) Hadoop
Creia— System

INVENTORS FOR THE DIGITAL WORLD

v

m

access system Scalability data-

Xen Blg Data.

mhnl

ons [™™ computmq ‘c

S ,
e Cm :z:gzzzeMap Reducel
- "'Eu SyS em:i ° phomodel NeW
works § "‘Hadoop ,a.EigDnes Bretagne =g =rems,.

"’q:) _Atlantique’ ! a% ﬂ“"emei
Q_Geoqraphlcally MaeStl’O ro mterferenceg Ly g

applications éresearch S

o
virtual ©

Shadi lbrahim

Inria, Rennes - Bretagne Atlantique Research Center

Batch Big data Processing

Adapted from Presentations from:

http.//wiki.apache.org/hadoop/HadoopPresentations
I‘twf—

HDFS Architecture: NameNode (1)

Master-Slave Architecture
HDFS Master “NameNode”

- Manages all file system metadata in memory
« List of files
« For each file name, a set of blocks
« For each block, a set of DataNodes
- File aftributes (creation time, replication factor)
— Controls read/write access to files
— Manages block replication
— Transaction log: reqister file creation, delefion, etc.

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

HDFS Architecture: DataNodes (2)

HDES Slaves “DataNodes”

A DataNode is a block server
— Stores data in the local file system (e.g. ext3)
— Stores meta-data of a block (e.g. CRC)
— Serves data and meta-data to Clients
Block Report
— Periodically sends areport of all existing blocks to the
NameNode
Pipelining of Data
— Forwards data to other specified DataNodes
Perform replication tasks upon instruction by NameNode
Rack-aware

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

HDFS Architecture (3)

Metadata (Name, blocks, replicas, ...):
_. /home/dd/foo, {1,3}, 3, ...
/home/dd/docs, {2.4}. 4. ...

Namenode

Metadata ops.--~~ <

-
-
e
-
i

Datanodes

|/E) !
T L B R 0 I | I =
n © E
\) \ TSN - J\

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

Fault Tolerance in HDFS

DataNodes send heartbeats to the NameNode
— Once every 3 seconds
NameNode uses heartbeats to detect
DataNode failures
— Chooses hew DataNodes for new replicas

— Balances disk usage
— Balances communication fraffic fo DataNodes

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

Data Pipelining

Client retrieves a list of DataNodes on which to

place replicas of a block
— Client writes block to the first DataNode
— The first DataNode forwards the data to the next
— The second DataNode forwards the data to the
next

DataNode in the Pipeline
— When all replicas are written, the client moves on
to write the next block in file

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

Hadoop MapReduce

Master-Slave architecture
Map-Reduce Master “JobTracker”

— Accepts MR jobs submitted by users

— Assigns Map and Reduce tasks to
TaskTrackers

— Monitors task and TaskTracker status, re-

executes tasks upon failure

http://wiki.apache.org/hadoop/HadoopPresentations

I&tu’a/-

Hadoop MapReduce

Master-Slave architecture

*Map-Reduce Slaves “TaskTrackers”
— Run Map and Reduce ftasks upon
iInstruction from the JobTracker
Manage storage and transmission of
INfermediate output

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

Deployment: HDFS + MR

-
Submit Job {JobTracker}

G,

\ > HTTP Monitoring Ul
Get Block

00 0O 00 OO @

Machines with Datanodes and Taskirackers

http://wiki.apache.org/hadoop/HadoopPresentations
I lrrzia—

Record

Read

HDFS

[4 ‘1

Zoom on Map Phase

Imply hash function on keys in the
Maps output by appearance:

hash(Hash code (Intermidiate Key) Module ReducelD)

Keys output in order of appearance

Block1
(Mem)

AT
Set of records

represent the
Block2

(Mem)

(AT
Set of records
represent the

L
-
""""

—

Merge all the files
in one indexed file

.

Map Function
Partition Function

Output is
Buffered
in Mem

Sort and spill to disk

Merge all the files

Map in one indexed file

Function

Output is
Buffered
in Mem

Sort and spill to disk

> Partition Functig1

“Handling partitioning skew in MapReduce using LEEN” S Ibrahim, H Jin, L Lu, B

He, G Antoniu, S Wu - Peer-to-Peer Networking and Applications, 2013

Zoom on Reduce Phase

First buffer in mermonry until

1
]
1
QO ! it reaches the threshold
) ; then write to the local disk HDFS
T
an - Merge Reduce:
O ! Process,
O : “‘ | 2 1]
= S Set of
D 22 el Intermediate
Y data
: (Mem)
-
1
1

MErge upon user
requirements

I@W—

Data Locality

Data Locdality Is exposed in the Map Task

scheduling

Data are Replicated:

— Fault tolerance

— Performance : divide the work among nodes

Job Tracker schedules map tasks considering:
- Node-aware

— Rack-aware
— non-localmap Tasks

I&'M’—

Fault-tolerance

TaskTrackers send heartbeats to the Job
Tracker

» Once every 3 seconds

TaskTracker uses heartbeats to detect

» Node is labled as failed If no heartbeat is recieved for a defined
expiry time (Defualt : 10 Minutes)

Re-execute dll the ongoing and complete
tasks

Need to develop a more efficient policy to
orevent re-executing completed tasks (storing
this data in HDFS)

I&'M’—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1 J’

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled ()

Node 1 J’
Node 2 D><I

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Specuvulation in Hadoop

e Nodes slow (stragglers) = run backup tasks

Node 1 J’
Node 2 D><I

How to do this in heterogeneous environment?

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Heterogeneity in Clouds

o Virtualizations
o Dynamic resource allocations

Yasioo!

>4300 server
>2300 server

ILee et al., Heterogeneity-aware resource allocation and scheduling in the cloud, SoCC 2011

I&z'zz’a,-

Heterogeneity in Virtualized Environments

e VM technology isolates CPU and memory, but

disk and network are shared

— Full bandwidth when no contention

— Equal shares when there is contention
e 2.5x performance difference

~
o

o
—

o

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments’,
OSDI 2008, San Diego, CA,
December 2008.

o

o

N
o

IO Performance per VM (MB/s)
N w 8 &) (o))

o

. |
™
§\

Backup Tasks in Hadoop’s Default

Scheduler
e Start primary tasks, then look for backups to

launch as nodes become free
e Tasks report “progress score” from O to 1
e Launch backup it
progress < avgProgress — 0.2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Problems in Heterogeneous
Environment

Problems in Heterogeneous
Environment

. Too many backups, thrashing shared
resources like network bandwidth

Problems in Heterogeneous
Environment

. Too many backups, thrashing shared
resources like network bandwidth
2. Wrong tasks backed up

Problems in Heterogeneous
Environment

. Too many backups, thrashing shared
resources like network bandwidth
. Wrong tasks backed up

2
3. Backups may be placed on slow nodes

I&'M’—

Problems in Heterogeneous
Environment

. Too many backups, thrashing shared
resources like network bandwidth

2. Wrong tasks backed up

3. Backups may be placed on slow nodes

4. Breaks when tasks start at different times

I&"W—

Problems in Heterogeneous
Environment

. Too many backups, thrashing shared
resources like network bandwidth

2. Wrong tasks backed up

3. Backups may be placed on slow nodes

4. Breaks when tasks start at different times

e Example: ~80% of reduces backed up, most
losing to originals; network thrashed

I“W—

ldea: Progress Rates

e |nstead of using progress values, compute
progress rafes, and back up tasks that are
“far enough” below the mean

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

ldea: Progress Rates

e |nstead of using progress values, compute
progress rafes, and back up tasks that are
“far enough” below the mean

 Problem: can still select the wrong tasks

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Progress Rate Example

Node 1
Node 2

Node 3

| | | | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Progress Rate Example

Node 1 1 task/min
Node 2
Node 3
| , | , >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrzia—~

Progress Rate Example

Node 1 1 task/min
Node 2 3x slower
Node 3
| , | , >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Progress Rate Example

Node 1 1 task/min
Node 2 3x slower
Node 3 1.9x slower
| | | | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrrzia—

Progress Rate Example

1 min
Node 1 1 task/min
Node 2 3X slower
Node 3 1.9x slower

| | | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrrzia—

Progress Rate Example

1 min
Node 1 1 task/min
Node 2 3X slower
Node 3 1.9x slower

| | | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrrzia—

Progress Rate Example

1 min
Node 1 1 task/min
Node 2 3X slower
Node 3 1.9x slower

| | | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrrzia—

Progress Rate Example

2 min
Node 1 1 task/min
Node 2 3x slower
Node 3 1.9x slower
| | I >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Progress Rate Example

2 min
Node 1 1 task/min
Node 2 3x slower
Node 3 1.9x slower
| | I >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

Progress Rate Example

What if the job had 5 tasks?

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in

Heterogeneous Environments’,
Node 1 OSDI 2008, San Diego, CA,
December 2008.
Node 2
Node 3
| | | | >
Time (min)

I‘be—

Progress Rate Example

What if the job had 5 tasks?

Adopted from a presentation by

2 min Matei Zaharia “Improving

MapReduce Performance in
Heterogeneous Environments’,

NOde 1 OSDI 2008, San Diego, CA,
December 2008.

Node 2

Node 3

[[| >
Time (min)

I&W—

Progress Rate Example

What if the job had 5 tasks?

Adopted from a presentation by

2 min Matei Zaharia “Improving

MapReduce Performance in
Heterogeneous Environments’,

NOde 1 OSDI 2008, San Diego, CA,
December 2008.

Node 2

Node 3

[[| >
Time (min)

I&W—

Progress Rate Example

What if the job had 5 tasks?

Adopted from a presentation by
2 min Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
Node 1 OSDI 2008, San Diego, CA,
December 2008.

Node 2

Node 3

Time (min)

IQ’W—

Progress Rate Example

What if the job had 5 tasks?

Adopted from a presentation by
2 min Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
Node 1 OSDI 2008, San Diego, CA,
December 2008.

Node 2

Node 3

Time (min)

Node 2 is slowest, but should back up Node 3’s task! '
.&’tu'a,-

Scheduler: LATE

e |nsight: back up the task with the largest

estimated finish time

— “Longest Approximate Time to End”
— Look forward instead of looking backward

e Sanity thresholds:

— Cap number of backup tasks
— Launch backups on fast nodes
— Only back up tasks that are sufficiently slow

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

LATE Details

e Estimating finish times:

progress score

progress rate —
execution time

1 — progress score

estimated time left
progress rate

e Threshold values:

- 10% cap on backups, 25" percentiles for slow
node/task

— Validated by sensitivity analysis

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

LATE Example

2 min
Node 1
Node 2 Progress = 66%
Progresls =53% _______
Node 3 '
| | I >

Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

I&zu’a,-

LATE Example

2 min

Node 1 Estimated time left:
(1-0.66) / (1/3) = 1

Node 2 Progress = 66%
Progresls =53% _______
Node 3 }
| I | >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

LATE Example

2 min
Node 1 Estimated time left:
(1-0.66) / (1/3) = 1
Node 2 _es% | | _, Estimated time left
Progress= o0k |~ > (1-0.05)/ (1/1.9) = 1.8
Progresls =5.3%
Node 3 }
I [| >
Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

LATE Example

2 min
Node 1 Estimated time left:
(1-0.66) / (1/3) = 1
Node 2 — ARO Estimated time left;
Progress= o0k |~ ~ (1-0.05) / (1/1.9) = 1.8
Progresls =5.3%
Node 3 }
| >

I I
LATE correctly picks Node 3 Time (min)

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lrezia—~

Evaluation

e Environments:
- EC2 (3 job types, 200-250 nodes)
- Smalllocaltestbed

e Self-contention through VM placement
e Stragglers through background processes

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in

Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
I lezia—

EC2 Sort with Stragglers

2,5
Q
£
20
Q
(7))
5
§1’5 _ @ No Backups
o @ Hadoop Native
© 10 -
_&’ OLATE Scheduler
©
€05 - —
o
Z

0,0 - —

Worst Best Average

e Average 58% speedup over native, 220% over no backups
e 93% max speedup over native

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments” OSDI 2008, San Diego, CA, December 2008.
I Crvzia—

EC2 Sort without Stragglers

€12 -
=
2 1
c
o
§0’8 | @ No Backups
m .
- 0,6 - . B Hadoop Native
N O LATE Scheduler
® 0,4 - -
E
202 - -

0 - -

Worst Best Average

e Average 27% speedup over native, 31% over no backups

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
B Heterogeneous Environments” OSDI 2008, San Diego, CA, December 2008.
I Crvzia—

Cost of speculative execution

T-D. Phan, S. Ibrahim, G. Antoniv, L. Bouge . On Understanding the Energy Impact of
Speculative Execution in Hadoop. Greencom 2016

CMU trace of
production Hadoop
cluster

I&"W—

Cost of speculative execution

T-D. Phan, S. Ibrahim, G. Antoniv, L. Bouge . On Understanding the Energy Impact of
Speculative Execution in Hadoop. Greencom 2016

——
0.8 /
0.6 : :
Proportion of speculative tasks
a to the total launched tasks
O Proportion of successful speculative
0.4 tasks to the total speculative tasks
0.2
0
0 20 40 60 80

Proportion of tasks

100

CMU trace of
production Hadoop
cluster

Energy vs. Speculation

Launching copies

~ - Resource
'p I ﬁ consumption ﬁ
A

Understandthe impact of the speculative % E=p XT
execution on the energy consumption

Methodology: testbed and

platform
/

Each node has:

* Intel 4-core CPU

* 16GB memory

* 256 GB storage

* Gigabit connection

" * PDU for power monitoring

21 nodes on
Nancy Site

/
¢ S

DLDJIL_)] 8 Map slots, 2 Reduce slots per node

(8 for CloudBurst)
Replication factor: 3

Hadoop 1.2.1 Block size: 64MB

_ Y,
IQ’W—

Methodology: benchmarks
I A Y A

Dominating phase Shuffle
Resource Network
Input size 24.5GB
Output size 24.5GB
Map tasks 394
Reduce tasks 40

Heterogeneous cluster

I&z'zzb,-

CPU
24.6GB
200MB
396

40

Reduce
CPU
100MB
9.7GB

200

160

Homo-environment: execution
fime

300

250

— — I\)
o o) o
o o o

Execution time (s)

o)
o

o

Sort WordCount
Speculation disabled ===
Speculation enabled =

Homo-environment:
Unsuccessful speculative ratio

Successful speculative tasks 1
Unsuccessful speculative tasks

(o)}
o

» 50
® 40 'Non-localtaskstake longer
8 time to finish
O
8 30
5 4.4%
é 20 Local Execution
=

10 Remote Fetch Execution

time
0 >
MAP REDUCE MAP REDUCE
Sort WordCount

* Ibrahim et al., Maestro: Replica- aware map scheduling for MapReduce, CCgrid2012

I&Lu’a,-

Homo-environment:
Energy consumption

300

250

Execution time (s)
— — I\)
o (o) o
o o o

o)
o

o

500

450 |
2400 |

5350
8300 |
2250 |
c
3200 t
3150 |
2100 |
50 |

Sort WordCount Sort WordCount

Speculation disabled mmm—m Speculation disabled =
Speculation enabled = Speculation enabled ==

The unsuccessful speculative copies result in extra energy
consumption

Speculation benefit in Hete-
environment

6 | ~
m’u?14 =20
212 S
o 215 |
210 | £
c gl &
2 S10 |
o 6| -
o S
L 4 + GCJ 5
o | L
0

0
Speculation disabled mmmmm
Speculation enabled =

The energy reduction is not proportional to the execution time
improvement |

I&z'zz’a,-

Zoom on speculation
behavior and ideact

- High ratio of successful copies ° uce the longesttasks
50 -
o 45 [I
3 40 M 0
o 12
'4%) 35 [& -49%
% 30 l o 10
8 25 : {
w20 € 6
o i
g 4t
£ 10 *
Z 5 27
0 0

No speculation Speculation
CloudBurst
Average runtime mm=m Longest runtime &=

MAP REDUCE

Successful speculative tasks
Unsuccessful speculative tasks ===

Successful speculative copies reduce the execution time of slow
tasks and result in significant performance improvement

.hu’a,-

Impact of speculation on
power consumption

90

00]
o

| [+32%

~
o

W A~ OO O
o O O o

Average power consumption

N
o

10 ¢

Speculation disabled ===
Speculation enabled 1

Power and Performance under
different task allocations

Power consumption Average runtime "

©
=100
c
S
S 80
£ |
-]
e 60 ° _
(@)
(&)
5 40 -
= |
O
o 20 |
0
1 2 3 4 5 6 7 8

Number of concurrent reduce tasks

{ Tradeoffs between power cost and the performance gain of }

100

(&))
o
Average runtime (s)

different speculative copies allocations

I&mf—

Straggler handling

- Mantri (Ananthanarayanan et al.)
- Cloning (Ananthanarayanan et al.)

Qutlier
Causes

Unequal work
division

Solutions ° duplicate network aware - replicate output start tasks that
* kill, restart placement * pre-compute do more first

I“W—

Open Issues

e ..IN production clusters

e LATE: The slowest task runs 8 times slower*®

than the median task in a job
e Mantr: The slowest task runs 6 times slower*

than the median task in a job
e (but they work well for large jobs...)

Effective Straggler Mitigation: Attack of the

Clones. NSDI 2013
I&’Lu’a,-

Open Issues
Considering When and where ¢

Provide better task/job scheduling

I“W—

Data Locality:
Task and job scheduling

Maestro: Replica-Aware Map Scheduling for
MapReduce.

The 12th [IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing CCGrid
2012, May 13-16, 2012, Ottawa, Canada
(CCGRID2012).

I“W—

Why Data locality?

e Data locality is crucial for Hadoop’s

oerformance

e How can we expose data-locality of Hadoop
In the Cloud efficiently?

e Hadoop in the Cloud

— Unaware of network topology
— Node-aware or non-local map tasks

I&"W—

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6
) 2EE WEE | EEE @) (¢l
9 @ 8 11 11
- — — —— - -

I&'m*'f—

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6
i) \2lislie]) | elisdlzd) | dedsd) e e) (e (o]
9 E 8 11 11

I&'M’—

Data locality in the Cloud

Nodel

Node2

Node5

Data locality in the Cloud

Nodel Node?2 Node3 Node4 Node5 Node6
i

Empty node

I&'m*'f—

Data locality in the Cloud

Nodel

Node5

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6

]]

Empty node |

I&'m*'f—

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6

]]

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6

]]

...........................

Empty node |

I&'m*'f—

Data locality in the Cloud

Nodel Node2 Node3 Node4 Node5 Node6

The simplicity of Map tasks Scheduling leads to

I“W—

Side impacits:

e INCcrease the execution time
e INCcrease the number of useless
speculation

e Slot occupying
- Imbalance in the Map execution
among nodes

I&"W—

Maestro: Replica-Aware
scheduling in Hadoop

Schedule the madp tasks in two waves:

First wave: fills the empty slots of each data node
based on the number of hosted map tasks and on
the replication scheme for their input data

Secondwave: runtime scheduling takes into account
the probability of scheduling a map task on a given
machine depending on the replicas of the task’s
iINnput data.

Results: Maestro can achieve optimal data locality
even if data are not uniformly distributed among
nodes and improve the performance of Hadoop
applications

I&'M’—

Maestro Details

e Selecting Data nodes
— Has minimal potential to execute map tasks localy

— Has minimal impacts on other nodes
Share chunks with more nodes

e Selecting chunks

— Has maximal probability of not being processed locally
 The three heuristics are all applied for the first wave
 Only the third one applied in the runtime wave (heartbeat)

I&'m*'f—

Maestro: First Wave

HCN;
NodeW; = S (1-
T ZHC‘ A+Sck)
71=1 | |
/

No. of shared chunks between node;
and the node,

e Sort the node ascendingly according to their NodeW:
— Node with less chunks are preferred

— Node with low share rate are preferred
The higher the share rate indicates higher NodeW

I“W—

Maestro: Runtime

N S B
HCN, " HCN, ' " HCN,

~

No. of chunks hosted by the node host
the replica

Cw; =1 —(

e Chunks share data with nodes host more data are prioritized

I&"W—

Maestro: Refinements

Fault-Tolerance

Eond

-1 k

1 1
Cuw' =1-— Cw;, =1—
C Hgon - v E:HCNJ

1 J I Ij:l I

N

The weight of other chunks within
The same node
Nodel

o [Cw="2] > [Cwy=1—(1/2+1/HCN,)]

I&'m*'f—

.
Il

Maestro: Refinements

Higher S, results with lower Cw

/

——

S1 S92 + + Sp)
HCN, Te N, HCN,

e Heterogeneous Cloud

Cw; =1—(

— Maestro prefers the chunks shared with low
computation capacity

— Preventthe nodeswith highercomputation capacity
to be out of chunks

I‘be—

Resulis

e Sort application

® Native Hadoop = Maestro

1600 -
_. 1400 -
[72)
'§ 1200
o 1000
% Native 83%
< 800 Hadoop
g 600 Maestro 96%
= Nati 84%
5 400 pedons

200 Maestro 97%

0

Sort Sort
(40maps) (160maps)
S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Maestro: Replica-aware map scheduling for

Data Locality in Shared
Cluster

Delay scheduling: a simple techniquefor achieving
locality and fairness in cluster scheduling. In
Proceedings of the 5th European conference on

Computer systems (EuroSys '10).

I“W—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:
— Many users want to share a cluster

I“W—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

— Many users want to share a cluster
Engineering, marketing, business inteligence, etc

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing
e Today's workload is far more diverse:

— Many users want to share a cluster
Engineering, marketing, business inteligence, etc

— Vast majority of jobs are short

I&"W—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

— Many users want to share a cluster
Engineering, marketing, business inteligence, etc

— Vast majority of jobs are short
Ad-hoc queries, sampling, periodic reports

I&'m*'f—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

— Many users want to share a cluster
Engineering, marketing, business inteligence, etc

— Vast majority of jobs are short
Ad-hoc queries, sampling, periodic reports

— Response time is critical

I&"W—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

— Many users want to share a cluster
« Engineering, marketing, business inteligence, etc

— Vast majority of jobs are short
« Ad-hoc queries, sampling, periodic reports

— Response time is critical
* Infteractive queries, deadline-driven reports

I“W—

Motivation

 MapReduce / Hadoop originally designed for
high throughput batch processing

e Today's workload is far more diverse:

— Many users want to share a cluster
« Engineering, marketing, business inteligence, etc

— Vast majority of jobs are short

« Ad-hoc queries, sampling, periodic reports
— Response time is critical

* Infteractive queries, deadline-driven reports

» How can we efficiently share MapReduce
clusters between userse

I&"W—

Example: Hadoop at Facebook

° %)/Odnode 2 PB data warehouse, growing at 15
a
° Apphcohons data mining, spam detection, ads

e 200 users (half non-engineers)
e /500 MapReduce jobs / day

100%
80% //
60% V4

40% V4

20% -

0% et i i iy

1 10 100 1000 10000 100000

Job Running Time (s)
I&’Lu’a,-

CDF

Example: Hadoop at Facebook

° %)/Odnode 2 PB data warehouse, growing at 15
a

° Apphcohons data mining, spam detection, ads

e 200 users (half non-engineers)

e /500 MapReduce jobs / day

100%
80% //
w 60% P
8 409 /Medlan.84s
S
0% e

1 10 100 1000 10000 100000

Job Running Time (s)
I&'ma,.

Approaches to Sharing

e Haodoop default scheduler (FIFO)

— Problem: short jobs get stuck behindlong ones

e Separate clusters
— Problem 1: poor utilization

— Problem 2: costly data replication
Full replication across clusters nearly infeasible at

Facebook/Yahoo! scale
Partial replication prevents cross-dataset queries

IQ’W—

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

e Main challenge: data locality

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

e Main challenge: data locality
— For efficiency, must run tasks near their input data

I&'m*'f—

Solution

e Hadoop Fair Scheduler
- Fllne-groined sharing at level of map & reduce
asks
— Predictable response tfimes and user isolation

e Main challenge: data locality
— For efficiency, must run tasks near their input data
— Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

I‘be—

Solution

e Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce

tasks
— Predictable response tfimes and user isolation

e Main challenge: data locality
— For efficiency, must run tasks near their input data

— Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on

free nodes
e Solution: delay scheduling

I‘be—

Solution

e Hadoop Fair Scheduler
- Fllne-groined sharing at level of map & reduce
asks
— Predictable response tfimes and user isolation

e Main challenge:data locality
— For efficiency, must run tasks near their input data
— Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

e Solution: delay scheduling
— Relax queuing policy for imited fime to achieve
locality

IQ’W—

Solution

e Hadoop Fair Scheduler
- Fllne-groined sharing at level of map & reduce
asks
— Predictable response tfimes and user isolation

e Main challenge:
— For efficiency, must run tasks near their input data
— Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

e Solution: delay scheduling
— Relax queuing policy for imited fime to achieve
locality

The Problem

Master
-71%s. Schedulingorder
,//// II \\ \\\\\\
-7 // ! \ SS
-7 s ! \ RN \\\
/’ Y4 I} \ \\ S o
,’, // 1 \\ \\ \\\
,,// /// II \\ \\\ \\\\\
Slave Slave Slave Slave Slave Slave

rie1: [2131[6] 2IEE BEE DEE DE e
File 2; 1 Z 0B 2ZE

I&Lu’a,-

The Problem

Master =
A _ Schedulingorder
,,’// II \\ \\\\\\
/,/ // / \ AN \\\
//, // ll ' \\ \\\
/,/ /// | \\ \\\ \\\\
‘,,/ .// 'll \\‘ \\\. \\\\\
Slave Slave Slave Slave Slave Slave
rie1: [2131[6] 2IEE BEE DEE DE e
File 2: 1 2 3 2|3

I&z/zz’a,-

The Problem

Master =
A _Schedulingorder
,,’// II \\ \\\\\\
/,/ // / \ AN \\\
//, // ll ' \\ \\\
/,/ /// | \\ \\\ \\\\
‘,,/ .// 'll \\‘ \\\. \\\\\
Slave Slave Slave Slave Slave Slave
rie1: [2131[6] 2IEE BEE DEE DE e
File 2: 1 2 3 2|3

I&z/zz’a,-

The Problem

Master =
A _ Schedulingorder
,//// II \ \\\\\\
/,/ // / \\ \\ \\\
//’ // ,, \ \\\ \\\\
/,/ // | \\ \\ \\\
-’ /7] N ~
./’/ .// ,’ \\. \\\\
Slave Slave Slave ‘ Slave \ Slave Slave
rie1: [2131[6] 2IEE BEE DEE DE e
File 2: 1 2 1113 2|3

I&z/zz’a,-

The Problem

Master =
A _ Schedulingorder
,//// II \ \\\\\\
,,/ // | \\ \\ S o
,// // ,’ \ \\\ \\\
/,/ // | \\ \\\
- / I ~
,/,/ .// ,’ \\. b
Slave Slave Slave ‘ Slave \ Slave ‘ Slave \
rie1: [2131[6] 2IEE BEE DEE DE e
File 2: 1 2 1113 2|3

I&z/zz’a,-

The Problem

Master =
A _ Schedulingorder
,//// II \ \\\\\\
e // ! \ Mo S
-7 s ! \ S o
/’ Y4 I} \ \\ S o
/,/ // | \\ R \\\
P Y4 I N o
A/, ll \\.
Slave ‘ Slave \ Slave ‘ Slave \ Slave ‘ Slave \
rie1: [2131[6] 2IEE BEE DEE DE e
File 2: 1 2 1113 213

I&z/zz’a,-

I&z/zz’a,-

The Problem

Master =

-71s. Schedulingorder
,//// II \\ \\\ .~
,/ // / \ ~\ \\\
//’ / I \ S \\\
Slave ‘ Slave H Slave H Slave \ Slave ‘ Slave \
File 1: [2][3] (6 358 1 1zle) [4ll6l[T
File 2; ; ; ;; 2]3

The Problem

Master =

_-715s. Schedulingorder
,//// Il \\ \\\ .~
,/ // / \ N\ \\\
//’ / I \ S \\\
‘ Slave H Slave H Slave H Slave \ Slave ‘ Slave \
File 1: [2][3] (6 358 1 1zle) [4ll6l[T
File 2; ; ; ;g 2]3

I&zu’a,-

The Problem

Master =

-71s. Schedulingorder
/,/:// ll \\ \\\ RN
/, 7/ / \\ AN \\\
/z / I \ S e
‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \
File 1: L2/|L3/|L6/| UL5/|L8/| Lfl UUU
File 2; ; ; ; ; ; 3

I&zu’a,-

The Problem

Master [jghilioba]

-71s. Schedulingorder
/,/:// ll \\ \\\ RN
/, 7/ / \\ AN \\\
// / I \ \
‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ; ; ; 3

I&zub,-

The Problem

Master | [ilimal

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, 7/ / \\ AN \\\
// / I \ \
‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ; ; ; 3

I&zub,-

The Problem

Master | [alimi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, 7/ / \\ AN \\\
// / I \ \
‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ; ; ; 3

I&zub,-

The Problem

Master [jghailiobad
_-715s. Schedulingorder
,//// Il \ \\\\\\
-7 // ! \ SS
g 7’ / \ \\ ~
// 4 1 \ \\ \\
/,/ // ! \\ \\\
- / I ~
I \\ \\\\
Slave Slave Slave Slave Slave Slave
rile 1: (21(31(6] (21(51(8) [3)[8)(8] [1][4][a] [1I[z][9) [4](6][7]
File 2; 1 [z 0B 2B

I&zu’a,-

The Problem

‘ Slave \

File1: |2](3]|6]

File 2:

Problem: Fair decision hurts locality

Especially bad for jobs with small input files '
I&’zu’a,-

Locality vs. Job Size at
Facebook

100%

oo
o
2

60%
40%
20%

0%

Percent Local Map Tasks

Data Locality in Production at Facebook

VAR

/

e

/

100 1000 10000 100000
Job Size (Number of Input Blocks)

——Node Locality -“-Rack Locality

IQ’W—

Locality vs. Job Size at
Facebook

Data Locality in Production at Facebook

§100% M —%
0

o

S 60% /

S 40%

- /

T 20%

O

o

Q 0% T I T |
a

10 100 1000 10000 100000
Job Size (Number of Input Blocks)

——Node Locality -“-Rack Locality

I&W—

Locality vs. Job Size at
Facebook

100%

oo
o
2

60%
40%
20%

0%

Percent Local Map Tasks

Data Locality in Production at Facebook

58% of jobs //—_/

/

e

| | | |

100 1000 10000 100000
Job Size (Number of Input Blocks)

——Node Locality -“-Rack Locality

I‘be—

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files
e Problem:jobs get “stuck” in the same set of task

slots
- Whenone a task in job | finishes, the slot it was running

In is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes
Master
/“\
s /I \N SN

TN T Job 1 2 2
Job 2 2 2
Slave Slave Slave Slave
f & —

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem:jobs get “stuck” in the same set of task
slots
- Whenone a task in job | finishes, the slot it was running

In is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes
Master
/“\
s /I \N SN

TN T Job 1 2 5

~

-’ / N
J Job 2 2 2
Slave Slave Slave Slave

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem:jobs get “stuck” in the same set of task
slots
- Whenone a task in job | finishes, the slot it was running
In Is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes

Master

7™
//// \\\\
-’ / \ ~
P / \ S
~

-’ / s
./
} Slave { Slave } Slave H Slave {

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem:jobs get “stuck” in the same set of task
slots
- Whenone a task in job | finishes, the slot it was running
In Is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes

Master Job Fair | Running
~ Share Tasks

/// \\\

TN TN Job 1 5 1

-’ / N ~
J Job 2 2 2
Slave Slave Slave Slave

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem:jobs get “stuck” in the same set of task
slots
- Whenone a task in job | finishes, the slot it was running
In Is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes

Master Job Fair | Running
~ Share Tasks

/// \\\

TN T Job 1 2 1
Job 2 2 2
Slave Slave Slave Slave
f & —

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem:jobs get “stuck” in the same set of task
slots
- Whenone a task in job | finishes, the slot it was running
In Is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes

Master

7™
/// \\\

/’ / \ \\
/’, :, \‘ \\\
} Slave H Slave H Slave H Slave {
f & —

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files
e Problem:jobs get “stuck” in the same set of task

slots
- Whenone a task in job | finishes, the slot it was running

In is given back fo j, becausej is below its share
— Bad because data files are spread out across all

nodes
Master
/“\
s /I \N SN

TN T Job 1 2 2
Job 2 2 2
Slave Slave Slave Slave
f & —

Special Instance: Sticky Slots

e Under fair sharing, locality can be poor even

when all jobs have large input files

e Problem: jolbs get “stuck™ in the same set of fask

. |
™

slots

- Whenone a task in job | finishes, the slot it was running
In Is given back fo j, becausej is below its share

— (Bjc:d because data files are spread out across all
nodes

Data Locality vs. Number of Concurrent Jobs
100%
80%
60% |

40% - -
20% - -
0% -

Yo Local Map Tasks

l

Solution: Delay Scheduling

e Relax queuing policy to make jobs wait for a
imited time if they cannot launch local tasks

e Result: Very short wait time (1-5s) is enough to
get nearly 100% locality

I&"W—

Delay Scheduling Example

Master | [alimi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, / ' \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave H Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;; ;;

I&zub,-

Delay Scheduling Example

aster | (el

-715s. Schedulingorder
,//// Il \\ \\\ -~
/,/ // / \ AN \\\
/// e ! \ RN e
/,/ // II
-’ / 1
'l
‘ Slave H Slave \ Slave ‘ Slave H Slave H Slave \
rile 1: [2J[31[6] [2)[5)8] [3)[5][8] [T 7 EE
File 2; 1 [z ;; ;;

I&zub,-

Delay Scheduling Example

o
aster | [obaaa]

-715s. Schedulingorder
,//// Il \\ \\\ -~
/,/ // / \ AN \\\
/// e ! \ RN e
/,/ // II
-’ / 1
'l
‘ Slave H Slave \ Slave ‘ Slave H Slave H Slave \
rile 1: [2J[31[6] [2)[5)8] [3)[5][8] [T 7 EE
File 2; 1 [z ;; ;;

I&zub,-

Delay Scheduling Example

Master | [aaioni]
_-715s. Schedulingorder
,//// Il \\ \\\ -~
/,/ // / \ AN \\\
,/, // II \ \ \
/,/ // !
-’ / 1
'l
Slave Slave Slave Slave ‘ Slave H Slave \
rile 1: [2J[31[6] [2)[5)8] [3)[5][8] [T 7 EE
File 2; 1 [z ;; ;;

I&zub,-

Delay Scheduling Example

Master | [alimmi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, / ' \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave H Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;; ;;

I&zub,-

Delay Scheduling Example

Master | [balimi]

-715s. Schedulingorder
/,//// Il \\ \\\ .~
/’, // , \\ \\\\\\
‘ Slave H Slave H Slave H Slave \ Slave ‘ Slave \
File 1: (21(3] (6] 358 1 17l[9 4671
File 2; ; ; ;; 2]3

I&zub,-

Delay Scheduling Example

Master | [balimi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, / ' \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave H Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;; ;;

I&zub,-

Delay Scheduling Example

Master | [malimi]
-715s. Schedulingorder
/,//// Il \\ \\\ .
/’, // , \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave \ Slave
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;3 ;;

I&Lu&,-

Delay Scheduling Example

Master | [alimi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, / ' \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave H Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;; ;;

I&zub,-

Delay Scheduling Example

Master | [balimi]

-715s. Schedulingorder
/,//// Il \\ \\\ .~
/’, // , \\ \\\\\\
‘ Slave H Slave H Slave H Slave \ Slave ‘ Slave \
File 1: (21(3] (6] 358 1 17l[9 4671
File 2; ; ; ;; 2]3

I&zub,-

Delay Scheduling Example

vaster | [malma]

-715s. Schedulingorder
/,/:,/ ll \\ \\\ RN
/, / ' \\ \\\\\\
‘ Slave H Slave H Slave H Slave H Slave H Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ;3 ;;

I&Lu&,-

I&zub,-

Delay Scheduling Example

aster | [isbalma]

-715s. Schedulingorder
/,//// Il \\ \\\ -~
/’, // , \\ \\\\\\
/// /
-7 ’
-’ //
‘/
‘ Slave \ Slave ‘ Slave H Slave H Slave H Slave \
rile 1: [2J[31[6] [2)[5)8] [3)[5][8] [T 7 EE
File 2; 1 [z ;; ;;

Delay Scheduling Example

Master | [balimi]

-715s. Schedulingorder
/,/:// ll \\ \\\ RN
/, / ' \\ AN \\\\
‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \ ‘ Slave \
File1: [2][3][6] 358) [7ol 4lel7
File 2; ; ; ; ; ; 3

Idea: Wait a short time to get data-local

scheduling opportunities '
I&’zub,-

Evaluation

e Macrobenchmark
- [O-heavy workload
— CPU-heavy workload
- Mixed workload
e Microbenchmarks
— Sticky slots
— Small jobs
— Hierarchical fair scheduling
e Sensitivity analysis
e Scheduler overhead

I@W—

Macrobenchmark

e 100-node EC2 cluster, 4 cores/node

e Job submission schedule based on job sizes

and inter-arrival times at Facebook
— 100 jobs grouped into 9 “bins” of sizes

e Three workloads:
- |O-heavy, CPU-heavy, mixed

e Three schedulers:
- FIFO
— Fair sharing
— Fair + delay scheduling (wait time = 5s)

Results for I0-Heavy Workload

Job Response Times

1

[[—
0.8 |- Up to/5x 4 08} 4 08 -
0.6 - -4 0.6 |- -4 0.6 - —
LL
0
© o4l - 04| 4 04 _
FIFO —— FIFO —— FIFO ——
0.2 - Fair 4 02r Fair 1 02 Fair |
Fair+ DS — Fair + DS —— Fair+ DS —
0 | | | 0 | | | 0 | | | |
0 50 100 150 200 0 50 100 150 200 0O 100 200 300 400 500
Time (s) Time (s) Time (s)
Small Jobs Medium Jobs Large Jobs
(1-10 input blocks) (50-800 input blocks) (4800 input blocks)

I“W—

Results for I0-Heavy Workload

“FIFO Fair & Fair + Delay Sched.

100%
80%
60%
40%
20%

0% -

Percent Local Maps

o
S
X

N B O
2 22
> o o8 o

Speedup from
elay Scheduling

D

|
|
e EEEEN N
R e

Sticky Slots Microbenchmark

| , 100%

» 5-50 jobs on EC2 g
= 50% -
(8]
9

.) 2 0% -

100-node cluster g 5Jobs 10Jobs 20 Jobs 50 Jobs

o

= Without Delay Scheduling

w With Delay Scheduling
e 4 cores/ node

&)
o

w
o

5s delay scheduling

=« Without Delay Scheduling
f & w

enchmark Running
Time (minutes)
S o

Job scheduling under
Failures

I“W—

Hadoop at large-scale
clouds

- » W)
wore. / o«
/\L}\\.m U tg‘gw 5“&%

Failures

“Performonce
Variability

Towards Failure-aware scheduling

O. Yildiz, S. Ibrahim, G. Antoniv . Enabling fast failure recovery in shared Hadoop
clusters: Towards failure-aware scheduling. FGCS 2016

In large-scale cloud, node failures are inevitable

01000 machine failures in the 1st year of Google cluster!
010% -15% job failure rate in a CMU cluster

Failure recovery in Hadoop
o Haodoop re-executes the tasks of falled machines

1J. Dean, “Large-scale distributed systems at Google: Current systems and future directions” in keynote speech at

the 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, 2009
I lrrzia—

INn Shared Hadoop Cluster

Master Job 1 Job 2
//,”\\ Scheduling order
//, /I \\ \\\
-’ / \ N
// / \ \\
7’ / \ ~

INn Shared Hadoop Cluster

Job 1 Job 2

Scheduling order

Job 1: Waits uncertain

S amount of time for @
free slot
G The runtime of Map and

Reduce tasks varies from
2 to 84631 s and from
. 9 t0 81714 s, respectively

INn Shared Hadoop Cluster

Job'1 Job 2 Violation

Scheduling order

Job 1: Waits uncertain

S amount of time for @
free slot
G The runtime of Map and

Reduce tasks varies from
2 to 84631 s and from
. 9 t0 81714 s, respectively

INn Shared Hadoop Cluster

Job 1 Job 2

Scheduling order

Job 1: Ignores the data
N locality of the recovery
tasks

Hadoop Under Failures:
Experimental Analysis

— Normal Execution 1 T T T r !
300 + Under Failures
— - ' 08 |
2 250 |
£ | 0.6
= 200 | | U '
-.g 150 | | © o4}
8 i
g 100 0.2 |
50
: 0 A A A A A
0*" : 0 10 20 30 40 50 60
sl pna Time (s)
- Increase in job execution - Long waiting time for the
times by 30% to 70% due recovery tasks: up to 51 seconds
failures

I&'M’—

Chronos

Chronos is a failure-aware scheduling strategy:
oTakes early action upon failure

- Employs light-weight preemption tfechnique
oEmbraces a smart selection algorithm

o Considers three criteria: the progress scores of
running tasks, the scheduling objectives, and
the recovery tasks input data locations.

Chronos: Overview

Progress CHRONOS
8paris 3,
\ Preemptiod
[Tasks-to- : Waste-
Monitoring Preempt | LSt Free
Selection Preemption
FailedTasks
Consulting |1 b + I:’rlggert
JT due Data-local reemption
failure candidate tasks

;{JobTracker .

recovery tasks

Chronos: Overview

l Preemption request from JobTracker

Running; Map Task

|
@ earlyEnd |
Action |

completed

pending subtask

Chronos: Overview

Running Reduce m Running Reduce
Task Lm> suspended.. Task

taskstatus . N S o A o
storage level _
preserving the restoring the

state after —_— state upon
preemption “ resume

request

I“W—

Evaluation

Chronos is iIndependent of scheduling policy

1000 Fifo o) 350 Fair =

900 r Chronos == 7 300 Chronos =
__ 800} 1
% 700 |] 250 + 14%
£
= 600 200 }
_S 500
;é 400 i - 150 B
o) 300 i | 100 B
§ 55% |

100 | ol |

0 ‘ : 0 '
Job1 Job2 Job1 Job?2

Sort: Chronos reduces the waiting ~ WordCount: Chronos reduces the

time from 325to 2 s waiting time from 48 s (16% of the
B total execution time) to 1.5s
I&zu’a,-

Evaluation

100 — ' 100 — .
Fifo mam Fair moam R
90 | Chronos | | 1 90 | Chronos °
g0 | — o0 |
700 o 70 |
£ 60| £ 60
£ 50} 2 50}
i ol] o
30 ¢ 30 ¢
20 20
10 ¢ 10 }
0 ‘Z " o i 1
Job1 Job2 Job1 Job2

Chronos improves the data-locality by executing the recovery tasks locally

I&zxzz’a,-

Job scheduling:
Waiting Time

On the Usability of Shortest Remaining Time First
Policy in Shared Hadoop Cluster, In the 31st
ACM Symposium On Applied Computing ACM
SAC 2016.

I@W—

Motivation?

A practical problem is how to reduce job
makespans (waiting time + execution time),

especially for latency-sensitive small jobs
— /5% of the jobs in Facebook clusters are small jobs

I&'m*'f—

Built-in Hadoop Schedulers
/ Fifo \ / \

Fair Scheduler

*Jobs are grouped into “pools”
*Resources are allocated across
pools using weighted fair sharing
*Delay technique to expose

data locality /
4 N)

Capacity Scheduler
1i 11 Focus on improving job
— *Jobs are grouped into : : P g.J -
Fifo - execution times by optimizing
e queues _
e i *Resources are partitioned data locality
among queues

_Fifo e VAN)

Problem definition

A few efforts have focused on reducing
job waiting times, although waiting time
IS As Important as execution time to
Improve job makespans.

Evaluating and prioritizing jolbs according
to their input data sizes may result In
long waiting times
— Some jobs may have smaller input sizes but higher

execution complexity.
I&’zu’a,-

CMU Hadoop research clusters

5,000 T T T T T T

¥+
4,000 L ﬁi .
> + +
<) N 1 —
0 =+ X
£ 3,000 L T <
= ¥+ + Ji .0
S + t £
= 2,000 £ iiL S v
£ . + t|= LRt o --- ap tasks
3 5 - — Reduce tasks
1,000 + L 0.2
| + $ =HE
i % + - =] 0
0 0 = 1 102 3 Y ‘
10 10 10 10 10 0 2,000 4,000 6,000 8,000
of map tasks per job (log scale) Task Runtimes (s)

R e

Why hSRTF?

An adaption of the Shortest Remaining
Time First scheduler in shared Hadoop
clusters.

e Prioritize short j0bs

— With criticalresponse times
e Concelved to reduce waiting ’nme
 Challenges:

— Remainingtime estimation

— Multi-mode adopftion o
— Fast allocation of resources 0 o

I&'m*'f—

|
Size 3 weo
2]

S
UﬁCDZDO_

4
3
2

hSRTF in Hadoop

e Estimates remaining time of running jolbs
— Make full use of map slots and reduce slofts

map_unfinished

remaining _time = [~‘ *x avg_map_time

map_capacity

[reduce_unfinished" ,
, x avg_reduce_time
reduce_capacity

- Up-to-date time estimation
« The remaining time is recomputed every 10 sec to
cope with the dynamicity of currently running jobs and
infrastructure.

I&zub,-

hSRTF in Hadoop

e Provides fast allocation of resources to

the job with shortest remaining time
— Equipped with wait and kill primitives

e Multi mode
— Pure hSRTF (hSRTF-Pu)

All the resources are allocated to the job with the
shortest remaining fime.

— Time-based proportional sharing (hSRTF-Pr)
Allocates resources to jobs according fto their
remaining times.

I‘be—

Methodology: testbed and
platform

/ ,
h
\
\
y 4

Each node has:

58 nodes on * Intel 4-core CPU
Toulouse Site * 8GB memory
* o * Gigabit connection

N Y,
4 N

DLDJ,[—,} 4 Map slots, 2 Reduce slots per node

Replication factor: 3
Block size: 128MB

Hadoop 1.0.4

_ Y,
I&W—

Methodology: benchmarks

We run a mixed workload consisting of sort and

wordcount applications.

— Total of 31 jobs
— Eachjobis submitted 10 seconds after each other.

Application # of # of # of

maps reduces jobs
Large jobs Sort 256 32 3
Medium Jobs Sort 64 8 8
Sort 1 1 10
Small Jobs WordCount 1 1 10

I“W—

Methodology: List of schedulers

Scheduler Description

Fifo Priority scheduler with respect to job submission
time

Fair Provides fair allocation of resources between differ-
ent jobs

hSRTF-Pu Allocates all resources to the job with the shortest
remaining time

hSRTF- Similar to hSRTF-Pu, but with the possibility of
PuP preempting (kill) running tasks which belong to a
job with the longest remaining time to provide early
allocation to a job with the shortest remaining time
hSRTF-Pr Allocates resources to jobs according to their re-
maining time

hSRTF- Similar to hSRTF-Pr, but with the possibility of
PrP preemption

I‘be—

Small Jobs: Reducing the waiting
time

hSRTF-Pr vs Fair hSRTF-Prreduces the makespans of
smalljobs with an average speedup of

~=- Fair Fifo
--- hSRTR-Pr—hSRTF-PP | 5600 comparedto Fair.
------ hSRTF-Pu —— hSRTF-PuP
1
0.8 1 1
0.8 0.8
0.6 []
0.6 0.6
. 0.4 0.4
02 0.2} 0.2
0 0 0 1
0 100 200 300 400
0 100 200 300 400 0 20 40 60 8 100 120 140

) () time (s) time (s)
time (s L

E tion time - Il
(d) Waiting time - small (g) Execution time - sma

(a) Makespan - small

I&z'ub,-

Small Jobs: Co-locating map and
reduce tasks

hSRTF-Pr vs Fair = | Fairachieves 100%
Z 60 data locality while
- Fair Fifo w .
- - hSRTE-Pr —— hSRTE-PrP 3 0 hSRTF-Pr obt.alns only
------ hSRTF-Pu —— hSRTF-PuP g 5% data locality.
1} °
0.8 o= Il I = = l
. = > a = o
fE RS
= w - u
0.6 G = F K
2 = g
0.4) (a) Data locality - small
0.2
i 1 Due to the fine-grained co-location of map
0 100 200 300 400

and reduce tasks which reduces data
transfer during the shuffle phase

time (s)

(g) Execution time - small

.&L

Small jobs: Avoid blocked jobs

hSRTF-Pu vs Fifo o
. 80t 1
1r X
-~ Fair Fifo 08 2 60
- -- hSRTF-Pr —— hSRTF-PrP -
------ hSRTF-Pu —— hSRTF-PuP 06 =
1 0.4 0
0
0.2 - - =
0.8 , e g s 3
ol = w [.
0 20 40 60 80 100 120 140 g g é >
0.6 - B time (s) = 2
(d) Waiting time - small (a) Data locality - small
0.4
0.2 hSRTF-Pu reduces the makespans of small
jobs with an average speedup of 43%
oL compared to Fifo.
0 100 200 300 400

time (s)

(a) Makespan - small

I&zu’a,-

Large Jobs: Adversely impact

hSRTF introduces a performance degradation
- Fair Fifo for large jobs by (on average) 10% and 0.2%

--- hSRTF-Pr — hSRTF-PrP compared to Fifo and Fair schedulers,
------ hSRTF-Pu —— hSRTF-PuP .
- respectively.

IS - 1
0.8 08
0.6
0.6
0.4 ,
0.4 0.2
0 B I
0.2 600 650 700 750 800 850
time (s)
0L | ' i (i) Execution time - large
600 650 700 750 800 850
time (s) Preemption adversely impacts the performance of
(c) Makespan - large large jobs because theses jobs will los the work of

killed tasks

I&zu’a,-

