Reduced Ordered Binary Decision Diagrams

Lecture #13 of Advanced Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 5, 2012
Switching functions

• Let $\text{Var} = \{z_1, \ldots, z_m\}$ be a finite set of Boolean variables

• An evaluation is a function $\eta : \text{Var} \rightarrow \{0, 1\}$
 – let $\text{Eval}(z_1, \ldots, z_m)$ denote the set of evaluations for z_1, \ldots, z_m
 – shorthand $[z_1 = b_1, \ldots, z_m = b_m]$ for $\eta(z_1) = b_1, \ldots, \eta(z_m) = b_m$

• $f : \text{Eval} (\text{Var}) \rightarrow \{0, 1\}$ is a switching function for $\text{Var} = \{z_1, \ldots, z_m\}$

• Logical operations and quantification are defined by:

$$
\begin{align*}
 f_1(\cdot) \land f_2(\cdot) &= \min \{ f_1(\cdot), f_2(\cdot) \} \\
 f_1(\cdot) \lor f_2(\cdot) &= \max \{ f_1(\cdot), f_2(\cdot) \} \\
 \exists z. f(\cdot) &= f(\cdot)|_{z=0} \lor f(\cdot)|_{z=1}, \text{ and} \\
 \forall z. f(\cdot) &= f(\cdot)|_{z=0} \land f(\cdot)|_{z=1}
\end{align*}
$$
Ordered Binary Decision Diagram

Let φ be a variable ordering for Var where $z_1 <_\varphi \ldots <_\varphi z_m$

An φ-OBDD is a tuple $\mathcal{B} = (V, V_I, V_T, succ_0, succ_1, var, val, v_0)$ with

- a finite set V of nodes, partitioned into V_I (inner) and V_T (terminals)
 - and a distinguished root $v_0 \in V$

- successor functions $succ_0, succ_1 : V_I \to V$
 - such that each node $v \in V \setminus \{v_0\}$ has at least one predecessor

- labeling functions $var : V_I \to Var$ and $val : V_T \to \{0, 1\}$ satisfying

\[
 v \in V_I \land w \in \{succ_0(v), succ_1(v)\} \cap V_I \Rightarrow var(v) <_\varphi var(w)
\]
Transition relation as an OBDD

An example OBDD representing $f \rightarrow$ for our example using $x_1 < x_2 < x'_1 < x'_2$
Symbolic composition operators
Consistent co-factors in OBDDs

- Let f be a switching function for Var

- Let $\varphi = (z_1, \ldots, z_m)$ a variable ordering for Var, i.e., $z_1 \prec \varphi \ldots \prec \varphi z_m$

- Switching function g is a φ-consistent cofactor of f if

\[g = f \mid z_1 = b_1, \ldots, z_i = b_i \quad \text{for some } i \in \{0, 1, \ldots, m\} \]

- Then it holds that:
 1. for each node v of an φ-OBDD \mathcal{B}, f_v is a φ-consistent cofactor of $f_\mathcal{B}$
 2. for each φ-consistent cofactor g of $f_\mathcal{B}$ there is a node $v \in \mathcal{B}$ with $f_v = g$
Reduced OBDDs

A \wp-OBDD \mathcal{B} is reduced if for every pair (v, w) of nodes in \mathcal{B}:

$$v \neq w \text{ implies } f_v \neq f_w$$

(A reduced \wp-OBDD is abbreviated as \wp-ROBDD)

\Rightarrow \wp-ROBDDs any \wp-consistent cofactor is represented by exactly one node
Transition relation as an ROBDD

(a) ordering $x_1 < x_2 < x'_1 < x'_2$

(b) ordering $x_1 < x'_1 < x_2 < x'_2$
Universality and canonicity theorem

Let Var be a finite set of Boolean variables and \wp a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a \wp-ROBDD \mathcal{B} with $f_{\mathcal{B}} = f$

(b) Any \wp-ROBDDs \mathcal{B} and \mathcal{C} with $f_{\mathcal{B}} = f_{\mathcal{C}}$ are isomorphic

Any \wp-OBDD \mathcal{B} for f is reduced iff $\text{size}(\mathcal{B}) \leq \text{size}(\mathcal{C})$ for each \wp-OBDD \mathcal{C} for f
Reducing OBDDs

- Generate an OBDD (or BDT) for a switching function, then reduce
 - by means of a recursive descent over the OBDD

- Elimination of duplicate leaves
 - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them

- Elimination of “don’t care” (non-leaf) vertices
 - if $\text{succ}_0(v) = \text{succ}_1(v) = w$, delete v and redirect all its incoming edges to w

- Elimination of isomorphic subtrees
 - if $v \neq w$ are roots of isomorphic subtrees, remove w and redirect all incoming edges to w to v

note that the first reduction is a special case of the latter
How to reduce an OBDD?

becomes

elimination of duplicated leaves
How to reduce an OBDD?

\[\begin{array}{c}
\text{becomes} \\
\end{array} \]

\[\begin{array}{c}
\text{isomorphism rule} \\
\end{array} \]
How to reduce an OBDD?

becomes

elimination rule
Soundness and completeness

if \mathcal{C} arises from a \wp-OBDD \mathcal{B} by applying the elimination or isomorphism rule, then:
\mathcal{C} is a \wp-OBDD with $f_\mathcal{B} = f_\mathcal{C}$

\wp-OBDD \mathcal{B} is reduced if and only if no reduction rule is applicable to \mathcal{B}
Proof
Variable ordering

• ROBDDs are canonical for a \textbf{fixed} variable ordering
 - the size of the ROBDD crucially depends on the variable ordering
 - $\#$ nodes in ROBDD $B = \#$ of φ-consistent co-factors of f

• Some switching functions have \textbf{linear and exponential} ROBDDs
 - e.g., the addition function, or the stable function

• Some switching functions only have \textbf{polynomial} ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - examples $f(\ldots) = x_1 \oplus \ldots \oplus x_n$, or $f(\ldots) = 1$ iff $\geq k$ variables x_i are true

• Some switching functions only have \textbf{exponential} ROBDDs
 - this holds, e.g., for the middle bit of the multiplication function
The function stable with exponential ROBDD

The ROBDD of $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$

has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \ldots < x_n < y_1 < \ldots < y_n$
The function stable with linear ROBDD

The ROBDD of $f_{stab}(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$ has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \ldots < x_n < y_n$
Another function with an exponential ROBDD

ROBDD for $f_3(\overline{z}, \overline{y}) = (z_1 \land y_1) \lor (z_2 \land y_2) \lor (z_3 \land y_3)$

for the variable ordering $z_1 < z_2 < z_3 < y_1 < y_2 < y_3$
And an optimal linear ROBDD

- ROBDD for $f_3(x) = (z_1 \land y_1) \lor (z_2 \land y_2) \lor (z_3 \land y_3)$

- for ordering $z_1 < y_1 < z_2 < y_2 < z_3 < y_3$

- as all variables are essential for f, this ROBDD is optimal

- that is, for no variable ordering a smaller ROBDD exists
Symmetric functions

\[f \in \text{ Eval}(z_1, \ldots, z_m) \text{ is symmetric if and only if } \]

\[f([z_1 = b_1, \ldots, z_m = b_m]) = f([z_1 = b_{i_1}, \ldots, z_m = b_{i_m}]) \]

for each permutation \((i_1, \ldots, i_m)\) of \((1, \ldots, m)\).

E.g.: \(z_1 \lor z_2 \lor \ldots \lor z_m, z_1 \land z_2 \land \ldots \land z_m\), the parity function, and the majority function

If \(f\) is a symmetric function with \(m\) essential variables, then for each variable ordering \(\wp\) the \(\wp\)-ROBDD has size \(O(m^2)\)
The even parity function

\[f_{\text{even}}(x_1, \ldots, x_n) = 1 \text{ iff the number of variables } x_i \text{ with value 1 is even} \]

truth table or propositional formula for \(f_{\text{even}} \) has exponential size

but an ROBDD of linear size is possible
The multiplication function

- Consider two \(n \)-bit integers
 - let \(b_{n-1}b_{n-2} \ldots b_0 \) and \(c_{n-1}c_{n-2} \ldots c_0 \)
 - where \(b_{n-1} \) is the most significant bit, and \(b_0 \) the least significant bit

- Multiplication yields a \(2n \)-bit integer
 - the ROBDD \(B_{f_{n-1}} \) has at least \(1.09^n \) vertices
 - where \(f_{n-1} \) denotes the \((n-1)\)-st output bit of the multiplication
Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering

- Is it possible to determine \mathcal{O} such that the ROBDD has minimal size?
 - to check whether a variable ordering is optimal is NP-hard
 - polynomial reduction from the 3SAT problem [Bollig & Wegener, 1996]

- There are many switching functions with large ROBDDs
 - for almost all switching functions the minimal size is in $\Omega\left(\frac{2^n}{n}\right)$

- How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the ROBDD manipulations
 - not necessary to test all $n!$ orderings, best known algorithm in $\mathcal{O}(3^n \cdot n^2)$
Variable swapping
Sifting algorithm

[Rudell, 1993]

Dynamic variable ordering using variable swapping:

1. Select a variable x_i in OBDD at hand

2. Successively swap x_i to determine $\text{size}(\mathcal{B})$ at any position for x_i

3. Shift x_i to position for which $\text{size}(\mathcal{B})$ is minimal

4. Go back to the first step until no improvement is made

- Characteristics:
 - a variable may change position several times during a single sifting iteration
 - often yields a local optimum, but works well in practice
Interleaved variable ordering

- Which variable ordering to use for transition relations?

- The **interleaved** variable ordering:
 - for encodings x_1, \ldots, x_n and y_1, \ldots, y_n of state s and t respectively:
 \[x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n \]

- This variable ordering yields compact ROBDDs for binary relations
 - for transition relation with $z_1 \ldots z_m$ be the encoding of action α, take:
 \[\underbrace{z_1 < z_2 < \ldots < z_m}_{\text{encoding of } \alpha} < \underbrace{x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n}_{\text{interleaved order of states}} \]
Symbolic model checking

- Take a symbolic representation of a transition system (Δ and χ_B)

- Backward reachability $\text{Pre}^*(B) = \{ s \in S \mid s \models \exists \Diamond B \}$

- Initially: $f_0 = \chi_B$ characterizes the set $T_0 = B$

- Then, successively compute the functions $f_{j+1} = \chi_{T_{j+1}}$ for:

 $$T_{j+1} = T_j \cup \{ s \in S \mid \exists s' \in S. s' \in \text{Post}(s) \land s' \in T_j \}$$

- The second set in the above union is given by: $\exists \overline{x}' . \left(\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}') \right)$

 - $f_j(\overline{x}')$ arises from f_j by renaming the variables x_i into their primed copies x_i'
Symbolic computation of $\text{Sat}(\exists (C \cup B))$

\[
\begin{align*}
f_0(\overline{x}) &:= \chi_B(\overline{x}); \\
j &:= 0; \\
\text{repeat} \quad &f_{j+1}(\overline{x}) := f_j(\overline{x}) \lor (\chi_C(\overline{x}) \land \exists \overline{x}'. (\Delta(\overline{x}, \overline{x}') \land f_j(\overline{x}'))); \\
&j := j + 1 \\
\text{until} \quad &f_j(\overline{x}) = f_{j-1}(\overline{x}); \\
\text{return} \quad &f_j(\overline{x}).
\end{align*}
\]
Symbolic computation of $Sat(\exists \Box B)$

Compute the largest set $T \subseteq B$ with $Post(t) \cap T \neq \emptyset$ for all $t \in T$

Take $T_0 = B$ and $T_{j+1} = T_j \cap \{ s \in S \mid \exists s' \in S. s' \in Post(s) \land s' \in T_j \}$

Symbolically this amounts to:

\[
\begin{align*}
f_0(x) & := \chi_B(x); \\
j & := 0; \\
\text{repeat} \\
f_{j+1}(x) & := f_j(x) \land \exists x'. (\Delta(x, x') \land f_j(x')); \\
j & := j + 1 \\
\text{until} & \quad f_j(x) = f_{j-1}(x); \\
\text{return} & \quad f_j(x).
\end{align*}
\]

Symbolic model checkers mostly use ROBDDs to represent switching functions
Synthesis of ROBDDs

- Construct a \wp-ROBDD for $f_1 \ op \ f_2$ given \wp-ROBDDs for f_1 and f_2
 - where op is a Boolean connective such as disjunction, implication, etc.

- Idea: use a single ROBDD with (global) variable ordering \wp to represent several switching functions

- This yields a shared OBDD, which is:
 a combination of several ROBDDs with variable ordering \wp
 by sharing nodes for common \wp-consistent cofactors

- The size of \wp-SOBDD \overline{B} for functions f_1, \ldots, f_k is at most $N_{f_1} + \ldots + N_{f_k}$ where N_f denotes the size of the \wp-ROBDD for f
Implementation: shared OBDDs

A shared \(\varphi \)-OBDD is an OBDD with multiple roots

\[
\begin{align*}
\text{Shared OBDD representing } & \quad z_1 \land \neg z_2, \quad \neg z_2, \quad z_1 \lor z_2 \text{ and } \neg z_1 \lor z_2 \\
& \quad f_1, \quad f_2, \quad f_3, \quad f_4
\end{align*}
\]

Main underlying idea: combine several OBDDs with same variable ordering such that common \(\varphi \)-consistent co-factors are shared
Synthesizing shared ROBDDs

Relies on the use of two tables

- **The unique table**
 - keeps track of ROBDD nodes that already have been created
 - table entry \(\langle \text{var}(v), \text{succ}_1(v), \text{succ}_0(v) \rangle \) for each inner node \(v \)
 - main operation: \(\text{find}_\text{or}_\text{add}(z, v_1, v_0) \) with \(v_1 \neq v_0 \)
 - return \(v \) if there exists a node \(v = \langle z, v_1, v_0 \rangle \) in the ROBDD
 - if not, create a new \(z \)-node \(v \) with \(\text{succ}_0(v) = v_0 \) and \(\text{succ}_1(v) = v_1 \)
 - implemented using hash functions (expected access time is \(\mathcal{O}(1) \))

- **The computed table**
 - keeps track of tuples for which ITE has been executed (memoization)
 \(\Rightarrow \) realizes a kind of dynamic programming
Using shared OBDDs for model checking Φ

Use a single SOBDD for:

- $\Delta(\overline{x}, \overline{x'})$ for the transition relation
- $f_a(\overline{x})$, $a \in AP$, for the satisfaction sets of the atomic propositions
- The satisfaction sets $Sat(\Psi)$ for the state subformulae Ψ of Φ

In practice, often the interleaved variable order for Δ is used.
ITE normal form

The ITE (if-then-else) operator: \(ITE(g, f_1, f_2) = (g \land f_1) \lor (\lnot g \land f_2) \)

The ITE operator and the representation of the SOBDD nodes in the unique table:

\[
f_v = ITE\left(z, f_{\text{succ}_1(v)}, f_{\text{succ}_0(v)}\right)
\]

Then:

\[
\begin{align*}
\neg f &= ITE(f, 0, 1) \\
f_1 \lor f_2 &= ITE(f_1, 1, f_2) \\
f_1 \land f_2 &= ITE(f_1, f_2, 0) \\
f_1 \oplus f_2 &= ITE(f_1, \neg f_2, f_2) = ITE(f_1, ITE(f_2, 0, 1), f_2)
\end{align*}
\]

If \(g, f_1, f_2 \) are switching functions for \(\text{Var} \), \(z \in \text{Var} \) and \(b \in \{0, 1\} \), then

\[
ITE(g, f_1, f_2)|_{z=b} = ITE(g|_{z=b}, f_1|_{z=b}, f_2|_{z=b})
\]
ITE-operator on shared OBDDs

• A node in a \wp-SOBDD for representing $ITE(g, f_1, f_2)$ is a node w with $info \langle z, w_1, w_0 \rangle$ where:
 – z is the minimal (wrt. \wp) essential variable of $ITE(g, f_1, f_2)$
 – w_b is an SOBDD-node with $f_{w_b} = ITE(g|z=b, f_1|z=b, f_2|z=b)$

• This suggests a recursive algorithm:
 – determine z
 – recursively compute the nodes for ITE for the cofactors of g, f_1 and f_2
\textit{ITE}(u, v_1, v_2) \textbf{ on shared OBDDs (initial version)}

\begin{enumerate}
 \item \textbf{if} \(u\) \textbf{is terminal} \textbf{then}
 \begin{enumerate}
 \item \textbf{if} \(\text{val}(u) = 1\) \textbf{then}
 \begin{enumerate}
 \item \(w := v_1\)
 \end{enumerate}
 \item \textbf{else}
 \begin{enumerate}
 \item \(w := v_2\)
 \end{enumerate}
 \end{enumerate}
 \item \textbf{else}
 \begin{enumerate}
 \item \(z := \min\{\text{var}(u), \text{var}(v_1), \text{var}(v_2)\}\);
 \item \(w_1 := \text{ITE}(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1})\);
 \item \(w_0 := \text{ITE}(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0})\);
 \item \textbf{if} \(w_0 = w_1\) \textbf{then}
 \begin{enumerate}
 \item \(w := w_1\);
 \end{enumerate}
 \item \textbf{else}
 \begin{enumerate}
 \item \(w := \text{find_or_add}(z, w_1, w_0)\);
 \end{enumerate}
 \end{enumerate}
 \end{enumerate}
\end{enumerate}

\textbf{return} \(w\)

\textbf{(*) \text{ITE}(1, f_{v_1}, f_{v_2}) = f_{v_1} *)}

\textbf{(*) \text{ITE}(0, f_{v_1}, f_{v_2}) = f_{v_2} *)}

\textbf{(*) minimal essential variable *)}

\textbf{(*) elimination rule *)}

\textbf{(*) isomorphism rule *)}
ROBDD size under ITE

The size of the \(\wp \)-ROBDD for \(ITE(g, f_1, f_2) \) is bounded by \(N_g \cdot N_{f_1} \cdot N_{f_2} \)
where \(N_f \) denotes the size of the \(\wp \)-ROBDD for \(f \)
ROBDD size under ITE

The size of the φ-ROBDD for $\text{ITE}(g, f_1, f_2)$ is bounded by $N_g \cdot N_{f_1} \cdot N_{f_2}$

where N_f denotes the size of the φ-ROBDD for f

But how to avoid multiple invocations to ITE?

⇒ Store triples (u, v_1, v_2) for which ITE already has been computed
Efficiency improvement by memoization

if there is an entry for \((u, v_1, v_2, w)\) in the computed table then
return node \(w\)
else
if \(u\) is terminal then
if \(\text{val}(u) = 1\) then \(w := v_1\) else \(w := v_2\) fi
else
\(z := \min\{\text{var}(u), \text{var}(v_1), \text{var}(v_2)\}\);
\(w_1 := \text{ITE}(u|_{z=1}, v_1|_{z=1}, v_2|_{z=1})\);
\(w_0 := \text{ITE}(u|_{z=0}, v_1|_{z=0}, v_2|_{z=0})\);
if \(w_0 = w_1\) then \(w := w_1\) else \(w := \text{find_or_add}(z, w_1, w_0)\) fi;
insert \((u, v_1, v_2, w)\) in the computed table;
return node \(w\)
fi
fi

The number of recursive calls for the nodes \(u, v_1, v_2\) equals the \(\varnothing\)-ROBDD size of \(\text{ITE}(f_u, f_{v_1}, f_{v_2})\), which is bounded by \(N_u \cdot N_{v_1} \cdot N_{v_2}\)
Some experimental results

- **Traffic alert and collision avoidance system (TCAS)** (1998)
 - 277 boolean variables, reachable state space is about 9.6×10^{56} states
 - $|B| = 124$, 618 vertices (about 7.1 MB), construction time 46.6 sec
 - checking $\forall \Box (p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices

- **Synchronous pipeline circuit** (1992)
 - pipeline with 12 bits: reachable state space of 1.5×10^{29} states
 - checking safety property takes about $10^4 - 10^5$ sec
 - $|B\rightarrow|$ is linear in data path width
 - verification of 32 bits (about 10^{120} states): 1h 25m
 - using partitioned transition relations
Some other types of BDDs

- Zero-suppressed BDDs
 - like ROBDDs, but non-terminals whose 1-child is leaf 0 are omitted

- Parity BDDs
 - like ROBDDs, but non-terminals may be labeled with \oplus; no canonical form

- Edge-valued BDDs

- Multi-terminal BDDs (or: algebraic BDDs)
 - like ROBDDs, but terminals have values in \mathbb{R}, or \mathbb{N}, etc.

- Binary moment diagrams (BMD)
 - generalization of ROBDD to linear functions over bool, int and real
 - uses edge weights
Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)