
Hadoop

System

Shadi Ibrahim
Inria, Rennes - Bretagne Atlantique Research Center

Batch Big data Processing

Adapted from Presentations from:
http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 2

HDFS Architecture: NameNode (1)
Master-Slave Architecture
HDFS Master “NameNode”

– Manages all file system metadata in memory
• List of files
• For each file name, a set of blocks
• For each block, a set of DataNodes
• File attributes (creation time, replication factor)

– Controls read/write access to files
– Manages block replication
– Transaction log: register file creation, deletion, etc.

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 3

HDFS Architecture: DataNodes (2)
HDFS Slaves “DataNodes”
A DataNode is a block server

– Stores data in the local file system (e.g. ext3)
– Stores meta-data of a block (e.g. CRC)
– Serves data and meta-data to Clients

Block Report
– Periodically sends a report of all existing blocks to the
NameNode

Pipelining of Data
– Forwards data to other specified DataNodes

Perform replication tasks upon instruction by NameNode
Rack-aware

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 4

HDFS Architecture (3)

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 5

Fault Tolerance in HDFS
DataNodes send heartbeats to the NameNode

– Once every 3 seconds
NameNode uses heartbeats to detect
DataNode failures

– Chooses new DataNodes for new replicas
– Balances disk usage
– Balances communication traffic to DataNodes

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 6

Data Pipelining
Client retrieves a list of DataNodes on which to
place replicas of a block

– Client writes block to the first DataNode
– The first DataNode forwards the data to the next
– The second DataNode forwards the data to the
next

DataNode in the Pipeline
– When all replicas are written, the client moves on
to write the next block in file

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 7

Hadoop MapReduce
Master-Slave architecture
•Map-Reduce Master “JobTracker”

– Accepts MR jobs submitted by users

– Assigns Map and Reduce tasks to

TaskTrackers

– Monitors task and TaskTracker status, re-

executes tasks upon failure
http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 8

Hadoop MapReduce
Master-Slave architecture

•Map-Reduce Slaves “TaskTrackers”
– Run Map and Reduce tasks upon
instruction from the JobTracker

•Manage storage and transmission of
intermediate output

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 9

Deployment: HDFS + MR

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA S.IBRAHIM 10

Zoom on Map Phase

“Handling partitioning skew in MapReduce using LEEN” S Ibrahim, H Jin, L Lu, B
He, G Antoniu, S Wu - Peer-to-Peer Networking and Applications, 2013

Hadoop – INRIA S.IBRAHIM 11

Zoom on Reduce Phase

Hadoop – INRIA S.IBRAHIM 12

Data Locality
Data Locality is exposed in the Map Task
scheduling
Data are Replicated:

– Fault tolerance
– Performance : divide the work among nodes

Job Tracker schedules map tasks considering:
– Node-aware
– Rack-aware
– non-local map Tasks

Hadoop – INRIA S.IBRAHIM 13

Fault-tolerance
TaskTrackers send heartbeats to the Job
Tracker

» Once every 3 seconds

TaskTracker uses heartbeats to detect
» Node is labled as failed If no heartbeat is recieved for a defined
expiry time (Defualt : 10 Minutes)

Re-execute all the ongoing and complete
tasks
Need to develop a more efficient policy to
prevent re-executing completed tasks (storing
this data in HDFS)

Hadoop – INRIA S.IBRAHIM 14

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 15

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 16

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 17

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 18

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 19

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 20

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 21

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 22

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 23

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 24

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 25

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 26

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 27

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

Hadoop – INRIA S.IBRAHIM 28

Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

How to do this in heterogeneous environment?
Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 29

Heterogeneity in Clouds

o Scale out – Heterogeneous Hardware
o Virtualizations
o Dynamic resource allocations

>2300 server
>4300 server

1Lee et al., Heterogeneity-aware resource allocation and scheduling in the cloud, SoCC 2011

Hadoop – INRIA S.IBRAHIM 30

Heterogeneity in Virtualized Environments
• VM technology isolates CPU and memory, but

disk and network are shared
– Full bandwidth when no contention
– Equal shares when there is contention

• 2.5x performance difference

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

IO
 P

e
rf

o
rm

a
n

c
e
 p

e
r

V
M

 (
M

B
/s

)

VMs on Physical Host

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 31

Backup Tasks in Hadoop’s Default
Scheduler
• Start primary tasks, then look for backups to

launch as nodes become free
• Tasks report “progress score” from 0 to 1

• Launch backup if
progress < avgProgress – 0.2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 32

Problems in Heterogeneous
Environment

Hadoop – INRIA S.IBRAHIM 33

Problems in Heterogeneous
Environment
1. Too many backups, thrashing shared

resources like network bandwidth

Hadoop – INRIA S.IBRAHIM 34

Problems in Heterogeneous
Environment
1. Too many backups, thrashing shared

resources like network bandwidth
2. Wrong tasks backed up

Hadoop – INRIA S.IBRAHIM 35

Problems in Heterogeneous
Environment
1. Too many backups, thrashing shared

resources like network bandwidth
2. Wrong tasks backed up
3. Backups may be placed on slow nodes

Hadoop – INRIA S.IBRAHIM 36

Problems in Heterogeneous
Environment
1. Too many backups, thrashing shared

resources like network bandwidth
2. Wrong tasks backed up
3. Backups may be placed on slow nodes
4. Breaks when tasks start at different times

Hadoop – INRIA S.IBRAHIM 37

Problems in Heterogeneous
Environment
1. Too many backups, thrashing shared

resources like network bandwidth
2. Wrong tasks backed up
3. Backups may be placed on slow nodes
4. Breaks when tasks start at different times

• Example: ~80% of reduces backed up, most
losing to originals; network thrashed

Hadoop – INRIA S.IBRAHIM 38

Idea: Progress Rates
• Instead of using progress values, compute

progress rates, and back up tasks that are
“far enough” below the mean

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 39

Idea: Progress Rates
• Instead of using progress values, compute

progress rates, and back up tasks that are
“far enough” below the mean

• Problem: can still select the wrong tasks

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 40

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 41

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 42

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 43

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 44

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 45

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 46

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 47

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

2 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 48

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

2 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 49

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

Time (min)

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 50

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?
2 min

Time (min)

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 51

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?
2 min

Time (min)

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 52

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)

time left: 1 min

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 53

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)
Node 2 is slowest, but should back up Node 3’s task!

time left: 1 min

Adopted from a presentation by
Matei Zaharia “Improving
MapReduce Performance in
Heterogeneous Environments”,
OSDI 2008, San Diego, CA,
December 2008.

Hadoop – INRIA S.IBRAHIM 54

Scheduler: LATE
• Insight: back up the task with the largest

estimated finish time
– “Longest Approximate Time to End”
– Look forward instead of looking backward

• Sanity thresholds:
– Cap number of backup tasks
– Launch backups on fast nodes
– Only back up tasks that are sufficiently slow

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 55

LATE Details
• Estimating finish times:

• Threshold values:
– 10% cap on backups, 25th percentiles for slow
node/task
– Validated by sensitivity analysis

progress score

execution time
progress rate =

1 – progress score

progress rate
estimated time left =

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 56

LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 57

LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 58

LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 59

LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8

Progress = 66%

LATE correctly picks Node 3

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 60

Evaluation
• Environments:

– EC2 (3 job types, 200-250 nodes)
– Small local testbed

• Self-contention through VM placement
• Stragglers through background processes

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 61

EC2 Sort with Stragglers

• Average 58% speedup over native, 220% over no backups
• 93% max speedup over native

0,0

0,5

1,0

1,5

2,0

2,5

Worst Best Average

N
o

rm
a

li
z
e

d
 R

e
s

p
o

n
s

e
 T

im
e

No Backups
Hadoop Native
LATE Scheduler

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 62

EC2 Sort without Stragglers

• Average 27% speedup over native, 31% over no backups

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Worst Best Average

N
o

rm
a

li
z
e

d
 R

e
s

p
o

n
s

e
 T

im
e

No Backups
Hadoop Native
LATE Scheduler

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA S.IBRAHIM 63

CMU trace of
production Hadoop
cluster

Cost of speculative execution

Hadoop – INRIA S.IBRAHIM 64

T-D. Phan, S. Ibrahim, G. Antoniu, L. Bouge . On Understanding the Energy Impact of
Speculative Execution in Hadoop. Greencom 2016

CMU trace of
production Hadoop
cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Proportion of tasks

Proportion of speculative tasks
to the total launched tasks

Proportion of successful speculative
 tasks to the total speculative tasks

Cost of speculative execution

Hadoop – INRIA S.IBRAHIM 65

T-D. Phan, S. Ibrahim, G. Antoniu, L. Bouge . On Understanding the Energy Impact of
Speculative Execution in Hadoop. Greencom 2016

Energy vs. Speculation

Resource
consumption

Launching copies

Understand the impact of the speculative
execution on the energy consumption

time

P
o

w
er

E = P �T

Hadoop – INRIA S.IBRAHIM 66

Methodology: testbed and
platform

Each node has:
• Intel 4-core CPU
• 16GB memory
• 256 GB storage
• Gigabit connection
• PDU for power monitoring

21 nodes on
Nancy Site

Hadoop 1.2.1

8 Map slots, 2 Reduce slots per node
(8 for CloudBurst)

Replication factor: 3
Block size: 64MB

Hadoop – INRIA S.IBRAHIM 67

Methodology: benchmarks
Application Sort WordCount CloudBurst

Dominating phase Shuffle Map Reduce

Resource Network CPU CPU

Input size 24.5GB 24.6GB 100MB

Output size 24.5GB 200MB 9.7GB

Map tasks 394 396 200

Reduce tasks 40 40 160

5 nodes
1-core

5 nodes
2-core

5 nodes
3-core

5 nodes
4-core

Heterogeneous cluster

Hadoop – INRIA S.IBRAHIM 68

Homo-environment: Execution
time

 0

 50

 100

 150

 200

 250

 300

Sort WordCount

Ex
ec

ut
io

n
tim

e
(s

)

Speculation disabled
Speculation enabled

Hadoop – INRIA S.IBRAHIM 69

Homo-environment:
Unsuccessful speculative ratio

Local

Remote

Execution

ExecutionFetch

time
 0

 10

 20

 30

 40

 50

 60

MAP REDUCE MAP REDUCE

N
um

be
r o

f s
pe

cu
la

tiv
e

ta
sk

s

Sort WordCount

Successful speculative tasks
Unsuccessful speculative tasks

4.4% 13.1%

1 Ibrahim et al., Maestro: Replica- aware map scheduling for MapReduce, CCgrid2012

Non-local tasks take longer
time to finish1

Hadoop – INRIA S.IBRAHIM 70

Homo-environment:
Energy consumption

The unsuccessful speculative copies result in extra energy
consumption

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Sort WordCount

En
er

gy
 c

on
su

m
pt

io
n

(k
J)

Speculation disabled
Speculation enabled

 0

 50

 100

 150

 200

 250

 300

Sort WordCount

Ex
ec

ut
io

n
tim

e
(s

)

Speculation disabled
Speculation enabled

Hadoop – INRIA S.IBRAHIM 71

Speculation benefit in Hete-
environment

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Ex
ec

ut
io

n
tim

e
(1

03 s)

Speculation disabled
Speculation enabled

 0

 5

 10

 15

 20

 25

En
er

gy
 c

on
su

m
pt

io
n

(M
J)

-47%

-28%

The energy reduction is not proportional to the execution time
improvement

Hadoop – INRIA S.IBRAHIM 72

Zoom on speculation
behavior and impact

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

MAP REDUCE

N
um

be
r o

f s
pe

cu
la

tiv
e

ta
sk

s

 0

 2

 4

 6

 8

 10

 12

 14

 16

No speculation Speculation

R
un

tim
e

(1
03 s)

Average runtime

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

No speculation Speculation No speculation Speculation
CloudBurst Sort WordCount

Longest runtime

 0

 2

 4

 6

 8

 10

 12

 14

 16

No speculation Speculation

R
un

tim
e

(1
03 s)

Average runtime

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

No speculation Speculation No speculation Speculation
CloudBurst Sort WordCount

Longest runtime

• Reduce the longest tasks

Successful speculative copies reduce the execution time of slow
tasks and result in significant performance improvement

-49%

• High ratio of successful copies

 0

 10

 20

 30

 40

 50

 60

MAP REDUCE MAP REDUCE

Nu
m

be
r o

f s
pe

cu
la

tiv
e

ta
sk

s

Sort WordCount

Successful speculative tasks
Unsuccessful speculative tasks

Hadoop – INRIA S.IBRAHIM 73

Impact of speculation on
power consumption

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

CloudBurst

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

CloudBurst Sort WordCount

Av
er

ag
e

po
w

er
 c

on
su

m
pt

io
n

Speculation disabled
Speculation enabled

+32%

Hadoop – INRIA S.IBRAHIM 74

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Po
w

er
 c

on
su

m
pt

io
n

(W
at

t)

Av
er

ag
e

ru
nt

im
e

(s
)

Number of concurrent reduce tasks

Power consumption Average runtime

Power and Performance under
different task allocations

Tradeoffs between power cost and the performance gain of
different speculative copies allocations

Hadoop – INRIA S.IBRAHIM 75

Straggler handling

• Mantri (Ananthanarayanan et al.)
• Cloning (Ananthanarayanan et al.)

Hadoop – INRIA S.IBRAHIM 76

Open Issues
• ...in production clusters

• LATE: The slowest task runs 8 times slower*
than the median task in a job

• Mantri: The slowest task runs 6 times slower*
than the median task in a job

• (but they work well for large jobs...)

Effective Straggler Mitigation: Attack of the
Clones. NSDI 2013

Hadoop – INRIA S.IBRAHIM 77

Open Issues
Considering When and where ?

Provide better task/job scheduling

Hadoop – INRIA S.IBRAHIM 78

Data Locality:
Task and job scheduling
Maestro: Replica-Aware Map Scheduling for
MapReduce.
The 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing CCGrid
2012, May 13-16, 2012, Ottawa, Canada
(CCGRID2012).

Hadoop – INRIA S.IBRAHIM 79

Why Data locality?
• Data locality is crucial for Hadoop�s

performance
• How can we expose data-locality of Hadoop

in the Cloud efficiently?
• Hadoop in the Cloud

– Unaware of network topology
– Node-aware or non-local map tasks

Hadoop – INRIA S.IBRAHIM 80

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
31 105 13 9764 5 67 1082 2 4

9 12 12 8 11 11

Hadoop – INRIA S.IBRAHIM 81

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
31 105 13 9764 5 67 1082 2 4

9 12 12 8 11 11

Hadoop – INRIA S.IBRAHIM 82

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
105 757 108

12 12 8 11 11

Hadoop – INRIA S.IBRAHIM 83

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
105 757 108

12 12 8 11 11

Empty node

Hadoop – INRIA S.IBRAHIM 84

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
10

5
757 108

12 12 8 11 11

Hadoop – INRIA S.IBRAHIM 85

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6
10

5
77 108

12 12 11 11

Hadoop – INRIA S.IBRAHIM 86

Empty node

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6

105
77 108

12 12 11 11

Hadoop – INRIA S.IBRAHIM 87

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6

105
778

12 12 11

Hadoop – INRIA S.IBRAHIM 88

Empty node

Data locality in the Cloud

Node1 Node2 Node3 Node5Node4 Node6

105
778

12 1211

Hadoop – INRIA S.IBRAHIM 89

The simplicity of Map tasks Scheduling leads to

Non-local maps execution (25%)

Side impacts:
• Increase the execution time
• Increase the number of useless

speculation
• Slot occupying

– Imbalance in the Map execution
among nodes

Hadoop – INRIA S.IBRAHIM 90

Maestro: Replica-Aware
scheduling in Hadoop
Schedule the map tasks in two waves:
First wave: fills the empty slots of each data node

based on the number of hosted map tasks and on
the replication scheme for their input data

Second wave: runtime scheduling takes into account
the probability of scheduling a map task on a given
machine depending on the replicas of the task’s
input data.

Results: Maestro can achieve optimal data locality
even if data are not uniformly distributed among
nodes and improve the performance of Hadoop
applications

Hadoop – INRIA S.IBRAHIM 91

Maestro Details
• Selecting Data nodes

– Has minimal potential to execute map tasks localy
– Has minimal impacts on other nodes

• Share chunks with more nodes
• Selecting chunks

– Has maximal probability of not being processed locally
• The three heuristics are all applied for the first wave
• Only the third one applied in the runtime wave (heartbeat)

Hadoop – INRIA S.IBRAHIM 92

Maestro: First Wave

• Sort the node ascendingly according to their NodeW:
– Node with less chunks are preferred
– Node with low share rate are preferred

• The higher the share rate indicates higher NodeW

No. of shared chunks between nodei

and the nodej
Node weight

No. of Chunks Replication Factor

Hadoop – INRIA S.IBRAHIM 93

Maestro: Runtime

• Chunks share data with nodes host more data are prioritized

No. of chunks hosted by the node host

the replica

Chunk weight

Hadoop – INRIA S.IBRAHIM 94

Maestro: Refinements
Fault-Tolerance

• [Cw1= ½] > [Cw2=1 – (1/2+1/HCNr)]

The weight of other chunks within

The same node
Chunk weight of failed Map tasks

Node1
1 2

Hadoop – INRIA S.IBRAHIM 95

Maestro: Refinements
• Heterogeneous Cloud

– Maestro prefers the chunks shared with low
computation capacity
– Prevent the nodes with higher computation capacity
to be out of chunks

Higher Sr results with lower Cw

Hadoop – INRIA S.IBRAHIM 96

Results
• Sort application

Local

maps

Virtual

Cluster

Native

Hadoop

83%

Maestro 96%

Grid5000 Native

Hadoop

84%

Maestro 97%

S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Maestro: Replica-aware map scheduling for

mapreduce, in: CCGrid 2012
Hadoop – INRIA S.IBRAHIM Hadoop – INRIA S.IBRAHIM 97

Data Locality in Shared
Cluster

Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In
Proceedings of the 5th European conference on
Computer systems (EuroSys '10).

Hadoop – INRIA S.IBRAHIM 98

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing

Hadoop – INRIA S.IBRAHIM 99

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing

Hadoop – INRIA S.IBRAHIM 100

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

Hadoop – INRIA S.IBRAHIM 101

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster

Hadoop – INRIA S.IBRAHIM 102

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

Hadoop – INRIA S.IBRAHIM 103

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short

Hadoop – INRIA S.IBRAHIM 104

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short
• Ad-hoc queries, sampling, periodic reports

Hadoop – INRIA S.IBRAHIM 105

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short
• Ad-hoc queries, sampling, periodic reports

– Response time is critical

Hadoop – INRIA S.IBRAHIM 106

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short
• Ad-hoc queries, sampling, periodic reports

– Response time is critical
• Interactive queries, deadline-driven reports

Hadoop – INRIA S.IBRAHIM 107

Motivation
• MapReduce / Hadoop originally designed for

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short
• Ad-hoc queries, sampling, periodic reports

– Response time is critical
• Interactive queries, deadline-driven reports

Ø How can we efficiently share MapReduce
clusters between users?

Hadoop – INRIA S.IBRAHIM 108

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000

C
D

F

Job Running Time (s)

Example: Hadoop at Facebook
• 600-node, 2 PB data warehouse, growing at 15

TB/day
• Applications: data mining, spam detection, ads
• 200 users (half non-engineers)
• 7500 MapReduce jobs / day

Hadoop – INRIA S.IBRAHIM 109

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000

C
D

F

Job Running Time (s)

Example: Hadoop at Facebook
• 600-node, 2 PB data warehouse, growing at 15

TB/day
• Applications: data mining, spam detection, ads
• 200 users (half non-engineers)
• 7500 MapReduce jobs / day

Median: 84s

Hadoop – INRIA S.IBRAHIM 110

Approaches to Sharing
• Hadoop default scheduler (FIFO)

– Problem: short jobs get stuck behind long ones

• Separate clusters
– Problem 1: poor utilization
– Problem 2: costly data replication

• Full replication across clusters nearly infeasible at
Facebook/Yahoo! scale
• Partial replication prevents cross-dataset queries

Hadoop – INRIA S.IBRAHIM 111

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality
– For efficiency, must run tasks near their input data

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality
– For efficiency, must run tasks near their input data
– Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality
– For efficiency, must run tasks near their input data
– Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

• Solution: delay scheduling

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality
– For efficiency, must run tasks near their input data
– Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

• Solution: delay scheduling
– Relax queuing policy for limited time to achieve
locality

Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce
tasks
– Predictable response times and user isolation

• Main challenge: data locality
– For efficiency, must run tasks near their input data
– Strictly following any job queuing policy hurts
locality: job picked by policy may not have data on
free nodes

• Solution: delay scheduling
– Relax queuing policy for limited time to achieve
locality

The Problem

Master
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 122

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 123

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 124

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 1

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 125

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 1 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 126

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 5 Task 1 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 127

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 5 Task 3 Task 1 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 128

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 129

The Problem

Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1 Task 7 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 130

The Problem

Job	2Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1 Task 7 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 131

The Problem

Job	2Master Job	1
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1 Task 7 Task 4

File	1:

File	2:

Hadoop – INRIA S.IBRAHIM 132

The	Problem

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 22 3

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1

File	1:

File	2:

Task 7 Task 4

1 3

Hadoop – INRIA S.IBRAHIM 133

The	Problem

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 22 3

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 1

File	1:

File	2: 1 3

Hadoop – INRIA S.IBRAHIM 134

The	Problem

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 22 3

95 33 6756 9 48 782 1 1

Task 2 Task 5 Task 3 Task 1

File	1:

File	2:

Task 1 Task 7Task 2 Task 4Task 3

Problem: Fair decision hurts locality
Especially bad for jobs with small input files

1 3

Hadoop – INRIA S.IBRAHIM 135

0%

20%

40%

60%

80%

100%

10 100 1000 10000 100000P
e

rc
e

n
t

L
o

c
a

l
M

a
p

 T
a

s
k

s

Job Size (Number of Input Blocks)

Data Locality in Production at Facebook

Node Locality Rack Locality

Locality vs. Job Size at
Facebook

Hadoop – INRIA S.IBRAHIM 136

0%

20%

40%

60%

80%

100%

10 100 1000 10000 100000P
e

rc
e

n
t

L
o

c
a

l
M

a
p

 T
a

s
k

s

Job Size (Number of Input Blocks)

Data Locality in Production at Facebook

Node Locality Rack Locality

Locality vs. Job Size at
Facebook

Hadoop – INRIA S.IBRAHIM 137

0%

20%

40%

60%

80%

100%

10 100 1000 10000 100000P
e

rc
e

n
t

L
o

c
a

l
M

a
p

 T
a

s
k

s

Job Size (Number of Input Blocks)

Data Locality in Production at Facebook

Node Locality Rack Locality

Locality vs. Job Size at
Facebook

58% of jobs

Hadoop – INRIA S.IBRAHIM 138

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Job Fair
Share

Running
Tasks

Job 1 2 2
Job 2 2 2

Slave Slave Slave Slave

Master

Task Task Task Task

Hadoop – INRIA S.IBRAHIM 139

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Job Fair
Share

Running
Tasks

Job 1 2 2
Job 2 2 2

Slave Slave Slave Slave

Master

Task Task Task

Hadoop – INRIA S.IBRAHIM 140

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Slave Slave Slave Slave

Master

Task Task Task

Hadoop – INRIA S.IBRAHIM 141

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Job Fair
Share

Running
Tasks

Job 1 2 1

Job 2 2 2
Slave Slave Slave Slave

Master

Task Task Task

Hadoop – INRIA S.IBRAHIM 142

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Job Fair
Share

Running
Tasks

Job 1 2 1

Job 2 2 2
Slave Slave Slave Slave

Master

Task Task Task Task

Hadoop – INRIA S.IBRAHIM 143

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Slave Slave Slave Slave

Master

Task Task Task Task

Hadoop – INRIA S.IBRAHIM 144

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Job Fair
Share

Running
Tasks

Job 1 2 2
Job 2 2 2

Slave Slave Slave Slave

Master

Task Task Task Task

Hadoop – INRIA S.IBRAHIM 145

Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task

slots
– When one a task in job j finishes, the slot it was running
in is given back to j, because j is below its share
– Bad because data files are spread out across all
nodes

Hadoop – INRIA S.IBRAHIM 146

Solution:	Delay	Scheduling
• Relax queuing policy to make jobs wait for a

limited time if they cannot launch local tasks

• Result: Very short wait time (1-5s) is enough to
get nearly 100% locality

Hadoop – INRIA S.IBRAHIM 147

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 7 Task 4

	

Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 148

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2

File	1:

File	2:

Task 7 Task 4

	

Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 149

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2

File	1:

File	2:

Task 7 Task 4

	

Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 150

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2

File	1:

File	2:

Task 7 Task 4

	

Task 5 Task 1

Wait!

Hadoop – INRIA S.IBRAHIM 151

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7 Task 4Task 6Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 152

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 4Task 6Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 153

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6Task 5 Task 1

Hadoop – INRIA S.IBRAHIM 154

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2Task 5 Task 1

Wait!

Hadoop – INRIA S.IBRAHIM 155

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7 Task 4Task 6Task 5 Task 1Task 3

Hadoop – INRIA S.IBRAHIM 156

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 4Task 6Task 5 Task 1Task 3

Hadoop – INRIA S.IBRAHIM 157

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6Task 5 Task 1Task 3

Hadoop – INRIA S.IBRAHIM 158

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6Task 1Task 3

Hadoop – INRIA S.IBRAHIM 159

Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6

Idea:	Wait	a	short	time	to	get	data-local	
scheduling	opportunities

Task 5Task 1 Task 1Task 3

Hadoop – INRIA S.IBRAHIM 160

Evaluation
• Macrobenchmark

– IO-heavy workload
– CPU-heavy workload
– Mixed workload

• Microbenchmarks
– Sticky slots
– Small jobs
– Hierarchical fair scheduling

• Sensitivity analysis
• Scheduler overhead

Hadoop – INRIA S.IBRAHIM 161

Macrobenchmark
• 100-node EC2 cluster, 4 cores/node
• Job submission schedule based on job sizes

and inter-arrival times at Facebook
– 100 jobs grouped into 9 “bins” of sizes

• Three workloads:
– IO-heavy, CPU-heavy, mixed

• Three schedulers:
– FIFO
– Fair sharing
– Fair + delay scheduling (wait time = 5s)

Hadoop – INRIA S.IBRAHIM 162

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

CD
F

Time (s)

FIFO
Fair

Fair + DS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

CD
F

Time (s)

FIFO
Fair

Fair + DS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

CD
F

Time (s)

FIFO
Fair

Fair + DS

Results	for	IO-Heavy	Workload

Small	Jobs
(1-10	input	blocks)

Medium	Jobs
(50-800	input	blocks)

Large	Jobs
(4800	input	blocks)

Job	Response	Times

Up to 5x
40%

Hadoop – INRIA S.IBRAHIM 163

Results	for	IO-Heavy	Workload

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9P
e
rc

e
n

t
L

o
c
a
l
M

a
p

s

Bin

FIFO Fair Fair + Delay Sched.

0%

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9S
p

e
e
d

u
p

 f
ro

m

D
e
la

y
 S

c
h

e
d

u
li

n
g

Bin

Hadoop – INRIA S.IBRAHIM 164

Sticky	Slots	Microbenchmark

• 5-50 jobs on EC2

• 100-node cluster

• 4 cores / node

• 5s delay scheduling

0%

50%

100%

5 Jobs 10 Jobs 20 Jobs 50 Jobs

P
e

rc
e

n
t

L
o

c
a

l
M

a
p

s

Without Delay Scheduling
With Delay Scheduling

-10

10

30

50

5 Jobs 10 Jobs 20 Jobs 50 Jobs

B
e

n
c

h
m

a
rk

 R
u

n
n

in
g

T
im

e

(m
in

u
te

s
)

Without Delay Scheduling
With Delay Scheduling

2x

Hadoop – INRIA S.IBRAHIM 165

Job scheduling under
Failures

Hadoop – INRIA S.IBRAHIM 166

Hadoop at large-scale
clouds

Failures

Performance
Variability

Hadoop – INRIA S.IBRAHIM 167

Towards Failure-aware scheduling

In large-scale cloud, node failures are inevitable
o1000 machine failures in the 1st year of Google cluster1

o10% -15% job failure rate in a CMU cluster

Failure recovery in Hadoop
o Hadoop re-executes the tasks of failed machines

O. Yildiz, S. Ibrahim, G. Antoniu . Enabling fast failure recovery in shared Hadoop
clusters: Towards failure-aware scheduling. FGCS 2016

1J. Dean, “Large-scale distributed systems at Google: Current systems and future directions" in keynote speech at
the 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, 2009

Hadoop – INRIA S.IBRAHIM 168

In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F

Hadoop – INRIA S.IBRAHIM 169

In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F

Job 1: Waits uncertain
amount of time for a
free slot

The runtime of Map and
Reduce tasks varies from
2 to 84631 s and from
9 to 81714 s, respectively

Hadoop – INRIA S.IBRAHIM 170

In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F

Job 1: Waits uncertain
amount of time for a
free slot

The runtime of Map and
Reduce tasks varies from
2 to 84631 s and from
9 to 81714 s, respectively

Violation

Hadoop – INRIA S.IBRAHIM 171

In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 1 F

Job 1: Ignores the data
locality of the recovery
tasks

1

Hadoop – INRIA S.IBRAHIM 172

Hadoop Under Failures:
Experimental Analysis

Hadoop – INRIA S.IBRAHIM 173

Chronos

Chronos is a failure-aware scheduling strategy:
oTakes early action upon failure

o Employs light-weight preemption technique
oEmbraces a smart selection algorithm
o Considers three criteria: the progress scores of
running tasks, the scheduling objectives, and
the recovery tasks input data locations.

Hadoop – INRIA S.IBRAHIM 174

Chronos: Overview

Hadoop – INRIA S.IBRAHIM 175

Chronos: Overview

Hadoop – INRIA S.IBRAHIM 176

Chronos: Overview

Hadoop – INRIA S.IBRAHIM 177

Evaluation

Chronos is independent of scheduling policy

Sort: Chronos reduces the waiting
time from 325 to 2 s

WordCount: Chronos reduces the
waiting time from 48 s (16% of the
total execution time) to 1.5 s

55%

14%

Hadoop – INRIA S.IBRAHIM 178

Evaluation

Hadoop – INRIA S.IBRAHIM 179

Job scheduling:
Waiting Time

On the Usability of Shortest Remaining Time First
Policy in Shared Hadoop Cluster, In the 31st
ACM Symposium On Applied Computing ACM
SAC 2016.

Hadoop – INRIA S.IBRAHIM 180

Motivation?

A practical problem is how to reduce job
makespans (waiting time + execution time),
especially for latency-sensitive small jobs
– 75% of the jobs in Facebook clusters are small jobs

Hadoop – INRIA S.IBRAHIM 181

Built-in Hadoop Schedulers
Fifo

Capacity Scheduler

Fair Scheduler

•Jobs are grouped into
queues
•Resources are partitioned
among queues

•Jobs are grouped into “pools”
•Resources are allocated across
pools using weighted fair sharing
•Delay technique to expose
data locality

Focus on improving job
execution times by optimizing

data locality

Hadoop – INRIA S.IBRAHIM 182

Problem definition
A few efforts have focused on reducing

job waiting times, although waiting time
is as important as execution time to
improve job makespans.

Evaluating and prioritizing jobs according
to their input data sizes may result in
long waiting times
– Some jobs may have smaller input sizes but higher
execution complexity.

Hadoop – INRIA S.IBRAHIM 183

CMU Hadoop research clusters

Hadoop – INRIA S.IBRAHIM 184

Why hSRTF?
An adaption of the Shortest Remaining

Time First scheduler in shared Hadoop
clusters.

• Prioritize short jobs
– With critical response times

• Conceived to reduce waiting time
• Challenges:

– Remaining time estimation
– Multi-mode adoption
– Fast allocation of resources

Hadoop – INRIA S.IBRAHIM 185

hSRTF in Hadoop
• Estimates remaining time of running jobs

– Make full use of map slots and reduce slots

– Up-to-date time estimation
• The remaining time is recomputed every 10 sec to
cope with the dynamicity of currently running jobs and
infrastructure.

Hadoop – INRIA S.IBRAHIM 186

hSRTF in Hadoop
• Provides fast allocation of resources to

the job with shortest remaining time
– Equipped with wait and kill primitives

• Multi mode
– Pure hSRTF (hSRTF-Pu)

• All the resources are allocated to the job with the
shortest remaining time.

– Time-based proportional sharing (hSRTF-Pr)
• Allocates resources to jobs according to their
remaining times.

Hadoop – INRIA S.IBRAHIM 187

Methodology: testbed and
platform

Each node has:
• Intel 4-core CPU
• 8GB memory
• Gigabit connection

58 nodes on
Toulouse Site

Hadoop 1.0.4

4 Map slots, 2 Reduce slots per node
Replication factor: 3
Block size: 128MB

Hadoop – INRIA S.IBRAHIM 188

Methodology: benchmarks

We run a mixed workload consisting of sort and
wordcount applications.
– Total of 31 jobs
– Each job is submitted 10 seconds after each other.

Hadoop – INRIA S.IBRAHIM 189

Methodology: List of schedulers

Hadoop – INRIA S.IBRAHIM 190

Small Jobs: Reducing the waiting
time

hSRTF-Pr reduces the makespans of
small jobs with an average speedup of
26% compared to Fair.

hSRTF-Pr vs Fair

Hadoop – INRIA S.IBRAHIM 191

Small Jobs: Co-locating map and
reduce tasks

Fair achieves 100%
data locality while
hSRTF-Pr obtains only
5% data locality.

Due to the fine-grained co-location of map
and reduce tasks which reduces data
transfer during the shuffle phase

hSRTF-Pr vs Fair

Hadoop – INRIA S.IBRAHIM 192

Small jobs: Avoid blocked jobs
hSRTF-Pu vs Fifo

hSRTF-Pu reduces the makespans of small
jobs with an average speedup of 43%
compared to Fifo.

Hadoop – INRIA S.IBRAHIM 193

Large Jobs: Adversely impact
hSRTF introduces a performance degradation
for large jobs by (on average) 10% and 0.2%
compared to Fifo and Fair schedulers,
respectively.

Preemption adversely impacts the performance of
large jobs because theses jobs will los the work of
killed tasks

Hadoop – INRIA S.IBRAHIM 194

