Reduced Ordered Binary Decision Diagrams
Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

June 5, 2012

© JPK

Advanced model checking

Switching functions
e LetVar={z,...,z2,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(zy, . . ., z,) denote the set of evaluations for zy, . . ., 2z,
— shorthand [z1 = b1, ..., 2, = by] fOrn(z1) = b1, ..., M(2m) = by

e f:Eval(Var) — {0,1} is a switching function for Var = {z1,..., 2}

e Logical operations and quantification are defined by:

i) A f2() = min{ f1(+), f2(-) }

)V f2(0) = max{ fi(+), f2(+) }
Elzf() — f(')‘z:va(')‘z:la and
VZf() — f(')|z:0/\f('>|z:1

© JPK 1

Advanced model checking

Ordered Binary Decision Diagram

Let o be a variable ordering for Var where z; <, ... <, 2,

An o-OBDD is a tuple %8 = (V,V;, Vi, succy, succy, var, val, vy) with

e a finite set V' of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root vy € V

e successor functions succg, succ; : V; -V

— such that each node v € V' \ {wvo} has at least one predecessor

e labeling functions var : V; — Var and val : V- — {0, 1 } satisfying

veVr N we {succy(v),succi(v) } NV = var(v) <, var(w)

© JPK 2

Advanced model checking

Transition relation as an OBDD

An example OBDD representing f_, for our example using z; < z2 < x} <

© JPK 3

Advanced model checking

Symbolic composition operators

© JPK 4

Advanced model checking

Consistent co-factors in OBDDs

e Let f be a switching function for Var
o Let o = (z,...,2,) avariable ordering for Var, i.e., z1 <, ... <, 2m
e Switching function g is a @-consistent cofactor of f if

9= fluy=by.....mp, forsomeie {0,1,...,m}

e Then it holds that:;

1. for each node v of an ©-OBDD 8, f, is a gp-consistent cofactor of f
2. for each p-consistent cofactor g of fy there isanode v € B with f, = ¢

© JPK 5

Advanced model checking

Reduced OBDDs

A ©-OBDD $B is reduced if for every pair (v, w) of nodes in *5:
v # w implies f, # f.

(A reduced ©-OBDD is abbreviated as -ROBDD)

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK 6

Advanced model checking

Transition relation as an ROBDD

@
@\”' g

.
.
' .
.
'
.
'
' (;)
‘
. . .
.
. . .
. . .
.
.
. . .
. . R .
N N .
'
'
'
'
'

'

(a) ordering =) < 1y < x| < T, (b) ordering x; <’ x| <" xy <’

© JPK 7

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ¢ a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a ©-ROBDD B with fo = f

(b) Any ©-ROBDDs B and ¢ with fis = f¢ are isomorphic

Any ©-OBDD B for f is reduced iff size(*8) < size(¢) for each ©-OBDD ¢ for f

© JPK 8

Advanced model checking

Reducing OBDDs

e Generate an OBDD (or BDT) for a switching function, then reduce

— by means of a recursive descent over the OBDD

e Elimination of duplicate leafs

— for a duplicate O-leaf (or 1-leaf), redirect all incoming edges to just one of them

e Elimination of “don’t care” (non-leaf) vertices

— if succy(v) = succy (v) = w, delete v and redirect all its incoming edges to w

e Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter

© JPK 9

Advanced model checking

How to reduce an OBDD?

Q\ C \ becomes

1 0/]0 1

elimination of duplicated leaves

© JPK 10

Advanced model checking

How to reduce an OBDD?

v Qu
@ | oL

O O Q O becomes ©><©

iIsomorphism rule

© JPK 11

Advanced model checking

How to reduce an OBDD?

:: : :
.
.
.
.

becomes

elimination rule

© JPK 12

Advanced model checking

Soundness and completeness

if ¢ arises from a ©-OBDD ‘B by applying
the elimination or isomorphism rule, then:

Cisa ©-OBDD with f‘B = fq:

©-OBDD 45 is reduced if and only if

no reduction rule is applicable to B

© JPK

13

Advanced model checking

Proof

© JPK 14

Advanced model checking

Variable ordering

e ROBDDs are canonical for a fixed variable ordering

— the size of the ROBDD crucially depends on the variable ordering
— # nodes in ROBDD B = # of p-consistent co-factors of f

e Some switching functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

e Some switching functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)

— examples f(...)=x1 D ... B x,, 0r f(...) = 1iff > k variables x; are true

e Some switching functions only have exponential ROBDDs

— this holds, e.g., for the middle bit of the multiplication function

© JPK

15

Advanced model checking

The function stable with exponential ROBDD

The ROBDD of fyu(Z,7) = (1 <> y1) A ... A (Tp < Yn)

has 3-2" — 1 verticesunderorderingz; < ... <z, < y1 < ... < Yy,

© JPK 16

Advanced model checking

The function stable with linear ROBDD

The ROBDD of fuu (T,) = (1 <> y1) A ... A (Tn < Yn)

has 3-n + 2 vertices under ordering z1 < y1 < ... < x, < Yn

© JPK =

Advanced model checking

Another function with an exponential ROBDD

-
-
.
’
e @ .7 @
/ ’
/ /
/ /
!
|
@ / //,— @
- -
7 -
-
7/
/
/
/
@ ! @ @ /
- -
! e s e
s 7/
(- L7 /
\'/
\
I
|
|
\
\
\
\
\
\ -
-
N \ L
NN \ ,
NN
AN \ /
NN /
NN
\@

ROBDD for fg(z, g) = (Zl A\ y1) V (ZQ N y2> V (2’3 AN y3>
for the variable ordering 21 < 2 < 3 < 11 < y2 < U3

© JPK 18

Advanced model checking

And an optimal linear ROBDD

) ROBDDfOI’fg(') = (Zl/\y1>\/(22/\y2>\/(23/\y3)
e forordering z; < y1 < 22 < 12 < 23 < U3

e as all variables are essential for f, this ROBDD is
optimal

e that is, for no variable ordering a smaller ROBDD
exists

© JPK

19

Advanced model checking

Symmetric functions

f € Eval(z, ..., z,) is symmetric if and only if

f([zl pm bl, N bm]> pm f([zl pm bil’ c ey Rm — meD

for each permutation (i, ..., 4,) of (1,...,m)

Eg:.z1VaV...Vz, 21N A. .. Az, the parity function, and the majority function

If fis a symmetric function with m essential variables, then

for each variable ordering e the ©-ROBDD has size O(m?)

© JPK 20

Advanced model checking

The even parity function

feven(x1, - .., xy) = 1iff the number of variables z; with value 1 is even

truth table or propositional formula for f..., has exponential size

but an ROBDD of linear size is possible

© JPK 21

Advanced model checking

The multiplication function

e Consider two n-bit integers

— let b,_1b,_o...bg and Cn—1Cn—2 .. .Cy

— where b,,_1 is the most significant bit, and b, the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD B , has at least 1.09" vertices
— where f,,_1 denotes the (n—1)-st output bit of the multiplication

© JPK 22

Advanced model checking

Optimal variable ordering
e The size of ROBDDs is dependent on the variable ordering

e Is it possible to determine p such that the ROBDD has minimal size?
— to check whether a variable ordering is optimal is NP-hard
— polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]
e There are many switching functions with large ROBDDs

— for almost all switching functions the minimal size is in Q(%)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the ROBDD manipulations
— not necessary to test all n! orderings, best known algorithm in O(3"-n?)

© JPK 23

Advanced model checking

Variable swapping

© JPK 24

Advanced model checking

Sifting algorithm
[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable z; in OBDD at hand
2. Successively swap z; to determine size(‘B) at any position for z;
3. Shift x; to position for which size(8) is minimal

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

© JPK 25

Advanced model checking =

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings x4, ..., x, and y4, ..., vy, Of state s and t respectively:
T <Y <T2< Yy <...<xy, < Ynp
e This variable ordering yields compact ROBDDs for binary relations

— for transition relation with z; . . . z,, be the encoding of action «, take:

1< z2<...<zZp <1 <y1 <2< yY2<... <y <Yy
encoding of « interleaved order of states

© JPK

26

Advanced model checking

Symbolic model checking

e Take a symbolic representation of a transition system (A and x)
e Backward reachability Pre*(B) = {se€ S| s E 30 B}
e Initially: fo = x g characterizes the set 7y, = B

e Then, successively compute the functions f;1 = xr,,, for:

Tit1 = T;U{se S|3s" € S.s"ePost(s) N s €T} }

e The second setithe above unionis given by: 37’. (A(Z,7') A f;(T'))
N—— —
s’ € Post(s) s'€T;

— f;(T") arises from f; by renaming the variables z; into their primed copies z;

© JPK p

Advanced model checking

Symbolic computation of Sat(3(C'U B))

fo(T) := xB(T);

9 :=0;

repeat
fi+1(T) = f;(T) V (xc(@) A T (A@T) A f;(T));
J:=74+1

until fj(f) = fj—l(f);

return f;(z).

© JPK 28

Advanced model checking

Symbolic computation of Sat(d0 B)

Compute the largest set T' C B withPost(t) N'T" # oforallt € T
Take To = B and Tj_|_1 = Tj M {S e s | s’ e S. s’ € POSt(S) A s S Tj }

Symbolically this amounts to:
fo(T) := xB(T);
9 :=0;
repeat
fi1(T) = f;(T) A T2 (A@,Z) A f3(T));
J:=74+1
until f;(z) = f;-1(T);

return f;(z).

Symbolic model checkers mostly use ROBDDs to represent switching functions

© JPK 29

Advanced model checking

Synthesis of ROBDDs

e Construct a p-ROBDD for f; op f> given @-ROBDDs for f; and f

— where op is a Boolean connective such as disjunction, implication, etc.

e Ildea: use a single ROBDD with (global) variable ordering o to
represent several switching functions

e This yields a shared OBDD, which is:

a combination of several ROBDDs with variable ordering o
by sharing nodes for common g-consistent cofactors

e The size of p-SOBDD B for functions fi, ..., fx isatmost Ny, +...+
Ny, where N; denotes the size of the -ROBDD for f

© JPK 30

Advanced model checking

Implementation: shared OBDDs

A shared -OBDD is an OBDD with multiple roots

Shared OBDD representing zZ1 N\ 1z, 3\,32/, 21D 2z and 221V 2z
f1 fo f3 fa
Main underlying idea: combine several OBDDs with same variable ordering
such that common g-consistent co-factors are shared

© JPK 31

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

e The unique table

— keeps track of ROBDD nodes that already have been created
— table entry (var(v), succy(v), succy(v)) for each inner node v
— main operation: find_or_add(z, vy, vg) With v # wvq
« return v if there exists anode v = (z, vy, vg) in the ROBDD
« if not, create a new z-node v with succy(v) = vg and succy(v) = vy
— implemented using hash functions (expected access time is O(1))

e The computed table

— keeps track of tuples for which ITE has been executed (memoization)
= realizes a kind of dynamic programming

© JPK 32

Advanced model checking

Using shared OBDDs for model checking ¢

Use a single SOBDD for:

e A(z,7’) for the transition relation
e f.(T), a € AP, for the satisfaction sets of the atomic propositions

e The satisfaction sets Sat(W¥) for the state subformulae ¥ of ®

In practice, often the interleaved variable order for A is used.

© JPK 33

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1,f2) = (gA fi1) V (—mgA f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

Then:

v = |TE(27 fsuccl(v)v fsucco(v)>

-f = ITE(f,0,1)
fiVv fo = |ITE(f1,1, f2)
finfa = ITE(f1, f2,0)
fi®fo = ITE(f1,~f2, f2) = ITE(f1,ITE(f2,0,1), f2)

If g, f1, fo are switching functions for Var, z € Varand b € {0, 1}, then
lTE(Q) f17 fQ)‘z:b — lTE(g|z=b7 fl‘Z:lH fQ‘ZZb)

© JPK

34

Advanced model checking =

ITE-operator on shared OBDDs

e A node in a p-SOBDD for representing ITE(g, f1, f2) IS a node w with
Info(z, wy, wg) where:

— z is the minimal (wrt.) essential variable of ITE(g, f1, f2)
— Wy is an SOBDD-node with fwb — lTE(g‘z:ba fl|z:b7 f2|z:b)
e This suggests a recursive algorithm:

— determine z
— recursively compute the nodes for ITE for the cofactors of g, f1 and f>

© JPK 35

Advanced model checking

ITE(u,v1,v2) On shared OBDDs (initial version)
If w is terminal then
if val(u) = 1 then

w = v (* ITE(Lfvlava) — fvl *)
else
W = Vs (*ITE(O, fo) fog) = fuy ¥
fi
else
z := min{var(u), var(vy), var(vs) }; (* minimal essential variable *)
wy = ITE(u|,=1, v1|2=1, v2|2=1);
wo := ITE(u|.=0, v1|.=0, V2|.=0);
| f wo = W1 then
w = wi; (* elimination rule *)
else
w := find_or_add(z, w1, wy); (* isomorphism rule *)
fi
fi
return w

© JPK 36

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N, denotes the size of the -ROBDD for f

© JPK

37

Advanced model checking

ROBDD size under ITE

The size of the p-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N denotes the size of the p-ROBDD for f

But how to avoid multiple invocations to ITE?

= Store triples (u, vy, v2) for which ITE already has been computed

© JPK

38

Advanced model checking

Efficiency improvement by memoization

If there is an entry for (u, vy, v, w) in the computed table then
return node w
else
If u is terminal then
if val(u) = 1 then w := v, else w := vs fi

else
z := min{var(u), var(v), var(vs) };
wi = ITE(u|,=1, v1|2=1, V2|2=1);
wo 1= ITE(u|2=0, V1220, Va|.—0);

if wg = w; then w := w; else w := find_or_add(z, w1, wy) fi;
insert (u, vy, va, w) in the computed table;
return node w
fi
fi

The number of recursive calls for the nodes u, v, vy equals the E-ROBDD size
of ITE(fu, fvq, fuy), Which is bounded by Ny, - Ny; - Ny,

© JPK 39

Advanced model checking

Some experimental results

e Traffic alert and collision avoidance system (TCAS) (1998)

— 277 boolean variables, reachable state space is about 9.610°° states
— |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
— checking VO (p — q) takes 290 sec and 717,000 BDD vertices

e Synchronous pipeline circuit (1992)

— pipeline with 12 bits: reachable state space of 1.510% states
— checking safety property takes about 10* — 10° sec

— |B_| is linear in data path width

— verification of 32 bits (about 10**" states): 1h 25m

— using partitioned transition relations

© JPK 40

Advanced model checking

Some other types of BDDs

e Zero-suppressed BDDs
— like ROBDDs, but non-terminals whose 1-child is leaf O are omitted
e Parity BDDs

— like ROBDDs, but non-terminals may be labeled with &; no canonical form

e Edge-valued BDDs

e Multi-terminal BDDs (or: algebraic BDDSs)

— like ROBDDs, but terminals have values in R, or N, etc.

e Binary moment diagrams (BMD)

— generalization of ROBDD to linear functions over bool, int and real
— uses edge weights

© JPK 41

Advanced model checking

Further reading

R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

K. McMillan: Symbolic model checking, 1992

Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

© JPK 42

