for representing  $ITE(g,f_1,f_2)$  is a node w with  $info\langle z,w_1,w_0\rangle$  where:
  - z is the minimal (wrt.  $\wp$ ) essential variable of  $ITE(g, f_1, f_2)$
  - $w_b$  is an SOBDD-node with  $f_{w_b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})$
- This suggests a recursive algorithm:
  - determine z
  - recursively compute the nodes for ITE for the cofactors of g,  $f_1$  and  $f_2$



# $ITE(u, v_1, v_2)$ on shared OBDDs (initial version)

```
if u is terminal then
  if val(u) = 1 then
                                                                 (*ITE(1, f_{v_1}, f_{v_2}) = f_{v_1} *)
     w := v_1
  else
                                                                 (*ITE(0, f_{v_1}, f_{v_2}) = f_{v_2} *)
     w := v_2
  fi
else
  z := \min\{ var(u), var(v_1), var(v_2) \};
                                                              (* minimal essential variable *)
  w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});
  w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});
  if w_0 = w_1 then
                                                                           (* elimination rule *)
     w := w_1;
  else
                                                                        (* isomorphism rule *)
     w := \mathit{find\_or\_add}(z, w_1, w_0);
  fi
fi
return w
```



#### **ROBDD** size under ITE

The size of the  $\wp$ -ROBDD for  $\mathit{ITE}(g,f_1,f_2)$  is bounded by  $N_g\cdot N_{f_1}\cdot N_{f_2}$  where  $N_f$  denotes the size of the  $\wp$ -ROBDD for f



#### **ROBDD** size under ITE

The size of the  $\wp$ -ROBDD for  $\mathit{ITE}(g,f_1,f_2)$  is bounded by  $N_g\cdot N_{f_1}\cdot N_{f_2}$  where  $N_f$  denotes the size of the  $\wp$ -ROBDD for f

But how to avoid multiple invocations to ITE?

 $\Rightarrow$  Store triples  $(u, v_1, v_2)$  for which ITE already has been computed



#### Efficiency improvement by memoization

```
if there is an entry for (u, v_1, v_2, w) in the computed table then
   return node w
else
   if u is terminal then
      if val(u) = 1 then w := v_1 else w := v_2 fi
   else
      z := \min\{ var(u), var(v_1), var(v_2) \};
      w_1 := ITE(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1});
      w_0 := ITE(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0});
      if w_0=w_1 then w:=w_1 else w:=\mathit{find\_or\_add}(z,w_1,w_0) fi;
      insert (u, v_1, v_2, w) in the computed table;
      return node w
   fi
fi
The number of recursive calls for the nodes u, v_1, v_2 equals the \wp-ROBDD size
          of ITE(f_u, f_{v_1}, f_{v_2}), which is bounded by N_u \cdot N_{v_1} \cdot N_{v_2}
```



## Some experimental results

- Traffic alert and collision avoidance system (TCAS) (1998)
  - 277 boolean variables, reachable state space is about  $9.610^{56}$  states
  - |B| = 124,618 vertices (about 7.1 MB), construction time 46.6 sec
  - checking  $\forall \Box \ (p \rightarrow q)$  takes 290 sec and 717,000 BDD vertices
- Synchronous pipeline circuit (1992)
  - pipeline with 12 bits: reachable state space of  $1.510^{29}$  states
  - checking safety property takes about  $10^4 10^5$  sec
  - B<sub>→</sub> is linear in data path width
  - verification of 32 bits (about  $10^{120}$  states): 1h 25m
  - using partitioned transition relations



#### Some other types of BDDs

- Zero-suppressed BDDs
  - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted
- Parity BDDs
  - like ROBDDs, but non-terminals may be labeled with ⊕; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
  - like ROBDDs, but terminals have values in  $\mathbb{R}$ , or  $\mathbb{N}$ , etc.
- Binary moment diagrams (BMD)
  - generalization of ROBDD to linear functions over bool, int and real
  - uses edge weights



# **Further reading**

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)