Reduced Ordered Binary Decision Diagrams

Lecture \#13 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling \& Verification
E-mail: katoen@cs.rwth-aachen.de

June 5, 2012
(C) JPK

Switching functions

- Let $\operatorname{Var}=\left\{z_{1}, \ldots, z_{m}\right\}$ be a finite set of Boolean variables
- An evaluation is a function $\eta: \operatorname{Var} \rightarrow\{0,1\}$
- let $\operatorname{Eval}\left(z_{1}, \ldots, z_{m}\right)$ denote the set of evaluations for z_{1}, \ldots, z_{m}
- shorthand $\left[z_{1}=b_{1}, \ldots, z_{m}=b_{m}\right]$ for $\eta\left(z_{1}\right)=b_{1}, \ldots, \eta\left(z_{m}\right)=b_{m}$
- $f: \operatorname{Eval}(\operatorname{Var}) \rightarrow\{0,1\}$ is a switching function for $\operatorname{Var}=\left\{z_{1}, \ldots, z_{m}\right\}$
- Logical operations and quantification are defined by:

$$
\begin{aligned}
f_{1}(\cdot) \wedge f_{2}(\cdot) & =\min \left\{f_{1}(\cdot), f_{2}(\cdot)\right\} \\
f_{1}(\cdot) \vee f_{2}(\cdot) & =\max \left\{f_{1}(\cdot), f_{2}(\cdot)\right\} \\
\exists z \cdot f(\cdot) & =\left.\left.f(\cdot)\right|_{z=0} \vee f(\cdot)\right|_{z=1}, \text { and } \\
\forall z \cdot f(\cdot) & =\left.\left.f(\cdot)\right|_{z=0} \wedge f(\cdot)\right|_{z=1}
\end{aligned}
$$

Ordered Binary Decision Diagram

Let \wp be a variable ordering for Var where $z_{1}<_{\wp} \ldots<_{\wp} z_{m}$
An \wp-OBDD is a tuple $\mathfrak{B}=\left(V, V_{I}, V_{T}\right.$, succ $_{0}$, succ $_{1}$, var, val, $\left.v_{0}\right)$ with

- a finite set V of nodes, partitioned into V_{I} (inner) and V_{T} (terminals)
- and a distinguished root $v_{0} \in V$
- successor functions succ ${ }_{0}$, succ $_{1}: V_{I} \rightarrow V$
- such that each node $v \in V \backslash\left\{v_{0}\right\}$ has at least one predecessor
- labeling functions var: $V_{I} \rightarrow$ Var and val : $V_{T} \rightarrow\{0,1\}$ satisfying

$$
v \in V_{I} \wedge w \in\left\{\operatorname{succ}_{0}(v), \operatorname{succ}_{1}(v)\right\} \cap V_{I} \Rightarrow \operatorname{var}(v)<_{\wp} \operatorname{var}(w)
$$

Transition relation as an OBDD

An example OBDD representing f_{\rightarrow} for our example using $x_{1}<x_{2}<x_{1}^{\prime}<x_{2}^{\prime}$

Symbolic composition operators

Consistent co-factors in OBDDs

- Let f be a switching function for Var
- Let $\wp=\left(z_{1}, \ldots, z_{m}\right)$ a variable ordering for Var, i.e., $z_{1}<_{\wp} \ldots<_{\wp} z_{m}$
- Switching function g is a \wp-consistent cofactor of f if

$$
g=\left.f\right|_{z_{1}=b_{1}, \ldots, z_{i}=b_{i}} \text { for some } i \in\{0,1, \ldots, m\}
$$

- Then it holds that:

1. for each node v of an \wp-OBDD \mathfrak{B}, f_{v} is a \wp-consistent cofactor of $f_{\mathfrak{B}}$
2. for each \wp-consistent cofactor g of $f_{\mathfrak{B}}$ there is a node $v \in \mathfrak{B}$ with $f_{v}=g$

Reduced OBDDs

A \wp-OBDD \mathfrak{B} is reduced if for every pair (v, w) of nodes in \mathfrak{B} :
$v \neq w$ implies $f_{v} \neq f_{w}$
(A reduced \wp-OBDD is abbreviated as \wp-ROBDD)
$\Rightarrow \wp$-ROBDDs any \wp-consistent cofactor is represented by exactly one node

Transition relation as an ROBDD

(a) ordering $x_{1}<x_{2}<x_{1}^{\prime}<x_{2}^{\prime}$
(b) ordering $x_{1}<^{\prime} x_{1}^{\prime}<^{\prime} x_{2}<^{\prime} x_{2}^{\prime}$

Universality and canonicity theorem

[Fortune, Hopcroft \& Schmidt, 1978]
Let Var be a finite set of Boolean variables and \wp a variable ordering for Var. Then:
(a) For each switching function f for Var there exists $\mathbf{a} \wp-\operatorname{ROBDD} \mathfrak{B}$ with $f_{\mathfrak{B}}=f$
(b) Any \wp-ROBDDs \mathfrak{B} and \mathfrak{C} with $f_{\mathfrak{B}}=f_{\mathfrak{C}}$ are isomorphic

$$
\text { Any } \wp \text {-OBDD } \mathfrak{B} \text { for } f \text { is reduced iff } \operatorname{size}(\mathfrak{B}) \leqslant \operatorname{size}(\mathfrak{C}) \text { for each } \wp-\text { OBDD } \mathfrak{C} \text { for } f
$$

Reducing OBDDs

- Generate an OBDD (or BDT) for a switching function, then reduce
- by means of a recursive descent over the OBDD
- Elimination of duplicate leafs
- for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- Elimination of "don't care" (non-leaf) vertices
- if $\operatorname{succ}_{0}(v)=\operatorname{succ}_{1}(v)=w$, delete v and redirect all its incoming edges to w
- Elimination of isomorphic subtrees
- if $v \neq w$ are roots of isomorphic subtrees, remove w and redirect all incoming edges to w to v
note that the first reduction is a special case of the latter

How to reduce an OBDD?

becomes

elimination of duplicated leaves

How to reduce an OBDD?

becomes

isomorphism rule

How to reduce an OBDD?

becomes

elimination rule

Soundness and completeness

if \mathfrak{C} arises from a \wp-OBDD \mathfrak{B} by applying
the elimination or isomorphism rule, then:
\mathfrak{C} is a \wp-OBDD with $f_{\mathfrak{B}}=f_{\mathfrak{C}}$
$\wp-O B D D \mathfrak{B}$ is reduced if and only if
no reduction rule is applicable to \mathfrak{B}

Proof

Variable ordering

- ROBDDs are canonical for a fixed variable ordering
- the size of the ROBDD crucially depends on the variable ordering
- \# nodes in ROBDD $\mathfrak{B}=\#$ of \wp-consistent co-factors of f
- Some switching functions have linear and exponential ROBDDs
- e.g., the addition function, or the stable function
- Some switching functions only have polynomial ROBDDs
- this holds, e.g., for symmetric functions (see next)
- examples $f(\ldots)=x_{1} \oplus \ldots \oplus x_{n}$, or $f(\ldots)=1 \mathrm{iff} \geqslant k$ variables x_{i} are true
- Some switching functions only have exponential ROBDDs
- this holds, e.g., for the middle bit of the multiplication function

The function stable with exponential ROBDD

The ROBDD of $f_{\text {stab }}(\bar{x}, \bar{y})=\left(x_{1} \leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \leftrightarrow y_{n}\right)$
has $3 \cdot 2^{n}-1$ vertices under ordering $x_{1}<\ldots<x_{n}<y_{1}<\ldots<y_{n}$

The function stable with linear ROBDD

The ROBDD of $f_{\text {stab }}(\bar{x}, \bar{y})=\left(x_{1} \leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \leftrightarrow y_{n}\right)$
has $3 \cdot n+2$ vertices under ordering $x_{1}<y_{1}<\ldots<x_{n}<y_{n}$

Another function with an exponential ROBDD

ROBDD for $f_{3}(\bar{z}, \bar{y})=\left(z_{1} \wedge y_{1}\right) \vee\left(z_{2} \wedge y_{2}\right) \vee\left(z_{3} \wedge y_{3}\right)$
for the variable ordering $z_{1}<z_{2}<z_{3}<y_{1}<y_{2}<y_{3}$

And an optimal linear ROBDD

- ROBDD for $f_{3}(\cdot)=\left(z_{1} \wedge y_{1}\right) \vee\left(z_{2} \wedge y_{2}\right) \vee\left(z_{3} \wedge y_{3}\right)$
- for ordering $z_{1}<y_{1}<z_{2}<y_{2}<z_{3}<y_{3}$
- as all variables are essential for f, this ROBDD is optimal
- that is, for no variable ordering a smaller ROBDD exists

Symmetric functions

$f \in \operatorname{Eval}\left(z_{1}, \ldots, z_{m}\right)$ is symmetric if and only if

$$
f\left(\left[z_{1}=b_{1}, \ldots, z_{m}=b_{m}\right]\right)=f\left(\left[z_{1}=b_{i_{1}}, \ldots, z_{m}=b_{i_{m}}\right]\right)
$$

for each permutation $\left(i_{1}, \ldots, i_{m}\right)$ of $(1, \ldots, m)$
E.g.: $z_{1} \vee z_{2} \vee \ldots \vee z_{m}, z_{1} \wedge z_{2} \wedge \ldots \wedge z_{m}$, the parity function, and the majority function

If f is a symmetric function with m essential variables, then for each variable ordering \wp the \wp-ROBDD has size $\mathcal{O}\left(m^{2}\right)$

The even parity function

$f_{\text {even }}\left(x_{1}, \ldots, x_{n}\right)=1$ iff the number of variables x_{i} with value 1 is even
truth table or propositional formula for $f_{\text {even }}$ has exponential size
but an ROBDD of linear size is possible

The multiplication function

- Consider two n-bit integers
- let $b_{n-1} b_{n-2} \ldots b_{0}$ and $c_{n-1} c_{n-2} \ldots c_{0}$
- where b_{n-1} is the most significant bit, and b_{0} the least significant bit
- Multiplication yields a $2 n$-bit integer
- the ROBDD $\mathfrak{B}_{f_{n-1}}$ has at least 1.09^{n} vertices
- where f_{n-1} denotes the $(n-1)$-st output bit of the multiplication

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine \wp such that the ROBDD has minimal size?
- to check whether a variable ordering is optimal is NP-hard
- polynomial reduction from the 3SAT problem
[Bollig \& Wegener, 1996]
- There are many switching functions with large ROBDDs
- for almost all switching functions the minimal size is in $\Omega\left(\frac{2^{n}}{n}\right)$
- How to deal with this problem in practice?
- guess a variable ordering in advance
- rearrange the variable ordering during the ROBDD manipulations
- not necessary to test all n ! orderings, best known algorithm in $\mathcal{O}\left(3^{n} \cdot n^{2}\right)$

Variable swapping

Sifting algorithm

[Rudell, 1993]
Dynamic variable ordering using variable swapping:

1. Select a variable x_{i} in OBDD at hand
2. Successively swap x_{i} to determine $\operatorname{size}(\mathfrak{B})$ at any position for x_{i}
3. Shift x_{i} to position for which $\operatorname{size}(\mathfrak{B})$ is minimal
4. Go back to the first step until no improvement is made

- Characteristics:
- a variable may change position several times during a single sifting iteration
- often yields a local optimum, but works well in practice

Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The interleaved variable ordering:
- for encodings x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} of state s and t respectively:

$$
x_{1}<y_{1}<x_{2}<y_{2}<\ldots<x_{n}<y_{n}
$$

- This variable ordering yields compact ROBDDs for binary relations
- for transition relation with $z_{1} \ldots z_{m}$ be the encoding of action α, take:

$$
\underbrace{z_{1}<z_{2}<\ldots<z_{m}}_{\text {encoding of } \alpha}<\underbrace{x_{1}<y_{1}<x_{2}<y_{2}<\ldots<x_{n}<y_{n}}_{\text {interleaved order of states }}
$$

Symbolic model checking

- Take a symbolic representation of a transition system (Δ and χ_{B})
- Backward reachability $\operatorname{Pre}^{*}(B)=\{s \in S \mid s \models \exists \diamond B\}$
- Initially: $f_{0}=\chi_{B}$ characterizes the set $T_{0}=B$
- Then, successively compute the functions $f_{j+1}=\chi_{T_{j+1}}$ for:

$$
T_{j+1}=T_{j} \cup\left\{s \in S \mid \exists s^{\prime} \in S . s^{\prime} \in \operatorname{Post}(s) \wedge s^{\prime} \in T_{j}\right\}
$$

- The second set i the above union is given by: $\exists \bar{x}^{\prime} \cdot(\underbrace{\Delta\left(\bar{x}, \bar{x}^{\prime}\right)}_{s^{\prime} \in \operatorname{Post}(s)} \wedge \underbrace{f_{j}\left(\bar{x}^{\prime}\right)}_{s^{\prime} \in T_{j}})$
- $f_{j}\left(\bar{x}^{\prime}\right)$ arises from f_{j} by renaming the variables x_{i} into their primed copies x_{i}^{\prime}

Symbolic computation of $\operatorname{Sat}(\exists(C \cup B))$

```
\(f_{0}(\bar{x}):=\chi_{B}(\bar{x}) ;\)
\(j:=0\);
repeat
    \(f_{j+1}(\bar{x}):=f_{j}(\bar{x}) \vee\left(\chi_{C}(\bar{x}) \wedge \exists \bar{x}^{\prime} .\left(\Delta\left(\bar{x}, \bar{x}^{\prime}\right) \wedge f_{j}\left(\bar{x}^{\prime}\right)\right)\right) ;\)
    \(j:=j+1\)
until \(f_{j}(\bar{x})=f_{j-1}(\bar{x})\);
return \(f_{j}(\bar{x})\).
```


Symbolic computation of $\operatorname{Sat}(\exists \square B)$

Compute the largest set $T \subseteq B$ with $\operatorname{Post}(t) \cap T \neq \varnothing$ for all $t \in T$
Take $T_{0}=B$ and $T_{j+1}=T_{j} \cap\left\{s \in S \mid \exists s^{\prime} \in S . s^{\prime} \in \operatorname{Post}(s) \wedge s^{\prime} \in T_{j}\right\}$
Symbolically this amounts to:

$$
\begin{aligned}
& f_{0}(\bar{x}):=\chi_{B}(\bar{x}) \\
& j:=0
\end{aligned}
$$

repeat

```
    \(f_{j+1}(\bar{x}):=f_{j}(\bar{x}) \wedge \exists \bar{x}^{\prime} .\left(\Delta\left(\bar{x}, \bar{x}^{\prime}\right) \wedge f_{j}\left(\bar{x}^{\prime}\right)\right) ;\)
    \(j:=j+1\)
until \(f_{j}(\bar{x})=f_{j-1}(\bar{x})\);
return \(f_{j}(\bar{x})\).
```

Symbolic model checkers mostly use ROBDDs to represent switching functions

Synthesis of ROBDDs

- Construct a \wp-ROBDD for f_{1} op f_{2} given \wp-ROBDDs for f_{1} and f_{2}
- where op is a Boolean connective such as disjunction, implication, etc.
- Idea: use a single ROBDD with (global) variable ordering \wp to represent several switching functions
- This yields a shared OBDD, which is:
a combination of several ROBDDs with variable ordering \wp by sharing nodes for common \wp-consistent cofactors
- The size of \wp-SOBDD $\overline{\mathfrak{B}}$ for functions f_{1}, \ldots, f_{k} is at most $N_{f_{1}}+\ldots+$ $N_{f_{k}}$ where N_{f} denotes the size of the \wp-ROBDD for f

Implementation: shared OBDDs

A shared \wp-OBDD is an OBDD with multiple roots

Shared OBDD representing $\underbrace{z_{1} \wedge \neg z_{2}}_{f_{1}}, \underbrace{\neg z_{2}}_{f_{2}}, \underbrace{z_{1} \oplus z_{2}}_{f_{3}}$ and $\underbrace{\neg z_{1} \vee z_{2}}_{f_{4}}$
Main underlying idea: combine several OBDDs with same variable ordering such that common \wp-consistent co-factors are shared

Synthesizing shared ROBDDs

Relies on the use of two tables

- The unique table
- keeps track of ROBDD nodes that already have been created
- table entry $\left\langle\operatorname{var}(v), \operatorname{succ}_{1}(v), \operatorname{succ}_{0}(v)\right\rangle$ for each inner node v
- main operation: find_or_add $\left(z, v_{1}, v_{0}\right)$ with $v_{1} \neq v_{0}$
* return v if there exists a node $v=\left\langle z, v_{1}, v_{0}\right\rangle$ in the ROBDD
* if not, create a new z-node v with $\operatorname{succ}_{0}(v)=v_{0}$ and $\operatorname{succ}_{1}(v)=v_{1}$
- implemented using hash functions (expected access time is $\mathcal{O}(1)$)
- The computed table
- keeps track of tuples for which ITE has been executed (memoization)
\Rightarrow realizes a kind of dynamic programming

Using shared OBDDs for model checking Φ

Use a single SOBDD for:

- $\Delta\left(\bar{x}, \bar{x}^{\prime}\right)$ for the transition relation
- $f_{a}(\bar{x}), a \in A P$, for the satisfaction sets of the atomic propositions
- The satisfaction sets $\operatorname{Sat}(\Psi)$ for the state subformulae Ψ of Φ

In practice, often the interleaved variable order for Δ is used.

ITE normal form

The ITE (if-then-else) operator: $\operatorname{ITE}\left(g, f_{1}, f_{2}\right)=\left(g \wedge f_{1}\right) \vee\left(\neg g \wedge f_{2}\right)$
The ITE operator and the representation of the SOBDD nodes in the unique table:

$$
f_{v}=\operatorname{ITE}\left(z, f_{\text {succ }_{1}(v)}, f_{\text {succ }_{0}(v)}\right)
$$

Then:

$$
\begin{aligned}
\neg f & =\operatorname{ITE}(f, 0,1) \\
f_{1} \vee f_{2} & =\operatorname{ITE}\left(f_{1}, 1, f_{2}\right) \\
f_{1} \wedge f_{2} & =\operatorname{ITE}\left(f_{1}, f_{2}, 0\right) \\
f_{1} \oplus f_{2} & =\operatorname{ITE}\left(f_{1}, \neg f_{2}, f_{2}\right)=\operatorname{ITE}\left(f_{1}, \operatorname{ITE}\left(f_{2}, 0,1\right), f_{2}\right)
\end{aligned}
$$

If g, f_{1}, f_{2} are switching functions for Var, $z \in \operatorname{Var}$ and $b \in\{0,1\}$, then

$$
\left.\operatorname{ITE}\left(g, f_{1}, f_{2}\right)\right|_{z=b}=\operatorname{ITE}\left(\left.g\right|_{z=b},\left.f_{1}\right|_{z=b},\left.f_{2}\right|_{z=b}\right)
$$

ITE-operator on shared OBDDs

- A node in a \wp-SOBDD for representing $\operatorname{ITE}\left(g, f_{1}, f_{2}\right)$ is a node w with info $\left\langle z, w_{1}, w_{0}\right\rangle$ where:
- z is the minimal (wrt. $\wp)$ essential variable of $\operatorname{ITE}\left(g, f_{1}, f_{2}\right)$
- w_{b} is an SOBDD-node with $f_{w_{b}}=\operatorname{ITE}\left(\left.g\right|_{z=b},\left.f_{1}\right|_{z=b},\left.f_{2}\right|_{z=b}\right)$
- This suggests a recursive algorithm:
- determine z
- recursively compute the nodes for ITE for the cofactors of g, f_{1} and f_{2}

ITE $\left(u, v_{1}, v_{2}\right)$ on shared OBDDs (initial version)

if u is terminal then
if $\operatorname{val}(u)=1$ then

$$
w:=v_{1}
$$

else
$w:=v_{2}$
fi
else
$z:=\min \left\{\operatorname{var}(u), \operatorname{var}\left(v_{1}\right), \operatorname{var}\left(v_{2}\right)\right\} ; \quad \quad$ (* minimal essential variable *)
$w_{1}:=\operatorname{ITE}\left(\left.u\right|_{z=1},\left.v_{1}\right|_{z=1},\left.v_{2}\right|_{z=1}\right)$;
$w_{0}:=\operatorname{ITE}\left(\left.u\right|_{z=0},\left.v_{1}\right|_{z=0},\left.v_{2}\right|_{z=0}\right)$;
if $w_{0}=w_{1}$ then
$w:=w_{1} ;$
(* elimination rule *)
else
$w:=$ find_or_add $\left(z, w_{1}, w_{0}\right) ;$
(* isomorphism rule *)

ROBDD size under ITE

The size of the \wp-ROBDD for $\operatorname{ITE}\left(g, f_{1}, f_{2}\right)$ is bounded by $N_{g} \cdot N_{f_{1}} \cdot N_{f_{2}}$ where N_{f} denotes the size of the \wp-ROBDD for f

ROBDD size under ITE

The size of the \wp-ROBDD for $\operatorname{ITE}\left(g, f_{1}, f_{2}\right)$ is bounded by $N_{g} \cdot N_{f_{1}} \cdot N_{f_{2}}$ where N_{f} denotes the size of the \wp-ROBDD for f

But how to avoid multiple invocations to ITE?
\Rightarrow Store triples $\left(u, v_{1}, v_{2}\right)$ for which ITE already has been computed

Efficiency improvement by memoization

```
if there is an entry for \(\left(u, v_{1}, v_{2}, w\right)\) in the computed table then
    return node \(w\)
else
    if \(u\) is terminal then
            if \(\operatorname{val}(u)=1\) then \(w:=v_{1}\) else \(w:=v_{2} \mathbf{f i}\)
    else
            \(z:=\min \left\{\operatorname{var}(u), \operatorname{var}\left(v_{1}\right), \operatorname{var}\left(v_{2}\right)\right\} ;\)
            \(w_{1}:=\operatorname{ITE}\left(\left.u\right|_{z=1},\left.v_{1}\right|_{z=1},\left.v_{2}\right|_{z=1}\right)\);
            \(w_{0}:=\operatorname{ITE}\left(\left.u\right|_{z=0},\left.v_{1}\right|_{z=0},\left.v_{2}\right|_{z=0}\right)\);
            if \(w_{0}=w_{1}\) then \(w:=w_{1}\) else \(w:=\) find_or_add \(\left(z, w_{1}, w_{0}\right)\) fi;
            insert \(\left(u, v_{1}, v_{2}, w\right)\) in the computed table;
            return node \(w\)
    fi
fi
```

The number of recursive calls for the nodes u, v_{1}, v_{2} equals the \wp-ROBDD size of $\operatorname{ITE}\left(f_{u}, f_{v_{1}}, f_{v_{2}}\right)$, which is bounded by $N_{u} \cdot N_{v_{1}} \cdot N_{v_{2}}$

Some experimental results

- Traffic alert and collision avoidance system (TCAS) (1998)
- 277 boolean variables, reachable state space is about 9.610^{56} states
- $|\mathrm{B}|=124,618$ vertices (about 7.1 MB), construction time 46.6 sec
- checking $\forall \square(p \rightarrow q)$ takes 290 sec and 717,000 BDD vertices
- Synchronous pipeline circuit (1992)
- pipeline with 12 bits: reachable state space of 1.510^{29} states
- checking safety property takes about $10^{4}-10^{5}$ sec
- $\left|B_{\rightarrow}\right|$ is linear in data path width
- verification of 32 bits (about 10^{120} states): 1 h 25 m
- using partitioned transition relations

Some other types of BDDs

- Zero-suppressed BDDs
- like ROBDDs, but non-terminals whose 1 -child is leaf 0 are omitted
- Parity BDDs
- like ROBDDs, but non-terminals may be labeled with \oplus; no canonical form
- Edge-valued BDDs
- Multi-terminal BDDs (or: algebraic BDDs)
- like ROBDDs, but terminals have values in \mathbb{R}, or \mathbb{N}, etc.
- Binary moment diagrams (BMD)
- generalization of ROBDD to linear functions over bool, int and real
- uses edge weights

Further reading

- R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986
- R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
- M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
- H.R. Andersen: Introduction to BDDs, Tech Rep, 1994
- K. McMillan: Symbolic model checking, 1992
- Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel \& Th. Theobald (Springer 1998)

