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3-coin game

Player | Player 2

® Player | does not see the coins but knows how many coins are on H (imperfect
information). Player 2 does see them (perfect information).

® |nitially, two coins are on H. Then rounds are played as follows: Player | chooses a
coin Cin {/,2,3}. Player 2 flips C, then he decides to exchange or not the position
of the other two coins. He announces the number of H to Player |I.

® Player | wins when all coins are on H, Player 2 wins when all coins are on T or if
the game never reaches 3 coins on H.
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3-coin game
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Loosing
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3-coin game
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Content of this course

¢ Game structures with imperfect information to model
games such as the 3-coin game.

® [wo variants:
deterministic strategies vs randomized strategies.

® Algorithms to decide who is winning and synthesize
winning strategies when they exist.
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Plan

® Preliminaries:
Game structures with perfect information

® Game structures with imperfect information
® Deterministic strategies (with memory)

e Efficient algorithms (antichains)

¢ Randomized strategies (with memory)
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Preliminaries
Games of perfect information




Game structure of perfect information

® A two-player game structure of perfect information
(Llini,2,A\) is composed of:

(i) L is a finite set of locations,

(ii) lnir is the initial location,

(i) 2 is a finite alphabet of actions, and

(iv) A CLx2xL is a set of transitions s.t. vieL-30e2-3(/,0,/")€A.
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Rounds

® Games of perfect information are played by the two
players for an infinite number of rounds.

- Round 0.The game starts in the initial location I

= Roundi.lf I, is the current location,

(D Player | chooses an action o<, and
(@ Player 2 resolves nondeterminism

by choosing a location in { I | (11,0, I2) €A }

- Round i+ is started.
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Play, Inf, History

® A play is an infinite sequence of locations TT=lol,...I...
such that

® [p=linir, and
® ViZO'EIO'EZ'(Ii,O',I,’H)EA.

® We denote by Inf(1T) the set of locations that appear infinitely
many times along TT.

® A history of a play T1=lol,...I... is a finite prefix of the play.
® T1(j)=lol,...I. is the prefix that ends in position j=>0.
® |ts length, denoted |TT(j)|=j+].

® We use Last(1T(j)) to denote |,
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Deterministic strategies
Memoryless strategies

e A deterministic strategy for Player | is a function ot : L*—2
that maps histories to actions.

Ac denotes the set of Player I’s strategies in game G.

e A deterministic strategy for Player 2 is a function 5 : L*XZ—L s.t.
vpel*-voeZ-(Last(p),o,B(p,0))eA.

Bc denotes the set of Player 2’s strategies in game G.

® A strategy 0€Ac is memoryless if
vp,p’el’-Last(p)=Last(p’)=x(p)=a(p’).

i.e. memoryless strategy depends only on the last location of the history.
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Outcome of deterministic strategies

® The outcome of a deterministic strategy & for Player | and of a
deterministic strategy P for Player 2 is the play

Tt=lol)...In... such that: |) lo=ln
2) Vvi=0, o=&(T1T(i)) and I+ =B(TT(i),0)).

This play is denoted by outcome(G,x,[)

® A play 1T is consistent with a Player |’s strategy  if

TT=outcome(G,q,B) for some Player 2’s strategy P.

® We note Outcome,(G,X) the set of plays consistent with «.
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Objectives (winning conditions)

® Given a game structure G=(LI,2,A), an objective is a set of sequences of
locations, i.e. a subset of L. By p we denote L*®\p.

e A reachability objective is defined by a set of target locations TCL.
Reach(T)={loli Iz ...| 3j=0lje T }.

e A safety objective is defined by a set of safe locations SCL.
Safe(S)={loli I ...| vji=0<lje S}

e A Buchi objective is defined by a set of target locations TCL.
Buchi(T)={ 11 | Inf(TT)nT*2 }.

e A coBluchi objective is defined by a set of safe locations SCL.
coBluchi(S)={ 11 | Inf(TT)CS }.

e A parity objective is defined by a function pr:L — { 0,1/,...,d }.
Parity(pr)={ Tt | min{ pr(/) | | € Inf(TT) } is even }.
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Objectives (winning conditions)

® Given a game structure G=(LI,2,A), an objective is a set of sequences of
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Surely-winning - Determinacy

Let G be a game structure and pCL™® be an objective.

The deterministic strategy & is surely=-winning in G for p
iff Outcome(G,x)Cp. (similarly for Player 2).

We say that (G,p) is determined iff either
Player | has a surely-winning strategy & for the objective p, or
Player 2 has a surely-winning strategy P for the objective p.

Theorem (Determinacy). For all game structures of perfect
information G, for all parity objectives p, the game (G,p) is determined.

Theorem (Memoryless). For all game structures of perfect information
G, for all parity objectives p:
Player | (Player 2) has a surely-winning strategy in (G,p)
iff
Player | (Player 2) has a memoryless surely-winning strategy in (G,p).
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Summary

Game structure Rounds, plays, history

lialbalz3bliblabls ..

Strategies Objectives
Player |proposes letters: & :L*—2 pcL®
Player 2 resolves nondeterm.: 3 :L*xZ—L Safety, Reachability, (co)Buchi, Parity

Player | wins (G,p) iff 36V B*outcome(x,B)ep
iff =(3P*vxeoutcome(,B)ep)
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Algorithms - Cpre

The controller predecessor operator
Cpre: 2t - 2!

given a set of locations sCL, returns the set of locations [eL,

from which Player | can force the game to be in $ in the next
round.

Cpre(S)={I| 30e2 - vl’elL - (I,0,/)eA = €S}
={1] 30€2 - postgo(l) € S}

where postcq(/) is the set of successors of | by O in G.
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Algorithms - Safety

® Let G be a game structure of perfect information, SCL.

® TJo solve the game for the safety objective Safe(S), we must
compute the set of locations WCL from which player | can

maintain the game within $ for any number of rounds.

® (learly WCS, and

if W is the set of locations from which Player | can keep the
game within S for i steps,

then W"*'cW/, and W™/ is exactly the set of locations within

S from which Player | can force the game to be in W' in the
next round, i.e. W*'=SnCpre(W).
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Algorithms - Safety

® So the set of surely-winning locations for Player |
are obtained as the limit of the following sequence:

WO=S :
WH'=SnCpre(W)), for all i=0.

This sequence stabilizes after at most |S| steps. The

limit is the greatest solution of the equation
W=SnCpre(W).
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Algorithms - Safety

SNCpre(SnCpre(S))




Algorithms - Safety

SNCpre(SnCpre(S))




Algorithms - Safety

Let us compute the surely winning locations for the
objective Safe(L\{/4}).




Algorithms - Safety

W0=L\{I4}
W!=L\{InCpre(L\{l})=L\{I5’ 4}
W2=L\{lnCpre(L\{I3’,14})=L\{I3’ 4}
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Algorithms - Safety

WO=[\{l,}
W!=L\{InCpre(L\{l})=L\{I5’ 4}
W2=L\{lnCpre(L\{I3’,14})=L\{I3’ 4}

Fixpoint




Algorithms - Reachability

® Let G be a game structure of perfect information, TCL.

® To solve the game for the reachability objective Reach(T7), we
must compute the set of locations WCL from which player | can

drive the game into T no matter how Player 2 resolves
nondeterminism.

® C(learly TCW, and

if W' is the set of locations from which Player | can force the
game to reach T in i steps or less,

then W™/ is the set of locations from which Player | can force W
in the next round, i.e. W*'=WuCpre(W).
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Algorithms - Reachability

® 50 the set of surely-winning locations for Player | are
obtained as the limit of the following sequence:

WO=T ;
W*=TuCpre(W), for all i=0.

This sequence stabilizes after at most |L| steps. The limit is
the least solution of the equation W=TuCpre(W).
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TuCpre(TuCpre(T7))
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Algorithms - Reachability

Let us compute the surely winning locations for the
objective Reach({l4}).




Algorithms - Reachability

WO={l4}
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Algorithms - Parity
Reduction to Safety

® We provide a simple reduction to safety games (similar to [BJVV02] but
simpler, see also [BDO08] - FSTTCS08 paper).

® |Let G=(Llni2,A) and pr:L—{0,...,d} defining the objective (p=Parity(pr).
We extend G as follows:

- We associate to each odd priority p a counter ¢(p) which takes values in
the set {0,...,n,}u{00}, n, being the number of locations with priority p in G.

- Initially, all counters have value 0. The counter c(p) is incremented when

a location | with priority p is visited, and it is reset when a location | with
an even priority p’<p is visited.

* Remark. As Buchi and co-Buchi are special cases of parity, they can be
handled by this reduction too.
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Algorithms - Parity
Reduction to Safety

® Notation: [n] denotes the set {0,1,2,...,n}u{c0}.

For ve[n],v® =00 if ve{n,0}, and v® | =v+| otherwise.

® |etus consider G=(Llini,2,A) and pr:L = {l,...,d} defining the parity objective
p=Parity(pr).We construct the game PS(G)=(Ll/,2,A’) where:

L’=Lx[n]*[n3]*...X[nd]
linit = (I,-n,-t,O, 0,..., 0)
A'={ ((4.9),0,(q update(c,p))) | (4.0,9) and p=pr(q’) }

where update((c/,c3,...,cd),p)=  (Ci,..r,Cp-1,0,...,0) if p is even
(ClyeeesCp-1,Cp@ [ ,Cp+1,...,¢4)  if p is odd

and PS(p)=Safe(T) where T=L"n ( L*{0,1,2,..,n} 142 1)

i.e. no counter overflow.
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Algorithms - Parity
Reduction to Safety

Theorem. Player | has a surely-winning strategy in the parity game (G,®p) iff Player | has
a surely-winning strategy in the safety game (PS(G),PS(®)).

Proof. Assume that Player | has a surely-winning strategy in (G,), then Player | has a
memoryless surely-winning strategy &. Consider the Player | memoryless strategy &’ in (PS
(G),PS(®p)) which plays in (lci,.,cq) the action (/). We claim that o is surely-winning.
Assume it is not the case, then as X is memoryless there exists TTeOutcome;(PS(G), ')

such that: spoiling

* 1 / overflow

=(1,c") (I,2)... (k0,c<0)... (b1, ")... (he2,€<2).... (le3,C)...

last reset

and c©3(p)=00 for some odd priority p which was last reset in position ko. Between position
ko and position k3, np+) locations with priority p has been visited without ever visiting any
location with an even priority less than p. As n, is the number of locations with priority p,
there are two positions k; and k; are such that lk/=l and its priority is p. Then clearly Player
2 has a spoiling strategy in (G,), a contradiction.

The other direction is established similarly after using the determinacy theorem.
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Algorithms - Parity
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Games with perfect information
Summary

¢ Simple games
Player | chooses actions,
Player 2 resolves nondeterminism

¢ Rich objectives
Safety, reachability, Buchi, co-Buchi, and parity.

e Simple algorithms
Simple fixed points for safety and reachability.
Buchi, co-Buchi and parity can be easily and elegantly
reduced to safety.
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Games of imperfect information

Surely-winning




Imperfect information - Motivations

Games structure with perfect information makes the strong
assumption that the players can observe the state of the game and the
previous moves before playing.

This is often unrealistic in the design of reactive systems because
components have an internal state that is not visible to other
components (e.g. local variables).

Also, sometimes we need to consider that components choose their
moves simultaneously and independently of the others (concurrent
games, not considered here, see works by de Alfaro, Kuferman,
Henzinger, etc).

) We need models with imperfect information.
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Imperfect information - Motivations

<,

l Thermome ter
\/0
ater

Typical hybrid system

w \ Digital

G

A\ Controller
N /
ner

The temperature
is in the interval

(c—1,c+1)

Finite precision = imperfect information
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Games Structure of Imperfect information

e A game structure of imperfect information is
a tuple G=(L[,2,A,0bs) where G is a game graph as
before and Obs={0/,0,,...,0n} is a partition of L called the
set of observations.
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Observation of a play

® Given leL, we note obs(l)
the observation ocObs such that /eo.

® The observation of a play 11=ld,...I...
is the sequence obs(TT)=0bs(lp)obs(l)...obs(I»)...

® When playing, only the observation of the
current location is revealed to Player |.
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Observation of a play

obs(TT)=0bs(l))




Observation of a play

=1, |5

obs(TT)=0bs(l/) obs(l?)
= 0] 02




Observation of a play

=1l L I3’

obs(TT)=0bs(l;) obs(lIz) obs(l3’)
= 0] 02 03




Observation of a play

=) I I3” (l4)®

obs(TT)= obs(I/) obs(l2) obs(I3”) obs(l4)®
= 0] 02 03 (04)%




Observation-based strategies

e An observation-based strategy for Player |:

X :L* = 2 such that

Vp,p’ - obs(p)=obs(p’) = ax(p)=a(p’)

o Example. Let p=Iil; and p’=lil7’.
If & is observation-based, and if &X(p)=0,
then &X(p’)=0 because obs(p)=o0102=0bs(p’).

Monday 15 November 2010



Observable objectives

An objective in a game of imperfect information is a set of plays ¢ as
before but we require that ¢ is observable for Player |, that is:

VTTEW - VTTU - obs(TT)=0bs(TT’) = TT €.

Clearly, observable objectives can be defined as subsets of Obs™.

In the sequel, we assume that:

reachability and safety objectives are defined by unions of target
observations.

parity objectives, we assume that they are defined as functions

br:0bs—{0,...,d}.

This ensures that those objectives are observable.
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Surely-winning observation based strategies

® A (deterministic) observation-based strategy
X:L*— 2w
is surely=winning for an objective (€Obs® in G if

obs(Outcome(G,x)) € @

® Note that games with perfect information are clearly
a special case, take Obs={{l} | leL}.
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Game with imperfect information: an example

(p=Reach({o4})

Can Player | surely-win with an
observation-based strategy ?

NO

Let & be an arbitrary observation-based strategy. Consider the strategy P for Player 2:
for all peleL™ and Last(obs(p-l))=o,,
-if &X(obs(p-l))=a then B(p,*)=I2, and
-if &(obs(p-))=b then B(p,*)=I.".
as O is fixed, this is possible to choose P as described !
B is clearly a spoiling strategy against & for .
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Game with imperfect information: an example

(p=Reach({o4})

Can Player 2 surely-win the
objective Safe(ojuou03) ?

NO

Note that Player 2 does not have a deterministic strategy to ensure Safe(o;uo2u03).

As Reach(o4) and Safe(o,uo0,u03) are complementary objectives, this shows that games
with imperfect information are not determined.
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Game with imperfect information: discussion

® The games that we consider sounds asymmetric.

® Indeed, Player | has imperfect information while Player 2
has perfect information.

® Nevertheless, making Player 2 weaker (with imperfect
information) would not help Player | to surely win.

® Indeed, it can be shown that counting strategies are
sufficient for spoiling deterministic strategies.
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Game with imperfect information
3-coin example
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Game with imperfect information
3-coin example

z Without exchange
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Game with imperfect information

Memory

Player | needs memory to
surely-winning Reach({o¢}).

TT= h a L b B a 4

Obs(TT)= o0/ 02 04 A 06
v

= a [ b I3 b I4
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Game with imperfect information
Knowledge

(p=Reach({o4})

Can Player | win with an
observation-based strategy ?

1L = a I a I3 a I4
obs(TT) = o 02 03 0l ..
= K@m = {li} {112} {1515’} {Ila}={11} ...

=postcq({li})noz ..
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Game with imperfect information
Knowledge provides memory

Player | needs memory to
surely-winning Reach({o¢}).

The knowledge of Player |
provides information about
the past of the play.

TT= h a I b Iz a If
Obs(TT)= o0y 02 04 06
K(m=  {li} {I2} {I3} {I+}
= I a 27 b [ b I4¢
Obs(TT)= o 03 04

06
K= {li} {I2} {1} {14}
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Reduction to games with perfect information

® Let G=(LI,2,A,0bs) be a game structure with imperfect information.

e The knowledge subset construction of G is the game
structure with perfect information Gf=(S,s;,2,AX) where:

(i) S={ se2?} | 30€0bs :sCo },
elements of S are called cells, we note this set Cells(Obs).

(i) si={l;}.

(iiify ARCSx2 xS contains all pairs (s,0,s’) such that
J0€0bs* s’=postcs(s)no.

where postco(s)={/'|3les: (o) e A}
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Reduction to games with perfect information
Objectives

e Observable reachability objectives. Let T be a union of
observations, and (p=Reach(T) be an observable reachability objective. Let
TK denotes the set of knowledges { se€S | JoeT-sCo }.Then X is defined as
Reach(TX).

e Observable safety objectives. Let S be a be a union of observations,
and (p=Safe(S) be an observable safety objective. Let SX denotes the set of
knowledges { s€S | 30€S-sCo }.Then X is defined as Safe(TX).

e Observable parity objectives. Let pr:Obs—{|,..,d} be a parity function
defining (p=Parity(pr) an observable parity objective. Let pr’:S—{I,....d} be
the function such that pr(s)=p iff pr(o)=p for the observation o such that
sCo.Then X is defined as Parity(prX).

Monday 15 November 2010



Reduction to games with perfect information
Correctness

Theorem. Let G=(LI[,2,A,0bs) be a game
structure of imperfect information, let @@ be a
observable parity objective.

Player | has an observation-based surely-winning
strategy in (G,) iff Player | has a surely-winning
in the game with perfect information (GX,").




Reduction to games with perfect information
An example

Does Player | have a surely-
winning strategy for the
objective (p=Safe(L\o4) ?
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Reduction to games with perfect information
An example

Does Player | have a surely-
winning strategy for the
objective (p=Safe(L\o4) ?

v

Can Player | win
o =Safe({l/},{l,12’},{l315}) ?

X0={{11},{l2,12},{15,13’}}
X'={11} 0,121

X2={{l
X3=§:§=I§4 NO !
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Reduction to games with perfect information
Algorithm

Does Player | have a
observation-based surely-
winning strategy in G for the

observable objective @ !

Does Player | have a surely-
winning strategy in G for

the objective (pX?
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Cpre for the knowledge subset construction

® We want to keep the knowledge-based subset construction
implicit !

® For that, we need to define the operator “controllable
predecessors’ for the knowledge-based subset construction.

® |etgCS be a set of cells,

Cpre(q)

={s | 30€2-vs’eS-(s5,0,5") = s’eq }

={ s | 30€2-Voe0Obs-Vs’s’=pOstcq(s)+2 = s’eq }

Monday 15 November 2010



Cpre for the knowledge subset construction

seCpre(q)

q
-
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Cpre for the knowledge subset construction

seCpre(q) q

W

postcF o =

=lof=p2
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Cpre for the knowledge subset construction

seCpre(q) voeObs q

)
postcF o = N

=lof=p2
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Cpre for the knowledge subset construction

35 eq

seCpre(q) voeObs q

)
postcF o = N

=lof=p2

-

N

=
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Cpre for the knowledge subset construction
An example

q={{l212}{la}.{11}}

{51’} Cpre(q) because if Player | chooses action a, we verify that:

== for o/, postcq({/33}) n o1 = {li}
== for 02, postcq({33}) n 02 =
== for 03, postc.({l33}) n 03 =

= for 04, pOStca({/3,13}) N 04 = {l4}

Monday 15 November 2010



Cpre for the knowledge subset construction

Downward-closed sets

A set of cells g is C-downward closed
iff Vseq-vs'Cs's’+0=s’eq.

The C-downward closure of a set of cells g is the set of cells
lg={s#@ | 3s’eq'sCs’ }.

Proposition. For any set of cells g, Cpre({q) is C-downward
closed.

Proof.This is a direct consequence of the fact that for all cells sj,s2, for all g€, we

have that s,Cs; = postcio(s/)C posts<os(sz2), and that intersections and unions of
C-downward closed sets are C-downward closed sets.

Corollary. All the sets manipulated during fixed point
computations for observable safety and reachability objectives are
C-downward closed.
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Antichains for representing
downward-closed sets

An C=antichain g over 2 is a set of sets of locations such that
VS1,52€qQ"S1£82=5|=S2

We note A the set of antichains.

Note that elements within an antichain are not necessarily cells.

A C=-antichain g compactly represents the downward closed set of cells
1g={'s € Cells(Obs) | 3s’eg-sCs’}

The set A is partially ordered as follows:
qtq’ iff vseq-3s’eq’sCs’

We note griq’ the greatest lower bound of g and g’ in A, and quq’ the
least upper bound of gand g’ in A.
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Antichains for representing
downward-closed sets

Cells




Antichains for representing
downward-closed sets
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Antichains for representing
downward-closed sets
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Antichains for representing
downward-closed sets

keep only maximal
elements
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Antichains for representing
downward-closed sets
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Antichains for representing
downward-closed sets

giugz=Maxc{ s | seqi v seq; }
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Antichains for representing
downward-closed sets
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Antichains for representing
downward-closed sets
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Antichains for representing
downward-closed sets

S2NT
SNt SNty
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Antichains for representing
downward-closed sets

keep only maximal
elements
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Antichains for representing
downward-closed sets

qing2=Maxc{ sins2 | sieqi A s2€q2 }
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Antichains for representing
downward-closed sets

qi1Cqy iff Vsieqi-3s2€q2s1Cs;
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Cpre of an C-antichain

® As we can compactly represent set of cells as antichains, we want
to compute directly the Cpre of an antichain.

* Cpre(lq)
={ seS | 30€2-VoeObs-3s’cq-poOstsq(s)noCs’}
={ seS | 30€2-VoeObs-3s’cq-sCaprec,s(s’u(L\o)}

where aprecq(s)={ IeL | postc({/})Cs}

¢ Cpl’eA(lq)= |—| oc r—l 0€0bs |—| s’eq { aPI'EG,O'(S,U (L\O)) }
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Cpre of an C-antichain

All the operations on antichains for the Cpre” can
be implemented in polynomial time except Mocops.

Theorem. There is no polynomial time algorithm
to compute Mgl giunless P=NP.

Proof. Consider a graph (V,E), the set of its
independent sets is (Mwee {V\{v},V\{w}}) {.
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Solving reachability: an example

a,b |
62 : T
et | Does Player | have an
2 i observation-based
N strategy to force 0¢ ?
_O._?__ I
Xo={{1)

X'={{ls}} u CpreA({{i})
= Wahru Wbl = Wb ilhibhg

X2= {ls}} u Cpref({{l:}.{:}.{1:1})
= Wehr u Wbl 1= Wb iUz 1

X3= {{I+}} u CpreA({{l«}{I:}.{I:}.{l2}.{I2'}})
= {1} u {I BB RL L= (B RE {2 =XE
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Solving safety: an example

: b |
01w AT Does Player | have a
'O observation-based
o A L strategy to avoid 0¢ ?
03

XO={L\{l4}}

X'={L\{I}} n Cpre”A({L\{l+}})
={L\{I+}} n {L\{I5,147}, L\{I3’,14'}}={L\{I5,14°}, L\{I3’,14°}}

X2={L\{I+}} n CpreA({L\{5,14}, L\{I3’,14}})
={L\{I4}} m {L\{I2, 13,14}, L\{I2, 13,147, L\{12 13,14}, L\{I2,13°,14°}}
={L\{l2,13,14}, L\{I2’, 13,14}, L\{12’, 13,147}, L\{I2,13’,147}}=X3
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Antichains in other applications

Those techniques can be applied with success to LTL
model-checking (see [DDMRO08] - TACASO8 paper)

To timed games with imperfect information (see [CDLRO7]
- ATVAOQO7 paper)

...and LTL synthesis (see [FJR09] - CAVO09 paper).

Antichains: symbolic data-structure to handle huge state
spaces in games with imperfect information and in several
important problems from automata theory.
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Practical evaluation
Universality

Table 1. Automata size for which the median execution time for checking universality is less
than 20 seconds. The symbol o« means more than 1500.

/
¢ 1020410608 |10[12]14|16]1.8]20 2% 24 126 |28 (3.0
0.1 || o< | o< | o< [5501200|120| 60 | 40 | 30 | 40 /50 50 [ 70 | 90 |100
03 || oc | ox | o< |500({200|100| 40 | 30 | 40 | 70 “’ 100 | 120 | 160 | 180 (200
05 || o< | oc | o< |500({200(120| 60 [ 60 | 90 [ 120|120 | 120 | 140 | 260 {500
0.7 || o< | o< | o< |500 (200|120 70 | 80 [100]200 {440 1000 | o< | ox | x
09 || o< | oc | o< |500|180|100 | 80 [200 600 | ox | X X | X |

For r=2, f=0.5, Tabakov can handle 8 states while

our algorithm handles 120 states in less than 20s.
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Practical evaluation

Universality

Median execution time

Median Time (s)

Fig. 1. Median time to check universality
of 100 automata of size 30 for each
sample point.

To compare,
Tabakov’s BDD
implementation was
able to handle

automata of size 6 on
the entire state space
(within 20s as in our
experiments).
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Game with imperfect information
Strategy construction

® We have shown how to compute efficiently using antichains the set of
winning cells of a game with imperfect information.

s it possible to extract an observation-based winning strategy from this
computation ?

® The answer is yes for all parity objectives. Nevertheless it may be costly,

i.e. there are games for which the strategy is exponentially larger than the size
of the antichain representation of the fixed point.

® |[tis easy for safety objectives, more intricate for reachability and for

parity objectives.VWe concentrate here on safety and refer to [BCD*08]
for the other cases.
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Game with imperfect information
Strategy construction

® Let W=quwind be the set of winning cells for a safety games with
imperfect information that are compactly represented by the
antichain qgwin.

® By definition of the fixed point equation, we know that
VSEQwin"A0s€2-Vo€Obs-Is’equin'POStc,o(s)noCs’

It is easy to see that the strategy that plays the action O in any cell
s”’Cs is surely-winning.
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Game with imperfect information
Strategy construction - Safety

® |et W=gwinl be the set of winning cells.

® We construct a Moore machine (M,m;update,) where:
(l) quwin
(i) m;=s for some seqgwin such that s;Cs.

(iii) update:Mx*xObs— M such that
update(s,0)=s’ for some s’ such that postgss(s)nocCs’.

(iv) U(s)=0s.
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Game with imperfect information
Strategy construction - Safety

OI a,b I 62 i
:"_: 02
T a,b e

L (g :
|__o§__

postcq.({l1,12),13°,14})={12,12°,13’,l4}

{I,12°,13° layno ={11} S{11,12°,15°, 14}
{I,12°13°14}n02={12} C{l1,12,13,14}
{12,12°13la}nos={12"} C{11,12°,13’, 14}
{21213 la}nos={I3"} C{11,12°,13’,14}
{I,12°,13°,la}nos={14} S{11,12°,13’, 14}
{I,12°,13° l4}n06=2 C{11,12°,13°,14}

Safety objective Safe(L\{o¢}).

Qwin
={L\{l2,13,14’},L\{I2,15°, 147}, L\{12°, 13,147}, L\{ 2, 13°, 147} }

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

01/,03,04,05,06

{11215 14} 02

d
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Game with imperfect information
Strategy construction - Safety

Ol o, B : Safety objective Safe(L\{os}).
R -~ 02
@ : Z Qwin
i | ={L\{I2 13,1}, L2131 3, L{12 3,147}, L\{ 2,137}
a,b ; !
-\ L2 S ={11,1213° b {12, 03, b {1, 2,13% b, {11,027 13,143}
05"

01,03,04,05,06 01,02,04,05,06

ostc.q({1,12,15,14})={1,12° 13,1
postcq({l1,12,13,14})={I2,12’,13,14} o) i

T b

{112’15, 14}

{I,12°13,l4}n01=@ C{I},12,13,14}
{I,12°,13,14}n02={12} S{I},12,13,14}
{I,12°,I3,14}n03={12"} C{11,12°,I5° 14}
{1212, 13,14}n04={I3} {11, 12,15, 14}
{I,12°,13,14}n05={14} C{I},12,13,14}
{I,12°,I3,14}n06=2 C{l},12,13,14}

d
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Game with imperfect information
Strategy construction - Safety

o] ., Safety objective Safe(L\{o¢}).
| @ : Qwin
i ={L\{l2,13,14’},L\{I2,15°, 147}, L\{12°, 13,147}, L\{ 2, 13°, 147} }
a,b

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

d

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

Safety objective Safe(L\{o¢}).

Qwin
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Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

d

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

O
¢

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

O
¢

Safety objective Safe(L\{o¢}).

Qwin
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

d

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}
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Monday 15 November 2010




Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

d

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}
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Game with imperfect information
Strategy construction - Safety

o] ., Safety objective Safe(L\{o¢}).
| @ : Qwin
i ={L\{l2,13,14’},L\{I2,15°, 147}, L\{12°, 13,147}, L\{ 2, 13°, 147} }
a,b

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

01)03)04,05106 OI’02’04’05’06

02 {11,12,13,14}

o b

{1,12,15° 14}

d

play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06
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Game with imperfect information
Strategy construction - Safety
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Game with imperfect information

Strategy construction - Safety

{1,12,15° 14}

d

01/,02,04,05,06

{11,12,15,14}

b

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06

{1,12,15° 14} 02 {11,12,15,14}

d

03

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety
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Game with imperfect information
Strategy construction - Safety

01)03)04,05106 OI’02’04’05’06
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d

Safety objective Safe(L\{o¢}).
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Game with imperfect information
Strategy construction - Safety

01/,02,04,05,06

0/,03,04,05,06

{1,12,15° 14} 02 {Il’lélﬁh}
d 03 b

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

Let us play the strategy
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Game with imperfect information
Strategy construction - Safety

01/,02,04,05,06

0/,03,04,05,06

{1,12,15° 14} 02 {Il’lélﬁh}
d 03 b

Safety objective Safe(L\{o¢}).

Qwin
={L\{I,15,14},L\{12°, 13’14}, L\{I2’,] 3,147}, L\{12,13’,14}}

={{11,12°,13’ L}, {11,12,13,14},{11,12,13’,14},{11,12’,1,14}}

play the strategy

Monday 15 November 2010




Game with imperfect information
Strategy construction - Safety

0] a’bl 05 ia’bi 03 ; - : @ a,b | Safety objective Safe(L\{o¢}).

: (a1 2 - 05 G
| | o = (Nl L5 N s L 1

3,04, {11,02,13° 4}, {11,127, 13, 14}}

This has been implemented in a

tool called Alpaga

(see [BCDHRO09] - TACASQ09)

...... . \N @
c
{1,12,15° 14} 02 il )
® « play the strategy
a — b
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Games with imperfect information
Surely-winning - Summary

®  Games with imperfect information are EXPTIME complete (even for reachability
objective [CDHRO07] and for safety objective [BD08])

®  Games with imperfect information with the notion of surely-winning are not
determined;

e Memory (finite) is needed even for simple reachability objectives.

e Knowledge-based subset construction allows us to construct equivalent
games with perfect information.

® Antichains are adequate data-structures to handle underlying state spaces.

e Observation-based strategies can be extracted from the fixed point
computations (computed over the lattice of antichains), see [BCDHRO08] for details.

® Blind games and antichains are useful to obtain new efficient algorithms for
classical automata-theoretic problems.
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Games of imperfect information

Almost surely-winning




Almost-surely winning
An example

We have seen that Player | can not surely-win the objective Reach(o4) in
this game structure with imperfect information.

This is because when Player | has fixed his deterministic strategy &, Player

2 can decide how to resolve nondeterminism when entering observation
02 in order to avoid reaching I3’.

— Player 2 foresee how Player | will play ! This is not reasonable.
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Almost-surely winning
An example

Consider Player | playing this simple following randomized strategy:
when receiving observation o2, play uniformly at random a and b.

Clearly, each time that it enters 02, the probability to reach 3" in the next round is 1/2.
In the long run, the probability to reach I3, and thus I4 is |.

We say that Player | almost-surely wins the reachability game.

This example shows that randomized strategies are more powerful than
deterministic strategies for winning reachability games with imperfect information.
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Almost-surely winning
3-coin game

Player | Player 2

?E
o

The following randomized strategy is almost-surely winning for
Player | in the 3-coin game.

1
S
: 2

NN

e

AN

(D Select uniformly at random a coin ce{/,2,3} and ask to flip it.

(@ If the 3H configuration is not reached, then play c again, and go in (D
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Game with imperfect information
3-coin example
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Almost-sure winning
Randomized strategies

A randomized strategy for Player | is a function o:(Lx2)"L— Dist(2).

A randomized strategy for Player 2 is a function B:(LxX)"*—Dist(L) such
that for all finite plays loOol,0...[,0n, and location leL such that

B(loooli01...1nTn) (1) >0, we have (I, Tn,l)€A.

Given strategies & and [3, an initial location Iy, the probability of a finite play

.....

bi=2 ges X(loTol1T...n-1)(Tn1)* B (loTol 1T 1.kt (Tine1) (In).

With this measure, the probability of measurable sets is uniquely defined.

Notions like observation-based strategies are adapted in the expected way.
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Almost-sure winning
Randomized strategies

® |f ¢ is a measurable set (any omega-regular set of plays is
measurable) then we note Prqyg(/,(p) the probability that the
objective  is satisfied by a play starting in | when Player | plays
strategy & and Player 2 plays P.

® A randomized strategy X for Player | in G is almost-surely
winning for the objective  if

for all randomized strategy P for Player 2, we have Prqg(l,)=1.

® Note that our definition is again asymmetric. While having perfect
information does not help Player 2 in the case of surely-winning, it

makes Player 2 stronger in this probabilistic setting. See
[BGG09,GS09] for a symmetric model.
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Almost-surely winning
Knowledge-subset construction

Clearly, the knowledge-based subset construction does not preserve the almost-
sure winning strategies.

We need to extend the knowledge-based subset construction.
In the new construction, we will consider pairs (s,[), that we call states:
=+ s models the knowledge of Player |

=+ | is the current location,i.e. this keeps track of the choices of Player 2.
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Almost-surely winning
Extended knowledge-based subset construction

® Given a game structure with imperfect information G=
(LI,2,A,0bs), we construct the extended knowledge-based
subset construction of G as the game structure Knw(G)
=H=(Q,q,2,Ar) where:

-Q={ (s,/) | 30€0bs - sCo A les }

'qiz({li}’li)
-AHCQx*x2xQ is defined by

((s.),0,(s’))) el
iff
JoeObs-s’=postc(s)no A (,0,I)eA
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Almost-surely winning
Extended knowledge-based subset construction

:>_3;><geg,eg},eg>
b 5

~ CL,b

L AN 0
{0s, 00}, 0 03, 05}, 0! a° {04}, 0
2, 2}7 2 a {37 3}7 3 45,14

2 ---
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Almost-surely winning
Extended knowledge-based subset construction

® (learly, in a state (s,/) we have to make sure that the decisions
of Player | do not depend on the location | but only on cell s.

® TJo solve this problem, we introduce a notion of:
— equivalence between states, and of

— equivalence-preserving strategies.
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Almost-surely winning
Extended knowledge-based subset construction

® T[wo states (s,), (s,') are equivalent, written (s,))=(s’)), if
s=s’, i.e. when they share the same knowledge.

® |etgeQ,[q]~ denotes the =-equivalence class of q.

® Equivalence and equivalence classes for plays and prefixes of
plays are defined in the expected way.

® A strategy (X is equivalence=-preserving if x(p)=x(p’)
for any two prefixes p,p’ that are equivalent.
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Almost-surely winning

Extended knowledge-based subset construction

Let pr:Obs—{1l,..d} be a parity function defining (o=Parity(pr) an observable
parity objective.

Let pr:Q—{lI...,d} be the function such that pr((s,))=p iff pr(o)=p for the
observation o such that sCo.

Then X is defined as Parity(prX).

Theorem. For all game structures with imperfect information G,

Player | has an observation-based almost-surely winning
strategy in G for a parity objective

iff

Player | has an equivalence-preserving almost-surely
winning strategy in H for the parity objective X,
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Almost-surely winning
An algorithm for reachability

First, note that for safety objectives, almost-surely winning and surely-
winning are equivalent notions.

This is because any violation of a safety objective by a finite prefix of
play would make the probability of being safe strictly less than 1.

In [CDHRO7], we have given algorithms for solving reachability and
Buchi games, we concentrate here on reachability objectives.

We provide an algorithm for the reachability objectives using the
extended knowledge-based subset construction.
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Almost-surely winning
An algorithm for reachability

First, it can be shown that memoryless strategies are sufficient for Player | to
almost-surely win the game of perfect information H=Knw(G) for reachability (and
Buchi objectives).

Let H=Kwn(G)=(Q,q,2,An), let Reach(T) with TCQ be an observable reachability

objective in H (we assume T to be absorbing), and = the equivalence relation that
declares equivalent two states with the same knowledge.

Player | almost surely-win with an equivalence preserving strategy in the set WCQ
iff
there exists two functions Allow: W— 2> and Good:W—2 such that vgeW:

(i) Good(q)cAllow(q)
(ii) for all g=q’ and for all ceAllow(q), postH,qs(q’)W;

(iii) on the graph (W,E) with E={ (q,0')eWxW | (q,Good(q),q’)eAn}, all infinite
paths visit a state in 1.
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Almost-surely winning
An algorithm for reachability

d2~(qs3

Reach({q4})

W={q2,93,94} is witnessed by
the following functions:

Allow(q;)={a,b} Good(g2)=b
Allow(g3)={a,b} Good(g3)=a
Allow(q4)=2 Good(g4)=a




Almost-surely winning
An algorithm for reachability

How to compute the set W ? We need a double fixed point computation.

Intuitively, the greatest fixed point is used to determine the safe region together with
the Allow actions, and a least fixed point to ensure that progress toward the target is
possible thanks to the Good actions.

The set W is the limit of the following computation:

WO=Q
W*'=PosReach(W) for all i=0

where PosReach(W)) is the limit of the following iteration:

XO=T
Xt '=Xiu Apre(W.,X) for all j=0.

where Apre(W,X)={ geW | 30e2-postsH(q)CXAVqg=q -pOstsH(q) W}

Note that good O can differ from states to states but should be allowed in all
equivalent states !
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Almost-surely winning
An algorithm for reachability

W°={q1,92,93,G4}
W'!=PosReach(W")

X={q4}
X'={qs}uApre({q:,92,93,94},{q4})
={q4}U{92,93,94}={q2,93,94}=X>=W'
W2=PosReach({q2,93,q4})
X0= {q+juApre({qz2q3q4}{q4})
X'={qsuApre({qz93,94},{q4})

={q4}u{q2,93,94}={q2,q3,g4}=X*=W?
w2=Ww!

(fixed point is reached)

Apre(W,X)={ geW | 30e2-postsH(q) CXAVqg=q-pOstsH(q) W}
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Almost-surely winning
Beyond this introduction

It can be shown that the algorithm presented here (that uses the
extended subset construction) is worst case optimal. The
problem of deciding if a location is almost-sure winning for a
reachability objective in a game with imperfect information is
ExpTime-Complete.

Antichains can be extended to compute efficiently the set of
almost-surely winning states for reachability and Buchi objectives.

The algorithm can be applied to compute the almost-sure
winning strategy for the 3-coin example (see written notes).

co-Buchi has been shown undecidable recently [CD2010] !

Models with two players with imperfect observation
[BGG09,GS09].
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Conclusion

Games of imperfect information are useful to model
faithfully practical synthesis problems.

Memory and randomization are necessary to win
games with imperfect information even for reachability
objectives.

Reductions to games of perfect information are possible...
but more complex in the case of “almost-surely winning”.

Direct algorithms that uses tailored data-structures
(antichains) are useful to obtain practical algorithms.
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