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• Player 1 does not see the coins but knows how many coins are on H (imperfect 
information). Player 2 does see them (perfect information).

• Initially, two coins are on H.  Then rounds are played as follows: Player 1 chooses a 
coin C in {1,2,3}.  Player 2 flips C, then he decides to exchange or not the position 
of the other two coins. He announces the number of H to Player 1.

• Player 1 wins when all coins are on H, Player 2 wins when all coins are on T or if 
the game never reaches 3 coins on H.
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Fig. 1. The 3-coin game.

objective of Player 1 is to have all coins head up (HHH) while avoiding
at all cost a configuration where all coins show tail (TTT). The game
is played as follows. Initially, Player 2 chooses a configuration of the
coins with two heads and one tails. Then, the following rounds are
played: Player 1 can choose one coin in the set {c1, c2, c3} and ask
Player 2 to flip that coin. Player 2 must execute the choice of Player 1L: flip → turn ?
and he may further decide to exchange the positions of the two coins
that are not flip. The game stops whenever the three coins are all
head (Player 1 wins) or all tail (Player 2 wins). Otherwise Player 2
announces the number of heads and tails, and the next round starts.

This is a game with imperfect information for Player 1 as he does not know
the exact position of the coins, but only the number of heads and tails. In this
game, does Player 1 have a strategy such that for all strategies of Player 2,
the game reaches HHH and avoids TTT? We are interested in observation-based
strategies which rely on the information available to Player 1. In fact Player 1
does not have a deterministic observation-based strategy to win the 3-coin game,
because Player 2 can always find a spoiling counter-strategy using his ability to
exchange coins after Player 1’s move. If we do not allow Player 2 to exchange
the coins, then Player 1 has a deterministic observation-based winning strategy
consisting in successively trying to flip every coin. This strategy requires memory
and it is easy to see that memory is necessary to win this game. On the other
hand, if we allow Player 1 to take his decision using a source of randomization,
then he would be able to win the original 3-coin game with probability 1. This
shows that randomized strategies are in general more powerful than deterministic
strategies.

We study in this course mathematical models and algorithms for games with
imperfect information. The model that we consider is asymmetric in the sense
that Player 1 has imperfect information about the state while Player 2 has perfect
knowledge. This model is udeful for the design of control programs embedded in
an environment that provides observations about its state via shared variables or
sensors. We discuss the asymmetry of the definition in Section 3.1 and we argue
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Content of this course

• Game structures with imperfect information to model 
games such as the 3-coin game.

• Two variants: 
deterministic strategies vs randomized strategies.

• Algorithms to decide who is winning and synthesize 
winning strategies when they exist.
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Plan

• Preliminaries: 
Game structures with perfect information

• Game structures with imperfect information

• Deterministic strategies (with memory)

• Efficient algorithms (antichains)
    + applications in automata theory

• Randomized strategies (with memory)

Monday 15 November 2010



Preliminaries
Games of perfect information
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Game structure of perfect information

• A two-player game structure of perfect information 
(L,linit,Σ,Δ) is composed of: 

(i) L is a finite set of locations, 
(ii) linit is the initial location, 
(iii) Σ is a finite alphabet of actions, and 
(iv) Δ ⊆L×Σ×L is a set of transitions s.t. ∀l∈L‧∃σ∈Σ‧∃(l,σ,l’)∈Δ.
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Rounds

• Games of perfect information are played by the two 
players for an infinite number of rounds. 

- Round 0. The game starts in the initial location li.

- Round i. If l1 is the current location, 

① Player 1 chooses an action σ∈Σ, and 

② Player 2 resolves nondeterminism 

by choosing a location in { l2 | (l1,σ, l2) ∈Δ }

- Round i+1 is started. 

Monday 15 November 2010
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of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
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deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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• A play is an infinite sequence of locations π=l0l1...ln... 
such that 

• l0=linit, and 

• ∀i≥0‧∃σ∈Σ‧(li,σ,li+1)∈Δ. 

• We denote by Inf(π) the set of locations that appear infinitely 
many times along π.

• A history of a play π=l0l1...ln... is a finite prefix of the play. 

• π(j)=l0l1...lj. is the prefix that ends in position j≥0. 

• Its length, denoted |π(j)|=j+1. 

• We use Last(π(j)) to denote lj.

Play, Inf, History
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Deterministic strategies
Memoryless strategies

• A deterministic strategy for Player I is a function α : L+→Σ 
that maps histories to actions. 

AG denotes the set of Player 1’s strategies in game G.

• A deterministic strategy for Player 2 is a function β : L+×Σ→L s.t. 

                   ∀ρ∈L+‧∀σ∈Σ‧(Last(ρ),σ,β(ρ,σ))∈Δ.

BG denotes the set of Player 2’s strategies in game G.

• A strategy α∈AG is memoryless if 

                    ∀ρ,ρ’∈L+‧Last(ρ)=Last(ρ’)⟹α(ρ)=α(ρ’). 

i.e. memoryless strategy depends only on the last location of the history.

Monday 15 November 2010



Outcome of deterministic strategies

• The outcome of a deterministic strategy α for Player 1 and of a 
deterministic strategy β for Player 2 is the play
 
             π=l0l1...ln... such that: 1) l0=linit

                                                                 2) ∀i≥0, σi=α(π(i)) and li+1=β(π(i),σi). 

This play is denoted by outcome(G,α,β)

• A play π is consistent with a Player 1’s strategy α if

                 π=outcome(G,α,β) for some Player 2’s strategy β.

• We note Outcome1(G,α) the set of plays consistent with α.
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Objectives (winning conditions)

• Given a game structure G=(L,li,Σ,Δ), an objective is a set of sequences of 
locations, i.e. a subset of Lω. By ρ we denote Lω\ρ.

• A reachability objective is defined by a set of target locations T⊆L.
                     Reach(T)={ l0 l1 l2 ... | ∃j≥0 • lj ∈ T }.

• A safety objective is defined by a set of safe locations S⊆L. 
                         Safe(S)={l0 l1 l2 ... | ∀j≥0 • lj ∈ S }. 

• A Büchi objective is defined by a set of target locations T⊆L. 
                           Büchi(T)={ π | Inf(π)∩T≠∅ }.

• A coBüchi objective is defined by a set of safe locations S⊆L. 
                            coBüchi(S)={ π | Inf(π)⊆S }.

• A parity objective is defined by a function pr : L → { 0,1,...,d }. 
                Parity(pr)={ π | min{ pr(l) | l ∈ Inf(π) } is even }.
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Objectives (winning conditions)

• Given a game structure G=(L,li,Σ,Δ), an objective is a set of sequences of 
locations, i.e. a subset of Lω. By ρ we denote Lω\ρ.

• A reachability objective is defined by a set of target locations T⊆L.
                     Reach(T)={ l0 l1 l2 ... | ∃j≥0 • lj ∈ T }.

• A safety objective is defined by a set of safe locations S⊆L. 
                         Safe(S)={l0 l1 l2 ... | ∀j≥0 • lj ∈ S }. 

• A Büchi objective is defined by a set of target locations T⊆L. 
                           Büchi(T)={ π | Inf(π)∩T≠∅ }.

• A coBüchi objective is defined by a set of safe locations S⊆L. 
                            coBüchi(S)={ π | Inf(π)⊆S }.

• A parity objective is defined by a function pr : L → { 0,1,...,d }. 
                Parity(pr)={ π | min{ pr(l) | l ∈ Inf(π) } is even }.

Parity objectives nicely generalize all th
e 

other classes of objectives !

Parity is expressive enough to cover all 

omega-regular objectives !
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• Let G be a game structure and ρ⊆Lω be an objective. 

• The deterministic strategy α is surely-winning in G for ρ 
iff Outcome1(G,α)⊆ρ. (similarly for Player 2).

• We say that (G,ρ) is determined iff either 
Player 1 has a surely-winning strategy α for the objective ρ, or
Player 2 has a surely-winning strategy β for the objective ρ.

• Theorem (Determinacy). For all game structures of perfect 
information G, for all parity objectives ρ, the game (G,ρ) is determined.

• Theorem (Memoryless). For all game structures of perfect information 
G, for all parity objectives ρ:
           Player 1 (Player 2) has a surely-winning strategy in (G,ρ) 
                                                iff 
   Player 1 (Player 2) has a memoryless surely-winning strategy in (G,ρ).

Surely-winning - Determinacy
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Rounds, plays, history

l1 a l2 a l3 b l1 b l2 b l3’ ...

Strategies

Player 1proposes letters:   α : L+→Σ
Player 2 resolves nondeterm.:  β : L+×Σ→L 

Objectives

ρ⊆Lω

Safety, Reachability, (co)Büchi, Parity

Player 1 wins (G,ρ) iff ∃α•∀β•outcome(α,β)∈ρ
iff ¬(∃β•∀α•outcome(α,β)∈ρ) 
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• The controller predecessor operator 

                             Cpre : 2L → 2L 

given a set of locations s⊆L, returns the set of locations l∈L, 
from which Player 1 can force the game to be in S in the next 
round.

        Cpre(S)={ l | ∃σ∈Σ ‧ ∀l’∈L ‧ (l,σ,l’)∈Δ ⟹ l’∈S }
                     ={ l | ∃σ∈Σ ‧ postG,σ(l) ⊆ S }

where postG,σ(l) is the set of successors of l by σ in G.

Algorithms - Cpre
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• Let G be a game structure of perfect information, S⊆L. 

• To solve the game for the safety objective Safe(S), we must 
compute the set of locations W⊆L from which player 1 can 
maintain the game within S for any number of rounds. 

• Clearly W⊆S, and 

if Wi is the set of locations from which Player 1 can keep the 
game within S for i steps, 

then Wi+1⊆Wi, and Wi+1 is exactly the set of locations within 
S from which Player 1 can force the game to be in Wi in the 
next round, i.e. Wi+1=S∩Cpre(Wi).

Algorithms - Safety
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• So the set of surely-winning locations for Player 1 
are obtained as the limit of the following sequence:

W0=S ;
Wi+1=S∩Cpre(Wi), for all i≥0.

This sequence stabilizes after at most |S| steps. The 
limit is the greatest solution of the equation 
W=S∩Cpre(W).

Algorithms - Safety
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Algorithms - Safety
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Algorithms - Safety
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S∩Cpre(S)
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Algorithms - Safety

L

S

S∩Cpre(S)

S∩Cpre(S∩Cpre(S))...

Monday 15 November 2010



Algorithms - Safety

L

S

S∩Cpre(S)

S∩Cpre(S∩Cpre(S))

W

...

Monday 15 November 2010



Algorithms - Safety
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.
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all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
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The definition of surely-winning strategies is adapted accordingly, namely, a
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transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
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An observation-based strategy for Player 1 is a function α : L+ → Σ such that
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objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
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Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

W0=L\{l4}
W1=L\{l4}∩Cpre(L\{l4})=L\{l3’,l4}
W2=L\{l4}∩Cpre(L\{l3’,l4})=L\{l3’,l4}

Monday 15 November 2010



Algorithms - Safety

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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• Let G be a game structure of perfect information, T⊆L. 

• To solve the game for the reachability objective Reach(T), we 
must compute the set of locations W⊆L from which player 1 can 
drive the game into T no matter how Player 2 resolves 
nondeterminism. 

• Clearly T⊆W, and
 
if Wi is the set of locations from which Player 1 can force the 
game to reach T in i steps or less, 

then Wi+1 is the set of locations from which Player I can force Wi 
in the next round, i.e. Wi+1=Wi∪Cpre(Wi).

Algorithms - Reachability
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• So the set of surely-winning locations for Player 1 are 
obtained as the limit of the following sequence:

W0=T ;
Wi+1=T∪Cpre(Wi), for all i≥0.

This sequence stabilizes after at most |L| steps. The limit is 
the least solution of the equation W=T∪Cpre(W).

Algorithms - Reachability
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Let us compute the surely winning locations for the 
objective Reach({l4}).
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

W0={l4}
W1={l4}∪Cpre({l4})={l3’,l4}
W2={l4}∪Cpre({l3’,l4})= {l2,l2’,l3’,l4}
W3={l4}∪Cpre({l2,l2’,l3’,l4})={l1,l2,l2’,l3’,l4}
W4={l4}∪Cpre({l1,l2,l2’,l3’,l4})=L

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
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is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

W0={l4}
W1={l4}∪Cpre({l4})={l3’,l4}
W2={l4}∪Cpre({l3’,l4})= {l2,l2’,l3’,l4}
W3={l4}∪Cpre({l2,l2’,l3’,l4})={l1,l2,l2’,l3’,l4}
W4={l4}∪Cpre({l1,l2,l2’,l3’,l4})=L

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

Monday 15 November 2010



Algorithms - Reachability

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
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is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
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strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

W0={l4}
W1={l4}∪Cpre({l4})={l3’,l4}
W2={l4}∪Cpre({l3’,l4})= {l2,l2’,l3’,l4}
W3={l4}∪Cpre({l2,l2’,l3’,l4})={l1,l2,l2’,l3’,l4}
W4={l4}∪Cpre({l1,l2,l2’,l3’,l4})=L

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, b

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
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transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
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• We provide a simple reduction to safety games (similar to [BJW02] but 
simpler, see also [BD08] - FSTTCS08 paper). 

• Let G=(L,linit,Σ,Δ) and pr:L→{0,...,d} defining the objective φ=Parity(pr). 
We extend G as follows:

-  We associate to each odd priority p a counter c(p) which takes values in 
the set {0,...,np}∪{∞}, np being the number of locations with priority p in G.

- Initially, all counters have value 0. The counter c(p) is incremented when 
a location l with priority p is visited, and it is reset when a location l with 
an even priority p’<p is visited.

• Remark. As Büchi and co-Büchi are special cases of parity, they can be 
handled by this reduction too.

Algorithms - Parity
Reduction to Safety
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• Notation: [n] denotes the set {0,1,2,...,n}∪{∞}. 
               For v∈[n], v⊕1=∞ if v∈{n,∞},  and v⊕1=v+1 otherwise.

• Let us consider G=(L,linit,Σ,Δ) and pr : L → {1,...,d} defining the parity objective 
φ=Parity(pr). We construct the game PS(G)=(L’,li’,Σ,Δ’) where:

• L’=L×[n1]×[n3]×...×[nd]

• linit’=(linit,0,0,...,0)

• Δ’={ ((q,c),σ,(q’,update(c,p))) | (q,σ,q’) and p=pr(q’) }

where update((c1,c3,...,cd),p)=     (c1,...,cp-1,0,...,0)               if p is even
                                                 (c1,...,cp-1,cp⊕1,cp+1,...,cd)   if p is odd

and PS(φ)=Safe(T) where T=L’ ∩ ( L×{0,1,2,...,n}⎡d/2⎤)

i.e. no counter overflow.

Algorithms - Parity
Reduction to Safety

Monday 15 November 2010



Algorithms - Parity
Reduction to Safety

Theorem. Player 1 has a surely-winning strategy in the parity game (G,φ) iff Player I has 
a surely-winning strategy in the safety game (PS(G),PS(φ)).

Proof.  Assume that Player I has a surely-winning strategy in (G,φ), then Player I has a 
memoryless surely-winning strategy α. Consider the Player I memoryless strategy α’ in (PS
(G),PS(φ)) which plays in (l,c1,...,cd) the action α(l). We claim that α’ is surely-winning.   
Assume it is not the case, then as α is memoryless there exists π∈Outcome1(PS(G), α’) 
such that:

                        π=(l1,c1) (l2,c2)... (lk0,ck0)... (lk1,ck1)... (lk2,ck2)... (lk3,ck3)...

and ck3(p)=∞ for some odd priority p which was last reset in position k0. Between position 
k0 and position k3, np+1 locations with priority p has been visited without ever visiting any 
location with an even priority less than p. As np is the number of locations with priority p, 
there are two positions k1 and k2 are such that lk1=lk2 and its priority is p. Then clearly Player 
2 has a spoiling strategy in (G,φ), a contradiction.

The other direction is established similarly after using the determinacy theorem.

overflow
spoilinglast reset
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• Notation: [n] denotes the set {0,1,2,...,n}∪{∞}. 
               For v∈[n], v⊕1=∞ if v∈{n,∞},  and v⊕1=v+1 otherwise.

• Let us consider G=(L,li,Σ,Δ) and pr : L → {1,...,d} defining the parity objective 
φ=Parity(pr). We construct the game PS(G)=(L’,li’,Σ,Δ’) where:

• L’=L×[n1]×[n3]×...×[nd]

• li’=(li,0,0,...,0)

• Δ’={ ((q,c),σ,(q’,update(c,p))) | (q,σ,q’) and p=pr(q’) }

where update((c1,c3,...,cd),p)=     (c1,...,cp-1,0,...,0)               if p is even
                                                 (c1,...,cp-1,cp⊕1,cp+1,...,cd)   if p is odd

and PS(φ)=Safe(T) where T=L’ ∩ ( L×{0,1,2,...,n}⎡d/2⎤)

i.e. no counter overflow.

Algorithms - Parity
Reduction to Safety

Note that the size of the safety 

game is bounded by 

O( n (n/d)⎡d/2⎤)
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Games with perfect information
Summary

• Simple games
Player I chooses actions, 
Player 2 resolves nondeterminism

• Rich objectives
Safety, reachability, Büchi, co-Büchi,  and parity.

• Simple algorithms
Simple fixed points for safety and reachability. 
Büchi, co-Büchi and parity can be easily and elegantly 
reduced to safety.
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Games of imperfect information

Surely-winning
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• Games structure with perfect information makes the strong 
assumption that the players can observe the state of the game and the 
previous moves before playing.

• This is often unrealistic in the design of reactive systems because 
components have an internal state that is not visible to other 
components (e.g. local variables).

• Also, sometimes we need to consider that components choose their 
moves simultaneously and independently of the others (concurrent 
games, not considered here, see works by de Alfaro, Kuferman, 
Henzinger, etc).

➡ We need models with imperfect information.

Imperfect information - Motivations
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Imperfect information - Motivations

Finite precision = imperfect information

Typical hybrid system

The temperature 
is in the interval 

(c − 1, c + 1)
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• A game structure of imperfect information is 
a tuple G=(L,li,Σ,Δ,Obs) where G is a game graph as 
before and Obs={o1,o2,...,on} is a partition of L called the 
set of observations.

Games Structure of Imperfect information
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9
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• Given l∈L, we note obs(l) 
the observation o∈Obs such that l∈o.

• The observation of a play π=l0l1...ln... 
is the sequence obs(π)=obs(l0)obs(l1)...obs(ln)...

• When playing, only the observation of the 
current location is revealed to Player 1.

Observation of a play
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Observation of a play

π=l1 l2 l3’ (l4)ω

obs(π)=obs(l1) obs(l2) obs(l3’ ) obs(l4)ω
               =  o1         o2       o3       (o4)ω 
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
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of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
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transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
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• An observation-based strategy for Player 1:

                          α : L+ → Σ such that 

               ∀ρ,ρ’ ‧ obs(ρ)=obs(ρ’) ⟹ α(ρ)=α(ρ’)

• Example. Let ρ=l1l2 and ρ’=l1l2’.  
If α is observation-based, and if α(ρ)=σ, 
                 then α(ρ’)=σ because obs(ρ)=o1o2=obs(ρ’).

Observation-based strategies
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.
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before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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• An objective in a game of imperfect information is a set of plays φ as 
before but we require that φ is observable for Player 1, that is:

                  ∀π∈φ ‧ ∀π’ ‧ obs(π)=obs(π’) ⟹ π’∈φ.

• Clearly, observable objectives can be defined as subsets of Obsω. 

• In the sequel, we assume that:

• reachability and safety objectives are defined by unions of target 
observations. 

• parity objectives, we assume that they are defined as functions 
pr:Obs→{0,...,d}. 

This ensures that those objectives are observable.

Observable objectives
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• A (deterministic) observation-based strategy 

                         α : L+ → Σω 

is surely-winning for an objective φ∈Obsω in G if

               obs(Outcome1(G,α)) ⊆ φ

• Note that games with perfect information are clearly 
a special case, take Obs={{l} | l∈L}.

Surely-winning observation based strategies
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Game with imperfect information: an example

φ=Reach({o4})

Can Player 1 surely-win with an 
observation-based strategy ?

Let α be an arbitrary observation-based strategy.  Consider the strategy β for Player 2:
                                        for all ρ•l∈L+ and Last(obs(ρ‧l))=o2, 
-if α(obs(ρ‧l))=a then β(ρ,•)=l2, and 
-if α(obs(ρ‧l))=b then β(ρ,•)=l2’.
 as α is fixed, this is possible to choose β as described !
                                          β is clearly a spoiling strategy against α for φ.
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Game with imperfect information: an example

Note that Player 2 does not have a deterministic strategy to ensure Safe(o1∪o2∪o3). 

As Reach(o4) and Safe(o1∪o2∪o3) are complementary objectives, this shows that games 
with imperfect information are not determined.

φ=Reach({o4})

Can Player 2 surely-win the 
objective Safe(o1∪o2∪o3) ?
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!′
2
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a, bo1
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9
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• The games that we consider sounds asymmetric. 

• Indeed, Player I has imperfect information while Player 2 
has perfect information.

• Nevertheless, making Player 2 weaker (with imperfect 
information) would not help Player 1 to surely win.

• Indeed, it can be shown that counting strategies are 
sufficient for spoiling deterministic strategies. 

Game with imperfect information: discussion
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Game with imperfect information
3-coin example
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Fig. 4. The 3-coin game graph with alphabet Σ = {c1, c2, c3}. The transitions between
states 2, 3, 5, and 6 are omitted for the sake of clarity.

Lemma 2. For all antichains q ∈ A, we have CpreA(q)↓ = Cpre(q↓).

Exercise 10 Prove Lemma 2. !

In the definition of CpreA, the operations p̃re,
⊔

σ∈Σ and
⊔

s′∈q can be com-
puted in polynomial time, while

!
o∈O can be computed in exponential time

by simple application of the definitions. Unfortunately, it turns out that a
polynomial-time algorithm is unlikely to exist for computing

!
o∈O as the NP-

complete problem IndependentSet can be reduced to it. Consider a graph
G = (V, E) where V is a set of vertices and E ⊆ V × V is a set of edges. An
independent set of G is a set W ⊆ V of vertices such that for all (v, v′) ∈ E,
either v %∈ W or v′ %∈ W , i.e. there is no edge of G connecting vertices of W . The
IndependentSet problem asks given a graph G and size k to decide if there
exists an independent set of G of size larger than k. This problem is known to
be NP-complete. We show that IndependentSet reduces to computing &. Let
G = (V, E) be a graph, and for each e = (v, v′) ∈ E let qe =

{
V \ {v}, V \ {v′}

}
.

The set qe↓ contains all sets of vertices that are independent of the edge e.
Therefore, the antichain q =

⋂
e∈E qe contains the maximal independent sets of

G, and an algorithm to compute q would immediately solve IndependentSet,
showing that such an algorithm running in polynomial time cannot exist unless
P = NP . The idea of this reduction can be extended to show that CpreA requires
exponential time [BCD+08,FJR09].

Exercise 11 Compute the winning cells in the two versions of the 3-coin game
with the symbolic algorithm using the antichain representation. The 3-coin

game graph is given in Fig. 4. We give here the solutions to this exercise.

– For the version where Player 2 is allowed to exchange the positions of the
coins that are not toggled. To compute the winning cells of the game with
imperfect information, we compute the set of all cells that are able to
force the cell {7}. We give here the sequence of antichains computed by

14
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states 2, 3, 5, and 6 are omitted for the sake of clarity.

Lemma 2. For all antichains q ∈ A, we have CpreA(q)↓ = Cpre(q↓).

Exercise 10 Prove Lemma 2. !

In the definition of CpreA, the operations p̃re,
⊔

σ∈Σ and
⊔

s′∈q can be com-
puted in polynomial time, while

!
o∈O can be computed in exponential time

by simple application of the definitions. Unfortunately, it turns out that a
polynomial-time algorithm is unlikely to exist for computing

!
o∈O as the NP-

complete problem IndependentSet can be reduced to it. Consider a graph
G = (V, E) where V is a set of vertices and E ⊆ V × V is a set of edges. An
independent set of G is a set W ⊆ V of vertices such that for all (v, v′) ∈ E,
either v %∈ W or v′ %∈ W , i.e. there is no edge of G connecting vertices of W . The
IndependentSet problem asks given a graph G and size k to decide if there
exists an independent set of G of size larger than k. This problem is known to
be NP-complete. We show that IndependentSet reduces to computing &. Let
G = (V, E) be a graph, and for each e = (v, v′) ∈ E let qe =

{
V \ {v}, V \ {v′}

}
.

The set qe↓ contains all sets of vertices that are independent of the edge e.
Therefore, the antichain q =

⋂
e∈E qe contains the maximal independent sets of

G, and an algorithm to compute q would immediately solve IndependentSet,
showing that such an algorithm running in polynomial time cannot exist unless
P = NP . The idea of this reduction can be extended to show that CpreA requires
exponential time [BCD+08,FJR09].

Exercise 11 Compute the winning cells in the two versions of the 3-coin game
with the symbolic algorithm using the antichain representation. The 3-coin

game graph is given in Fig. 4. We give here the solutions to this exercise.

– For the version where Player 2 is allowed to exchange the positions of the
coins that are not toggled. To compute the winning cells of the game with
imperfect information, we compute the set of all cells that are able to
force the cell {7}. We give here the sequence of antichains computed by
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Game with imperfect information
Memory

!1
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!′
2
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!′
3
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!′
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a, b

a, b

a, b

a, b

a, b

b

a

a
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Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.

11

π=            l1     a     l2     b     l3     a     l4‘       ....
Obs(π)=    o1          o2           o4            o6       ....
K(π)=       {l1}         {l2}         {l3}          {l4’}     ....

π’=            l1     a     l2’     b     l3‘     b      l4‘      ....
Obs(π’)=    o1           o3           o4            o6       ....
K(π’)=       {l1}         {l2}          {l3’}          {l4’}     ....

o1

o2

o3 o4 o6

o5

Player I needs memory to 
surely-winning Reach({o6}). 
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Game with imperfect information
Knowledge
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. ??.
The observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

φ=Reach({o4})

Can Player 1 win with an 
observation-based strategy ?

π         =     l1       a       l2       a       l3       a       l4    ....

obs(π)  =    o1                      o2                      o3               o1  ....

K(π)     =    {l1}             {l2,l2’}          {l3,l3’}          {l1,l4}={l1} ...

                                    =postG,a({l1})∩o2 ....

⟹
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Game with imperfect information
Knowledge provides memory
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Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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π=            l1     a     l2     b     l3     a     l4‘       ....
Obs(π)=    o1          o2           o4           o6       ....
K(π)=       {l1}         {l2}         {l3}          {l4’}     ....

π’=            l1     a     l2’     b     l3‘     b      l4‘      ....
Obs(π’)=    o1           o3           o4            o6       ....
K(π’)=       {l1}         {l2}          {l3’}          {l4’}     ....
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Player I needs memory to 
surely-winning Reach({o6}). 

The knowledge of Player 1 
provides information about 
the past of the play.
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• Let G=(L,li,Σ,Δ,Obs) be a game structure with imperfect information.  

• The knowledge subset construction of G is the game 
structure with perfect information GK=(S,si,Σ,ΔK) where:

(i) S={ s∈2L\{∅} | ∃o∈Obs : s⊆o }, 
    elements of S are called cells, we note this set Cells(Obs). 

(ii) si={li}.

(iii) ΔK⊆S×Σ×S contains all pairs (s,σ,s’) such that 
                              ∃o∈Obs‧ s’=postG,σ(s)∩o.

where postG,σ(s)={ l’ | ∃ l ∈ s : (l,σ,l’) ∈ Δ }

Reduction to games with perfect information

Monday 15 November 2010



• Observable reachability objectives. Let T be a union of 
observations, and φ=Reach(T) be an observable reachability objective. Let 
TK denotes the set of knowledges { s∈S | ∃o∈T‧s⊆o }. Then φK is defined as 
Reach(TK). 

• Observable safety objectives. Let S be a be a union of observations, 
and φ=Safe(S) be an observable safety objective. Let SK denotes the set of 
knowledges { s∈S | ∃o∈S‧s⊆o }. Then φK is defined as Safe(TK).

• Observable parity objectives. Let pr:Obs→{1,...,d} be a parity function 
defining φ=Parity(pr) an observable parity objective. Let prK:S→{1,...,d} be 
the function such that prK(s)=p iff pr(o)=p for the observation o such that 
s⊆o. Then φK is defined as Parity(prK).

Reduction to games with perfect information
Objectives
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Reduction to games with perfect information
Correctness

Theorem. Let G=(L,li,Σ,Δ,Obs) be a game 
structure of imperfect information, let φ be a 
observable parity objective.  
Player I has an observation-based surely-winning 
strategy in (G,φ) iff Player I has a surely-winning 
in the game with perfect information (GK,φK).
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Reduction to games with perfect information
An example
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

Does Player I have a surely-
winning strategy for the 
objective φ=Safe(L\o4) ?
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Reduction to games with perfect information
An example

{!1} {!2, !′
2
} {!3, !′

3
} {!4} a, b

a, b a, b

a, b

a, b

Fig. 6. The knowledge-based subset construction for the game of Fig. 3.

objective ϕ if for all randomized strategies β of Player 2, we have Prα,β
lI

(ϕ) = 1.

A location #̂ ∈ L is almost-surely winning for ϕ if Player 1 has an almost-surely
winning randomized strategy α in the game Ĝ = 〈L, #̂, Σ, ∆〉 where #̂ is the
initial location.

Note that our definition is again asymmetric in the sense that Player 1 has
imperfect information about the location of the game while Player 2 has perfect
information. While having perfect information does not help Player 2 in the case
of surely-winning, it makes Player 2 stronger in the probabilistic case. Recent
works [BGG09,GS09] study a symmetric setting where the two players have
imperfect information. The decision problems are computationally harder to
solve (deciding if a location is almost-surely winning is EXPTIME-complete in
our setting, and it becomes 2EXPTIME-complete in the symmetric setting). We
choose to present the asymmetric setting for the sake of consistency with the first
part of this tutorial, because it is a simpler setting, and because the techniques
that we present can be adapted to solve the more general case.

4.2 An algorithm for reachability objectives

We present an algorithm for computing the locations of a reachability game
with imperfect information G from which Player 1 has an almost-surely winning
strategy. The algorithm can be extended to solve Büchi objectives [CDHR07].
The case of coBüchi and parity objectives remains open.

Extended subset construction First, note that the reduction to games with
perfect information GK of Section 3 does not preserve the notion of almost-surely
winning. The knowledge-based subset construction for the the game of Fig. 3 is
given in Fig. 6. It is easy to see that for all strategies of Player 1, Player 2
can avoid {#4} by always choosing from {#3, #

′
3} the transition back to {#1}. In

the original game, this amounts to allow Player 2 to freely “switch” between
location #3 and #′3. However, against Player 1 strategy playing a and b uniformly
at random, Player 2 cannot really decide which location of #3 or #′3 is reached,
since both have probability 1

2
to be reached regardless of Player 2 strategy. So, we

have to enrich the knowledge-based subset construction to take this phenomenon
into account. In the new construction, locations are pairs (s, #) consisting of a
cell s and a location # ∈ s. To reduce ambiguity, we call such pairs states. The
cell s encodes the knowledge of Player 1, and the location # keeps track of the
choice of Player 2, forcing Player 2 to sticks to his choice. Of course, we need
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effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

Does Player I have a surely-
winning strategy for the 
objective φ=Safe(L\o4) ?

Can Player I win 
φK=Safe({l1},{l2,l2’},{l3,l3’}) ?

X0={{l1},{l2,l2’},{l3,l3’}}
X1={{l1},{l2,l2’}}
X2={{l1}}
X3={}=X4 No !
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Reduction to games with perfect information
Algorithm

{!1} {!2, !′
2
} {!3, !′

3
} {!4} a, b

a, b a, b

a, b

a, b

Fig. 6. The knowledge-based subset construction for the game of Fig. 3.

objective ϕ if for all randomized strategies β of Player 2, we have Prα,β
lI

(ϕ) = 1.

A location #̂ ∈ L is almost-surely winning for ϕ if Player 1 has an almost-surely
winning randomized strategy α in the game Ĝ = 〈L, #̂, Σ, ∆〉 where #̂ is the
initial location.

Note that our definition is again asymmetric in the sense that Player 1 has
imperfect information about the location of the game while Player 2 has perfect
information. While having perfect information does not help Player 2 in the case
of surely-winning, it makes Player 2 stronger in the probabilistic case. Recent
works [BGG09,GS09] study a symmetric setting where the two players have
imperfect information. The decision problems are computationally harder to
solve (deciding if a location is almost-surely winning is EXPTIME-complete in
our setting, and it becomes 2EXPTIME-complete in the symmetric setting). We
choose to present the asymmetric setting for the sake of consistency with the first
part of this tutorial, because it is a simpler setting, and because the techniques
that we present can be adapted to solve the more general case.

4.2 An algorithm for reachability objectives

We present an algorithm for computing the locations of a reachability game
with imperfect information G from which Player 1 has an almost-surely winning
strategy. The algorithm can be extended to solve Büchi objectives [CDHR07].
The case of coBüchi and parity objectives remains open.

Extended subset construction First, note that the reduction to games with
perfect information GK of Section 3 does not preserve the notion of almost-surely
winning. The knowledge-based subset construction for the the game of Fig. 3 is
given in Fig. 6. It is easy to see that for all strategies of Player 1, Player 2
can avoid {#4} by always choosing from {#3, #

′
3} the transition back to {#1}. In

the original game, this amounts to allow Player 2 to freely “switch” between
location #3 and #′3. However, against Player 1 strategy playing a and b uniformly
at random, Player 2 cannot really decide which location of #3 or #′3 is reached,
since both have probability 1

2
to be reached regardless of Player 2 strategy. So, we

have to enrich the knowledge-based subset construction to take this phenomenon
into account. In the new construction, locations are pairs (s, #) consisting of a
cell s and a location # ∈ s. To reduce ambiguity, we call such pairs states. The
cell s encodes the knowledge of Player 1, and the location # keeps track of the
choice of Player 2, forcing Player 2 to sticks to his choice. Of course, we need
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Does Player 1 have a 
observation-based surely-

winning strategy in G for the 
observable objective φ ?

Does Player 1 have a surely-
winning strategy in GK for 

the objective φK ?

①

②

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, bo1

o2 o3 o4

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9
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• We want to keep the knowledge-based subset construction 
implicit !

• For that, we need to define the operator “controllable 
predecessors” for the knowledge-based subset construction.

• Let q⊆S be a set of cells, 

Cpre(q)

={ s | ∃σ∈Σ‧∀s’∈S‧(s,σ,s’) ⟹ s’∈q }

={ s | ∃σ∈Σ‧∀o∈Obs‧∀s’‧s’=postG,σ(s)≠∅ ⟹ s’∈q }

Cpre for the knowledge subset construction
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Cpre for the knowledge subset construction

s1

s2

s3

s

s∈Cpre(q)
∈

q
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Cpre for the knowledge subset construction

s1

s2

s3

s

s∈Cpre(q)
∈

∃σ∈Σ

postGK,σ = s’

q
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Cpre for the knowledge subset construction

s1

s2

s3

s

s∈Cpre(q)
∈

∃σ∈Σ

postGK,σ = s’

∀o∈Obs

o1

∩

q

o2

o3
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Cpre for the knowledge subset construction

s1

s2

s3

s

s∈Cpre(q)
∈

∃σ∈Σ

postGK,σ = s’

∀o∈Obs

o1

∩

∃s’’∈q

=

q

o2

o3

=

=∅
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Cpre for the knowledge subset construction
An example

q={{l2,l2’},{l4},{l1}}

{l3,l3’}∈Cpre(q) because if Player 1 chooses action a, we verify that:

              ☞ for o1, postG,a({l3,l3’}) ∩ o1 = {l1}

              ☞ for o2, postG,a({l3,l3’}) ∩ o2 = ∅

              ☞ for o3, postG,a({l3,l3’}) ∩ o3 = ∅

              ☞ for o4, postG,a({l3,l3’}) ∩ o4 = {l4}

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, bo1

o2 o3 o4

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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• A set of cells q is ⊆-downward closed 
                          iff ∀s∈q‧∀s’⊆s‧s’≠∅⟹s’∈q.

• The ⊆-downward closure of a set of cells q is the set of cells               
                           ↓q={ s≠∅ | ∃s’∈q‧s⊆s’ }.

• Proposition.  For any set of cells q, Cpre(↓q) is ⊆-downward 
closed.

Proof.This is a direct consequence of the fact that for all cells s1,s2, for all σ∈Σ, we 
have that s1⊆s2 ⟹ postG

K
,σ(s1)⊆ postG

K
,σ(s2), and that intersections and unions of 

⊆-downward closed sets are ⊆-downward closed sets.

• Corollary. All the sets manipulated during fixed point 
computations for observable safety and reachability objectives are 
⊆-downward closed. 

Cpre for the knowledge subset construction
Downward-closed sets
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• An ⊆-antichain q over 2L is a set of sets of locations such that 
                             ∀s1,s2∈q‧s1⊆s2⟹s1=s2 

• We note A the set of antichains. 

• Note that elements within an antichain are not necessarily cells.

• A ⊆-antichain q compactly represents the downward closed set of cells 
                   ↓q={ s ∈ Cells(Obs) | ∃s’∈q‧s⊆s’ }

• The set A is partially ordered as follows: 

                             q⊑q’ iff ∀s∈q‧∃s’∈q’‧s⊆s’

• We note q⊓q’ the greatest lower bound of q and q’ in A, and q⊔q’ the 
least upper bound of q and q’ in A.

Antichains for representing 
downward-closed sets
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets

s1 s2 ... sn

Cells
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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⊔
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets

s1

s2
t1

t2

⊔

q1⊔q2=Max⊆{ s | s∈q1 ∨ s∈q2 }

Monday 15 November 2010



Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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Antichains for representing 
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Antichains for representing 
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets

s1

s2
t1

t2

⊓

q1⊓q2=Max⊆{ s1∩s2 | s1∈q1 ∧ s2∈q2 }
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Antichains for representing 
downward-closed sets

Antichains for representing 
downward-closed sets

s1

s2
t1

t2

⊑?

q1⊑q2 iff ∀s1∈q1‧∃s2∈q2‧s1⊆s2
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• As we can compactly represent set of cells as antichains, we want 
to compute directly the Cpre of an antichain.

• Cpre(↓q)

={ s∈S | ∃σ∈Σ‧∀o∈Obs‧∃s’∈q‧postG,σ(s)∩o⊆s’}

={ s∈S | ∃σ∈Σ‧∀o∈Obs‧∃s’∈q‧s⊆apreG,σ(s’∪(L\o)}

where apreG,σ(s)={ l∈L | postG,σ({l})⊆s}

• CpreA(↓q)=⊔σ∈Σ⊓o∈Obs⊔s’∈q { apreG,σ(s’∪(L\o)) }

Cpre of an ⊆-antichain
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• All the operations on antichains for the CpreA can 
be implemented in polynomial time except ⊓o∈Obs.

• Theorem. There is no polynomial time algorithm 
to compute ⊓i∈I qi unless P=NP.

Proof. Consider a graph (V,E), the set of its 
independent sets is (⊓(v,w)∈E {V\{v},V\{w}})↓.

Cpre of an ⊆-antichain
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Solving reachability: an example

!1

!2

!′
2

!3

!′
3

!4

!′
4

a, b

a, b

a, b

a, b

a, b

a, b

b

a

a

b

Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.

11

o1

o2

o3 o4 o6

o5
Does Player 1 have an 
observation-based 
strategy to force o6 ?

X0={{l4’}}

X1={{l4’}} ⊔ CpreA({{l4’}})
    = {{l4’}} ⊔ {{l3},{l3’}}= {{l4’},{l3},{l3’}}

X2= {{l4’}} ⊔ CpreA({{l4’},{l3},{l3’}})
    = {{l4’}} ⊔ {{l4’},{l3},{l3’},{l2},{l2’}}= {{l4’},{l3},{l3’},{l2},{l2’}}

X3= {{l4’}} ⊔ CpreA({{l4’},{l3},{l3’},{l2},{l2’}})
    = {{l4’}} ⊔ {{l4’},{l3},{l3’},{l2},{l2’},{l1}}= {{l4’},{l3},{l3’},{l2},{l2’},{l1}}=X4
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Solving safety: an example

!1

!2

!′
2

!3

!′
3

!4

!′
4

a, b

a, b

a, b

a, b

a, b

a, b

b

a

a

b

Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.

11

o1

o2

o3 o4 o6

o5
Does Player 1 have a 
observation-based 
strategy to avoid o6 ?

X0={L\{l4’}}                             

X1={L\{l4’}} ⊓ CpreA({L\{l4’}})
    ={L\{l4’}} ⊓ {L\{l3,l4’}, L\{l3’,l4’}}={L\{l3,l4’}, L\{l3’,l4’}}

X2={L\{l4’}} ⊓ CpreA({L\{l3,l4’}, L\{l3’,l4’}})
    ={L\{l4’}} ⊓ {L\{l2,l3,l4’}, L\{l2’,l3’,l4’}, L\{l2’,l3,l4’}, L\{l2,l3’,l4’}}
    ={L\{l2,l3,l4’}, L\{l2’,l3’,l4’}, L\{l2’,l3,l4’}, L\{l2,l3’,l4’}}=X3
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Antichains in other applications

• Those techniques can be applied with success to LTL 
model-checking (see [DDMR08] - TACAS08 paper)

• To timed games with imperfect information (see [CDLR07] 
- ATVA07 paper)

• ... and LTL synthesis (see [FJR09] - CAV09 paper).

• Antichains: symbolic data-structure to handle huge state 
spaces in games with imperfect information and in several 
important problems from automata theory.
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Table 1. Automata size for which the median execution time for checking universality is less

than 20 seconds. The symbol ∝ means more than 1500.

f
r 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 ∝ ∝ ∝ 550 200 120 60 40 30 40 50 50 70 90 100

0.3 ∝ ∝ ∝ 500 200 100 40 30 40 70 100 120 160 180 200

0.5 ∝ ∝ ∝ 500 200 120 60 60 90 120 120 120 140 260 500

0.7 ∝ ∝ ∝ 500 200 120 70 80 100 200 440 1000 ∝ ∝ ∝
0.9 ∝ ∝ ∝ 500 180 100 80 200 600 ∝ ∝ ∝ ∝ ∝ ∝

experiments, we choose r0 = r1, and denote the transition density by r. The model
contains a second parameter: the density f of accepting states. There is only one initial
state, and the number m of accepting states is linear in the total number of states, as

determined by f = m
|Loc| . The accepting states themselves are chosen uniformly at ran-

dom. Observe that since the transition relation is not always total, automata with f = 1
are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model and

argue that “interesting” automata are generated by the model as the two parameters r
and f vary. They also study the density of universal automata in [Tab06].

Performance comparison We have implemented our algorithm to check the universal-

ity of randomly generated NBW. The code is written in Cwith an explicit representation

for characteristic functions, as arrays of integers. All the experiments are conducted on

a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM).
Fig. 1 shows as a function of r (transition density) and f (density of accepting

states) the median execution times for testing universality of 100 random automata

with |Loc| = 30. It shows that the universality test was the most difficult for r = 1.8
and f = 0.1 with a median time of 11 seconds. The times for r ≤ 1 and r ≥ 2.8 are
not plotted because they were always less than 250ms. A similar shape and maximal
median time is reported by Tabakov for automata of size 6, that is for automata that are
five times smaller [Tab06]. Another previous work reports prohibitive execution times

for complementingNBW of size 6, showing that explicitly constructing the complement
is not a reasonable approach [GKSV03].

To evaluate the scalability of our algorithm, we have ran the following experiment.

For a set of parameter values, we have evaluated the maximal size of automata (mea-

sured in term of number of locations) for which our algorithm could analyze 50 over
100 instances in less than 20 seconds. We have tried automata sizes from 10 to 1500,
with a fine granularity for small sizes (from 10 to 100 with an increment of 10, from
100 to 200 with an increment of 20, and from 200 to 500 with an increment of 30) and
a rougher granularity for large sizes (from 500 to 1000 with an increment of 50, and
from 1000 to 1500 with an increment of 100).

The results are shown in Fig. 2, and the corresponding values are given in Table 1.

The vertical scale is logarithmic. For example, for r = 2 and f = 0.5, our algorithm
was able to handle at least 50 automata of size 120 in less than 20 seconds and was not

For r=2, f=0.5, Tabakov can handle 8 states while 
our algorithm handles 120 states in less than 20s.
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able to do so for automata of size 140. In comparison, Tabakov and Vardi have studied
the behavior of Kupferman-Vardi and Miyano-Hayashi constructions for different im-

plementation schemes. We compare with the performances of their symbolic approach

which is the most efficient. For the same parameter values (r = 2 and f = 0.5), they
report that their implementation can handle NBW with at most 8 states in less than

20 seconds [Tab06]. For the easier instances r = 2.5 and f = 0.9, they can analyze
automata of size at most 200 while we go over 1500 states.

In Fig. 3, we show the median execution time to check universality for relatively

difficult instances (r = 2 and f vary from 0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of the automata. Similar analyzes are

reported in [Tab06] but for sizes below 10.
Finally, we give in Fig. 4 the distribution of execution times for 100 automata of

size 50 with r = 2.2 and f = 0.5, so that roughly half of the instances are universal.
Each point represents one automaton, and one point lies outside the figure with an exe-

cution time of 675s for a non universal automaton. The existence of very few instances
that are very hard was often encountered in the experiments, and this is why we use the

median for the execution times. If we except this hard instance, Fig. 4 shows that uni-

versal automata (average time 350ms) are slightly easier to analyze than non-universal
automata (average time 490ms). This probably comes from the fact that we stop the

computation of the (greatest) fixed point whenever the initial state is no more!univ-less

than the successive approximations. Indeed, in such case, since the approximations are

!univ-decreasing, we know that the initial state would also not lie in the fixed point. Of

course, this optimization applies only for non-universal automata.

7 Language Inclusion for Büchi automata

LetA1 = 〈Loc1, ι1, Σ, δ1, α1〉 andA2 be two NBW defined on the same alphabetΣ for

which we want to check language inclusion: L(A1) ⊆? L(A2). To solve this problem,
we check emptiness of L(A1)∩Lc(A2). As we have seen, we can use the Kupferman-

     To compare, 
Tabakov’s BDD 
implementation was 
able to handle 
automata of size 6 on 
the entire state space 
(within 20s as in our 
experiments).
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• We have shown how to compute efficiently using antichains the set of 
winning cells of a game with imperfect information. 

Is it possible to extract an observation-based winning strategy from this 
computation ?

• The answer is yes for all parity objectives. Nevertheless it may be costly, 
i.e. there are games for which the strategy is exponentially larger than the size 
of the antichain representation of the fixed point.

• It is easy for safety objectives, more intricate for reachability and for 
parity objectives. We concentrate here on safety and refer to [BCD+08] 
for the other cases.

Game with imperfect information
Strategy construction
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• Let W=qwin↓ be the set of winning cells for a safety games with 
imperfect information that are compactly represented by the 
antichain qwin. 

• By definition of the fixed point equation, we know that 

    ∀s∈qwin‧∃σs∈Σ‧∀o∈Obs‧∃s’∈qwin‧postG,σ(s)∩o⊆s’

It is easy to see that the strategy that plays the action σs in any cell 
s’’⊆s is surely-winning.

Game with imperfect information
Strategy construction

{li}

σs,o1

σs,o2
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• Let W=qwin↓ be the set of winning cells.

• We construct a Moore machine (M,mi,update,μ) where:

(i)   M=qwin

(ii)  mi=s for some s∈qwin such that si⊆s.

(iii)  update:M×Obs→M such that 
       update(s,o)=s’ for some s’ such that postG,σs(s)∩o⊆s’.

(iv) μ(s)=σs.

Game with imperfect information
Strategy construction - Safety
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Strategy construction - Safety
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Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(!′4).

The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
be played to reach !′4, but since !3 and !′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {!2} was observed in the previous round, then play a, and if
{!′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S × Σ × S contains all (s, σ, s′) such

that there exists o ∈ O such that s′ = postGσ (s) ∩ o.
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perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
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structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.
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perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
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structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.
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the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
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structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.
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knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
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The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations !3 and !′3, different actions need to
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{!′2} was observed in the previous round, then play b. This shows that memory
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knowledge is postGσ (s) ∩ o where postGσ (s) = {!′ ∈ L | ∃! ∈ s : (!, σ, !′) ∈ ∆}, i.e.
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3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.
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Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
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observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
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observable parity objective ϕ, we construct an equivalent game structure (with
perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.
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This has been implemented in a 
tool called Alpaga 

(see [BCDHR09] - TACAS09)
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Games with imperfect information
Surely-winning - Summary

• Games with imperfect information are EXPTIME complete (even for reachability 
objective [CDHR07] and for safety objective [BD08])

• Games with imperfect information with the notion of surely-winning are not 
determined;

• Memory (finite) is needed even for simple reachability objectives.  

• Knowledge-based subset construction allows us to construct equivalent 
games with perfect information.

• Antichains are adequate data-structures to handle underlying state spaces.

• Observation-based strategies can be extracted from the fixed point 
computations (computed over the lattice of antichains), see [BCDHR08] for details.

• Blind games and antichains are useful to obtain new efficient algorithms for 
classical automata-theoretic problems.
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Games of imperfect information

Almost surely-winning
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Almost-surely winning
An example
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

We have seen that Player I can not surely-win the objective Reach(o4) in 
this game structure with imperfect information.

This is because when Player I has fixed his deterministic strategy α, Player 
2 can decide how to resolve nondeterminism when entering observation 
o2 in order to avoid reaching l3’.

⟹ Player 2 foresee how Player 1 will play ! This is not reasonable.
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9

Consider Player I playing this simple following randomized strategy: 
when receiving observation o2, play uniformly at random a and b. 

Clearly, each time that it enters o2, the probability to reach l3’ in the next round is 1/2. 
In the long run, the probability to reach l3’, and thus l4, is 1. 

We say that Player 1 almost-surely wins the reachability game.

This example shows that randomized strategies are more powerful than 
deterministic strategies for winning reachability games with imperfect information.
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The following randomized strategy is almost-surely winning for 
Player 1 in the 3-coin game.

① Select uniformly at random a coin c∈{1,2,3} and ask to flip it. 

② If the 3H configuration is not reached, then play c again, and go in ①

Almost-surely winning
3-coin game

H

T

H

1

2

3

#
H
:2

#
T
:1

flip

1

2

3

Fig. 1. The 3-coin game.

objective of Player 1 is to have all coins head up (HHH) while avoiding
at all cost a configuration where all coins show tail (TTT). The game
is played as follows. Initially, Player 2 chooses a configuration of the
coins with two heads and one tails. Then, the following rounds are
played: Player 1 can choose one coin in the set {c1, c2, c3} and ask
Player 2 to flip that coin. Player 2 must execute the choice of Player 1L: flip → turn ?
and he may further decide to exchange the positions of the two coins
that are not flip. The game stops whenever the three coins are all
head (Player 1 wins) or all tail (Player 2 wins). Otherwise Player 2
announces the number of heads and tails, and the next round starts.

This is a game with imperfect information for Player 1 as he does not know
the exact position of the coins, but only the number of heads and tails. In this
game, does Player 1 have a strategy such that for all strategies of Player 2,
the game reaches HHH and avoids TTT? We are interested in observation-based
strategies which rely on the information available to Player 1. In fact Player 1
does not have a deterministic observation-based strategy to win the 3-coin game,
because Player 2 can always find a spoiling counter-strategy using his ability to
exchange coins after Player 1’s move. If we do not allow Player 2 to exchange
the coins, then Player 1 has a deterministic observation-based winning strategy
consisting in successively trying to flip every coin. This strategy requires memory
and it is easy to see that memory is necessary to win this game. On the other
hand, if we allow Player 1 to take his decision using a source of randomization,
then he would be able to win the original 3-coin game with probability 1. This
shows that randomized strategies are in general more powerful than deterministic
strategies.

We study in this course mathematical models and algorithms for games with
imperfect information. The model that we consider is asymmetric in the sense
that Player 1 has imperfect information about the state while Player 2 has perfect
knowledge. This model is udeful for the design of control programs embedded in
an environment that provides observations about its state via shared variables or
sensors. We discuss the asymmetry of the definition in Section 3.1 and we argue
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Game with imperfect information
3-coin example
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Fig. 4. The 3-coin game graph with alphabet Σ = {c1, c2, c3}. The transitions between
states 2, 3, 5, and 6 are omitted for the sake of clarity.

Lemma 2. For all antichains q ∈ A, we have CpreA(q)↓ = Cpre(q↓).

Exercise 10 Prove Lemma 2. !

In the definition of CpreA, the operations p̃re,
⊔

σ∈Σ and
⊔

s′∈q can be com-
puted in polynomial time, while

!
o∈O can be computed in exponential time

by simple application of the definitions. Unfortunately, it turns out that a
polynomial-time algorithm is unlikely to exist for computing

!
o∈O as the NP-

complete problem IndependentSet can be reduced to it. Consider a graph
G = (V, E) where V is a set of vertices and E ⊆ V × V is a set of edges. An
independent set of G is a set W ⊆ V of vertices such that for all (v, v′) ∈ E,
either v %∈ W or v′ %∈ W , i.e. there is no edge of G connecting vertices of W . The
IndependentSet problem asks given a graph G and size k to decide if there
exists an independent set of G of size larger than k. This problem is known to
be NP-complete. We show that IndependentSet reduces to computing &. Let
G = (V, E) be a graph, and for each e = (v, v′) ∈ E let qe =

{
V \ {v}, V \ {v′}

}
.

The set qe↓ contains all sets of vertices that are independent of the edge e.
Therefore, the antichain q =

⋂
e∈E qe contains the maximal independent sets of

G, and an algorithm to compute q would immediately solve IndependentSet,
showing that such an algorithm running in polynomial time cannot exist unless
P = NP . The idea of this reduction can be extended to show that CpreA requires
exponential time [BCD+08,FJR09].

Exercise 11 Compute the winning cells in the two versions of the 3-coin game
with the symbolic algorithm using the antichain representation. The 3-coin

game graph is given in Fig. 4. We give here the solutions to this exercise.

– For the version where Player 2 is allowed to exchange the positions of the
coins that are not toggled. To compute the winning cells of the game with
imperfect information, we compute the set of all cells that are able to
force the cell {7}. We give here the sequence of antichains computed by

14
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Almost-sure winning
Randomized strategies

• A randomized strategy for Player 1 is a function α:(L×Σ)*L→Dist(Σ). 

• A randomized strategy for Player 2 is a function β:(L×Σ)+→Dist(L) such 
that for all finite plays l0σ0l1σ1...lnσn, and location l∈L such that 
β(l0σ0l1σ1...lnσn)(l)>0, we have (ln,σn,l)∈Δ. 

• Given strategies α and β, an initial location l0, the probability of a finite play 
l0σ0l1σ1...ln-1σn-1ln, is ∏i∈{1,...,n} pi where 

                         pi=∑σ∈Σ α(l0σ0l1σ1...ln-1)(σn-1)‧β (l0σ0l1σ1...ln-1)(σn-1)(ln). 

With this measure, the probability of measurable sets is uniquely defined.

• Notions like observation-based strategies are adapted in the expected way.
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Almost-sure winning
Randomized strategies

• If φ is a measurable set (any omega-regular set of plays is 
measurable) then we note Prαβ(l,φ) the probability that the 
objective φ is satisfied by a play starting in l when Player I plays 
strategy α and Player 2 plays β.

• A randomized strategy α for Player 1 in G is almost-surely 
winning for the objective φ if 

for all randomized strategy β for Player 2, we have Prαβ(li,φ)=1.

• Note that our definition is again asymmetric. While having perfect 
information does not help Player 2 in the case of surely-winning, it 
makes Player 2 stronger in this probabilistic setting. See 
[BGG09,GS09] for a symmetric model. 
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Almost-surely winning
Knowledge-subset construction

!1

!2

!′
2

!3

!′
3

!4 a, b

a, b

a, b

a

a

b

b

a, b

a, bo1

o2 o3 o4

Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players
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Fig. 6. The knowledge-based subset construction for the game of Fig. 3.

objective ϕ if for all randomized strategies β of Player 2, we have Prα,β
lI

(ϕ) = 1.

A location #̂ ∈ L is almost-surely winning for ϕ if Player 1 has an almost-surely
winning randomized strategy α in the game Ĝ = 〈L, #̂, Σ, ∆〉 where #̂ is the
initial location.

Note that our definition is again asymmetric in the sense that Player 1 has
imperfect information about the location of the game while Player 2 has perfect
information. While having perfect information does not help Player 2 in the case
of surely-winning, it makes Player 2 stronger in the probabilistic case. Recent
works [BGG09,GS09] study a symmetric setting where the two players have
imperfect information. The decision problems are computationally harder to
solve (deciding if a location is almost-surely winning is EXPTIME-complete in
our setting, and it becomes 2EXPTIME-complete in the symmetric setting). We
choose to present the asymmetric setting for the sake of consistency with the first
part of this tutorial, because it is a simpler setting, and because the techniques
that we present can be adapted to solve the more general case.

4.2 An algorithm for reachability objectives

We present an algorithm for computing the locations of a reachability game
with imperfect information G from which Player 1 has an almost-surely winning
strategy. The algorithm can be extended to solve Büchi objectives [CDHR07].
The case of coBüchi and parity objectives remains open.

Extended subset construction First, note that the reduction to games with
perfect information GK of Section 3 does not preserve the notion of almost-surely
winning. The knowledge-based subset construction for the the game of Fig. 3 is
given in Fig. 6. It is easy to see that for all strategies of Player 1, Player 2
can avoid {#4} by always choosing from {#3, #

′
3} the transition back to {#1}. In

the original game, this amounts to allow Player 2 to freely “switch” between
location #3 and #′3. However, against Player 1 strategy playing a and b uniformly
at random, Player 2 cannot really decide which location of #3 or #′3 is reached,
since both have probability 1

2
to be reached regardless of Player 2 strategy. So, we

have to enrich the knowledge-based subset construction to take this phenomenon
into account. In the new construction, locations are pairs (s, #) consisting of a
cell s and a location # ∈ s. To reduce ambiguity, we call such pairs states. The
cell s encodes the knowledge of Player 1, and the location # keeps track of the
choice of Player 2, forcing Player 2 to sticks to his choice. Of course, we need

18

Clearly, the knowledge-based subset construction does not preserve the almost-
sure winning strategies.  

We need to extend the knowledge-based subset construction.

In the new construction, we will consider pairs (s,l), that we call states:
 
  ➵ s models the knowledge of Player I

  ➵ l is the current location, i.e. this keeps track of the choices of Player 2.
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• Given a game structure with imperfect information G=
(L,li,Σ,Δ,Obs), we construct the extended knowledge-based 
subset construction of G as the game structure Knw(G)
=H=(Q,qi,Σ,ΔH) where:

-Q={ (s,l) | ∃o∈Obs ‧ s⊆o ∧ l∈s }
-qi=({li},li)
-ΔH⊆Q×Σ×Q is defined by 

                                ((s,l),σ,(s’,l’))∈ΔH 
                                          iff 
                   ∃o∈Obs‧s’=postG,σ(s)∩o ∧ (l,σ,l’)∈Δ

Almost-surely winning
Extended knowledge-based subset construction
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Almost-surely winning
Extended knowledge-based subset construction
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Fig. 2. A game structure with imperfect information G.
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the notion of observation-based strategy.
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Fig. 7. Game structure H = Knw(G) (for G of Fig. 2).

Theorem 7. The problem of deciding whether Player 1 is almost-surely winning
in a reachability game with imperfect information is EXPTIME-complete.

It can be shown that the problem is EXPTIME-hard, see [CDHR07], and thus
the algorithm developed above is worst-case optimal. For Büchi objectives,
an EXPTIME algorithm can be obtained by substituting the first line of the
PosReach(W i) operator by X0 = T ∩ Spre(W i) where

Spre(W i) = Apre(W i, W i) = {q ∈ W i | ∃σ ∈ Σ · ∀q′ ≈ q : postHσ (q′) ⊆ W i}.

Intuitively, we start the iteration in PosReach(W i) with those target states from
which Player 1 can force to stay in W i in the next round. This ensures that
whenever a target state is reached (which will happen with probability one),
Player 1 can continue to play and will again force a visit to the target set with
probability one, thus realizing the objective Buchi(T ) with probability 1.

Antichains for randomized strategies When computing the set of surely-
winning locations of a game with imperfect information, we have shown that
antichains of sets of locations are a well-suited data-structure. This idea can be
extended for computing the sets of almost-surely winning locations of a game
with imperfect information.

Let G = 〈L, lI , Σ, ∆,O〉 be a game structure with imperfect information,
and let H be its extended knowledge based construction, i.e. H = Knw(G) =
〈Q, qI , Σ, ∆H〉. We define )⊆ Q×Q as (s, $) ) (s′, $′) iff s ⊆ s′ and $ = $′. This
order has the following properties:

– if a state q in H is almost-surely winning for the observable reachability
objective Reach(T ), then for all q′ ) q in H , q′ is almost-surely winning for
the objective Reach(T );

– given an observable reachability objective T , all the sets W 0, W 1, . . . , and
X0, X1, . . . are )-downward closed.

Exercise 12 Define the operations +, , for the order ). Define the operations
PosReach and Apre so that they operate directly on )-antichains. !

21
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• Clearly, in a state (s,l) we have to make sure that the decisions 
of Player 1 do not depend on the location l but only on cell s.

• To solve this problem, we introduce a notion of:
⟹ equivalence between states, and of 
⟹ equivalence-preserving strategies.

Almost-surely winning
Extended knowledge-based subset construction
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• Two states (s,l), (s’,l’) are equivalent, written (s,l)≈(s’,l’), if 
s=s’, i.e. when they share the same knowledge.

• Let q∈Q, [q]≈ denotes the ≈-equivalence class of q.

• Equivalence and equivalence classes for plays and prefixes of 
plays are defined in the expected way.

• A strategy α is equivalence-preserving if α(ρ)=α(ρ’) 
for any two prefixes ρ,ρ’ that are equivalent.

Almost-surely winning
Extended knowledge-based subset construction
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• Let pr:Obs→{1,..d} be a parity function defining φ=Parity(pr) an observable 
parity objective. 
Let prK:Q→{1,...,d} be the function such that prK((s,l))=p iff pr(o)=p for the 
observation o such that s⊆o. 
Then φK is defined as Parity(prK). 

• Theorem. For all game structures with imperfect information G, 

Player 1 has an observation-based almost-surely winning 
strategy in G for a parity objective φ 

                                               iff 

Player 1 has an equivalence-preserving almost-surely 
winning strategy in H for the parity objective φK.

Almost-surely winning
Extended knowledge-based subset construction
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• First, note that for safety objectives, almost-surely winning and surely-
winning are equivalent notions. 

This is because any violation of a safety objective by a finite prefix of 
play would make the probability of being safe strictly less than 1.

• In [CDHR07], we have given algorithms for solving reachability and 
Büchi games, we concentrate here on reachability objectives. 

• We provide an algorithm for the reachability objectives using the 
extended knowledge-based subset construction.

Almost-surely winning
An algorithm for reachability
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• First, it can be shown that memoryless strategies are sufficient for Player 1 to 
almost-surely win the game of perfect information H=Knw(G) for reachability (and 
Büchi objectives).

• Let H=Kwn(G)=(Q,qi,Σ,ΔH), let Reach(T) with T⊆Q be an observable reachability 
objective in H (we assume T to be absorbing), and ≈ the equivalence relation that 
declares equivalent two states with the same knowledge. 

Player 1 almost surely-win with an equivalence preserving strategy in the set W⊆Q                       
                                                         iff 
there exists two functions Allow: W→2Σ and Good:W→Σ such that ∀q∈W:

(i) Good(q)∈Allow(q)

(ii) for all q≈q’ and for all σ∈Allow(q), postH,σ(q’)⊆W;

(iii) on the graph (W,E) with E={ (q,q’)∈W×W | (q,Good(q),q’)∈ΔH}, all infinite 
paths visit a state in T.

Almost-surely winning
An algorithm for reachability
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Almost-surely winning
An algorithm for reachability
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W={q2,q3,q4} is witnessed by 
the following functions:

Allow(q2)={a,b}  Good(q2)=b
Allow(q3)={a,b}  Good(q3)=a
Allow(q4)=Σ       Good(q4)=a
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• How to compute the set W ?  We need a double fixed point computation. 

Intuitively, the greatest fixed point is used to determine the safe region together with 
the Allow actions, and a least fixed point to ensure that progress toward the target is 
possible thanks to the Good actions.

• The set W is the limit of the following computation:

W0=Q
Wi+1=PosReach(Wi) for all i≥0

where PosReach(Wi) is the limit of the following iteration:

X0=T
Xj+1=Xj∪Apre(Wi,Xj) for all j≥0.

where Apre(W,X)={ q∈W | ∃σ∈Σ‧postσ,H(q)⊆X∧∀q≈q’‧postσ,H(q’)⊆W}

Note that good σ can differ from states to states but should be allowed in all 
equivalent states !

Almost-surely winning
An algorithm for reachability
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Almost-surely winning
An algorithm for reachability
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Reach({l4})
W0={q1,q2,q3,q4}
W1=PosReach(W0)
       X0={q4}
       X1={q4}∪Apre({q1,q2,q3,q4},{q4})
           ={q4}∪{q2,q3,q4}={q2,q3,q4}=X2=W1

W2=PosReach({q2,q3,q4})
       X0= {q4}∪Apre({q2,q3,q4},{q4})
       X1={q4}∪Apre({q2,q3,q4},{q4})
           ={q4}∪{q2,q3,q4}={q2,q3,q4}=X2=W2

W2=W1 

(fixed point is reached)

Apre(W,X)={ q∈W | ∃σ∈Σ‧postσ,H(q)⊆X∧∀q≈q’‧postσ,H(q’)⊆W}

Reach T while 
staying in W0.
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• It can be shown that the algorithm presented here (that uses the 
extended subset construction) is worst case optimal. The 
problem of deciding if a location is almost-sure winning for a 
reachability objective in a game with imperfect information is 
ExpTime-Complete.

• Antichains can be extended to compute efficiently the set of 
almost-surely winning states for reachability and Büchi objectives.

• The algorithm can be applied to compute the almost-sure 
winning strategy for the 3-coin example (see written notes).

• co-Büchi has been shown undecidable recently [CD2010] !

• Models with two players with imperfect observation 
[BGG09,GS09].

Almost-surely winning
Beyond this introduction
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Conclusion

• Games of imperfect information are useful to model 
faithfully practical synthesis problems.

• Memory and randomization are necessary to win 
games with imperfect information even for reachability 
objectives.

• Reductions to games of perfect information are possible... 
but more complex in the case of “almost-surely winning”.

• Direct algorithms that uses tailored data-structures 
(antichains) are useful to obtain practical algorithms.
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