
248 Algorithms

The story of Sissa and Moore
According to the legend, the game of chess was invented by the Brahmin Sissa to amuse
and teach his king. Asked by the grateful monarch what he wanted in return, the wise
man requested that the king place one grain of rice in the first square of the chessboard,
two in the second, four in the third, and so on, doubling the amount of rice up to the 64th
square. The king agreed on the spot, and as a result he was the first person to learn the
valuable—-albeit humbling—lesson of exponential growth. Sissa’s request amounted to 264−
1 = 18,446,744,073,709,551,615 grains of rice, enough rice to pave all of India several times
over!
All over nature, from colonies of bacteria to cells in a fetus, we see systems that grow

exponentially—for a while. In 1798, the British philosopher T. Robert Malthus published an
essay in which he predicted that the exponential growth (he called it “geometric growth”)
of the human population would soon deplete linearly growing resources, an argument that
influenced Charles Darwin deeply. Malthus knew the fundamental fact that an exponential
sooner or later takes over any polynomial.
In 1965, computer chip pioneer Gordon E. Moore noticed that transistor density in chips

had doubled every year in the early 1960s, and he predicted that this trend would continue.
This prediction, moderated to a doubling every 18 months and extended to computer speed,
is known as Moore’s law. It has held remarkably well for 40 years. And these are the two
root causes of the explosion of information technology in the past decades: Moore’s law and
efficient algorithms.
It would appear that Moore’s law provides a disincentive for developing polynomial al-

gorithms. After all, if an algorithm is exponential, why not wait it out until Moore’s law
makes it feasible? But in reality the exact opposite happens: Moore’s law is a huge incen-
tive for developing efficient algorithms, because such algorithms are needed in order to take
advantage of the exponential increase in computer speed.
Here is why. If, for example, an O(2n) algorithm for Boolean satisfiability (SAT) were

given an hour to run, it would have solved instances with 25 variables back in 1975, 31 vari-
ables on the faster computers available in 1985, 38 variables in 1995, and about 45 variables
with today’s machines. Quite a bit of progress—except that each extra variable requires a
year and a half ’s wait, while the appetite of applications (many of which are, ironically, re-
lated to computer design) grows much faster. In contrast, the size of the instances solved
by an O(n) or O(n log n) algorithm would be multiplied by a factor of about 100 each decade.
In the case of an O(n2) algorithm, the instance size solvable in a fixed time would be mul-
tiplied by about 10 each decade. Even an O(n6) algorithm, polynomial yet unappetizing,
would more than double the size of the instances solved each decade. When it comes to the
growth of the size of problems we can attack with an algorithm, we have a reversal: expo-
nential algorithms make polynomially slow progress, while polynomial algorithms advance
exponentially fast! For Moore’s law to be reflected in the world we need efficient algorithms.
As Sissa and Malthus knew very well, exponential expansion cannot be sustained in-

definitely in our finite world. Bacterial colonies run out of food; chips hit the atomic scale.
Moore’s law will stop doubling the speed of our computers within a decade or two. And then
progress will depend on algorithmic ingenuity—or otherwise perhaps on novel ideas such as
quantum computation, explored in Chapter 10.


