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Batch Big data Processing 

Adapted from Presentations from:
http://wiki.apache.org/hadoop/HadoopPresentations
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HDFS Architecture: NameNode (1)
Master-Slave Architecture
HDFS Master “NameNode”

– Manages all file system metadata in memory
• List of files
• For each file name, a set of blocks
• For each block, a set of DataNodes
• File attributes (creation time, replication factor)

– Controls read/write access to files
– Manages block replication
– Transaction log: register file creation, deletion, etc.

http://wiki.apache.org/hadoop/HadoopPresentations
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HDFS Architecture: DataNodes (2)
HDFS Slaves “DataNodes”
A DataNode is a block server 

– Stores data in the local file system (e.g. ext3) 
– Stores meta-data of a block (e.g. CRC) 
– Serves data and meta-data to Clients 

Block Report 
– Periodically sends a report of all existing blocks to the 
NameNode 

Pipelining of Data 
– Forwards data to other specified DataNodes

Perform replication tasks upon instruction by NameNode
Rack-aware

http://wiki.apache.org/hadoop/HadoopPresentations
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HDFS Architecture (3)

http://wiki.apache.org/hadoop/HadoopPresentations
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Fault Tolerance in HDFS
DataNodes send heartbeats to the NameNode 

– Once every 3 seconds 
NameNode uses heartbeats to detect 
DataNode failures

– Chooses new DataNodes for new replicas
– Balances disk usage 
– Balances communication traffic to DataNodes

http://wiki.apache.org/hadoop/HadoopPresentations

Hadoop – INRIA     S.IBRAHIM 6



Data Pipelining
Client retrieves a list of DataNodes on which to 
place replicas of a block 

– Client writes block to the first DataNode 
– The first DataNode forwards the data to the next 
– The second DataNode forwards the data to the 
next 

DataNode in the Pipeline 
– When all replicas are written, the client moves on 
to write the next block in file

http://wiki.apache.org/hadoop/HadoopPresentations
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Hadoop MapReduce
Master-Slave architecture
•Map-Reduce Master “JobTracker”

– Accepts MR jobs submitted by users

– Assigns Map and Reduce tasks to 

TaskTrackers

– Monitors task and TaskTracker status, re-

executes tasks upon failure
http://wiki.apache.org/hadoop/HadoopPresentations
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Hadoop MapReduce
Master-Slave architecture

•Map-Reduce Slaves “TaskTrackers”
– Run Map and Reduce tasks upon 
instruction from the JobTracker

•Manage storage and transmission of 
intermediate output

http://wiki.apache.org/hadoop/HadoopPresentations
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Deployment: HDFS + MR

http://wiki.apache.org/hadoop/HadoopPresentations
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Zoom on Map Phase 

“Handling partitioning skew in MapReduce using LEEN” S Ibrahim, H Jin, L Lu, B 
He, G Antoniu, S Wu - Peer-to-Peer Networking and Applications, 2013
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Zoom on Reduce Phase 
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Data Locality
Data Locality is exposed in the Map Task 
scheduling 
Data are Replicated:

– Fault tolerance
– Performance : divide the work among nodes

Job Tracker schedules map tasks considering:
– Node-aware
– Rack-aware 
– non-local map Tasks
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Fault-tolerance
TaskTrackers send heartbeats to the Job 
Tracker 

» Once every 3 seconds 

TaskTracker uses heartbeats to detect
» Node is labled as failed If no heartbeat is recieved for a defined 
expiry time (Defualt : 10 Minutes) 

Re-execute all the ongoing and complete 
tasks
Need to develop a more efficient policy to 
prevent re-executing completed tasks (storing 
this data in HDFS)
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Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)
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Speculation in Hadoop
• Nodes slow (stragglers) à run backup tasks

Node 1

Node 2

How to do this in heterogeneous environment?
Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Heterogeneity in Clouds 

o Scale out – Heterogeneous Hardware
o Virtualizations 
o Dynamic resource allocations

>2300 server
>4300 server

1Lee et al., Heterogeneity-aware resource allocation and scheduling in the cloud, SoCC 2011
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Heterogeneity in Virtualized Environments
• VM technology isolates CPU and memory, but 

disk and network are shared
– Full bandwidth when no contention
– Equal shares when there is contention

• 2.5x performance difference
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Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.

Hadoop – INRIA     S.IBRAHIM 31



Backup Tasks in Hadoop’s Default 
Scheduler
• Start primary tasks, then look for backups to 

launch as nodes become free
• Tasks report “progress score” from 0 to 1

• Launch backup if                                            
progress < avgProgress – 0.2

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Problems in Heterogeneous 
Environment
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Problems in Heterogeneous 
Environment
1. Too many backups, thrashing shared 

resources like network bandwidth
2. Wrong tasks backed up
3. Backups may be placed on slow nodes
4. Breaks when tasks start at different times

• Example: ~80% of reduces backed up, most 
losing to originals; network thrashed
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Idea: Progress Rates
• Instead of using progress values, compute 

progress rates, and back up tasks that are 
“far enough” below the mean

 

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Idea: Progress Rates
• Instead of using progress values, compute 

progress rates, and back up tasks that are 
“far enough” below the mean

• Problem: can still select the wrong tasks

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

2 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

2 min

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

Time (min)

Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?
2 min

Time (min)

Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?
2 min

Time (min)

Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)

time left: 1 min

Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.
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Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)
Node 2 is slowest, but should back up Node 3’s task!

time left: 1 min

Adopted from a presentation by 
Matei Zaharia “Improving 
MapReduce Performance in 
Heterogeneous Environments”, 
OSDI 2008, San Diego, CA, 
December 2008.
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Scheduler: LATE
• Insight: back up the task with the largest 

estimated finish time
– “Longest Approximate Time to End”
– Look forward instead of looking backward

• Sanity thresholds:
– Cap number of backup tasks
– Launch backups on fast nodes
– Only back up tasks that are sufficiently slow

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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LATE Details
• Estimating finish times:

• Threshold values:
– 10% cap on backups, 25th percentiles for slow 
node/task
– Validated by sensitivity analysis

progress score 

execution time
progress rate  =

1 – progress score

progress rate
estimated time left  =

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8

Progress = 66%

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8

Progress = 66%

LATE correctly picks Node 3

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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Evaluation
• Environments:

– EC2 (3 job types, 200-250 nodes)
– Small local testbed

• Self-contention through VM placement
• Stragglers through background processes

Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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EC2 Sort with Stragglers

• Average 58% speedup over native, 220% over no backups
• 93% max speedup over native
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Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.

Hadoop – INRIA     S.IBRAHIM 62



EC2 Sort without Stragglers

• Average 27% speedup over native, 31% over no backups
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Adopted from a presentation by Matei Zaharia “Improving MapReduce Performance in 
Heterogeneous Environments”, OSDI 2008, San Diego, CA, December 2008.
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CMU trace of 
production Hadoop
cluster

Cost of speculative execution

Hadoop – INRIA     S.IBRAHIM 64

T-D. Phan, S. Ibrahim, G. Antoniu, L. Bouge . On Understanding the Energy Impact of 
Speculative Execution in Hadoop. Greencom 2016



CMU trace of 
production Hadoop
cluster
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Energy vs. Speculation

Resource 
consumption

Launching copies

Understand the impact of the speculative 
execution on the energy consumption

time
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o

w
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E = P �T
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Methodology: testbed and 
platform

Each node has: 
• Intel 4-core CPU
• 16GB memory
• 256 GB storage
• Gigabit connection
• PDU for power monitoring

21 nodes on 
Nancy Site

Hadoop 1.2.1

8 Map slots, 2 Reduce slots per node 
(8 for CloudBurst)

Replication factor: 3
Block size: 64MB
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Methodology: benchmarks
Application Sort WordCount CloudBurst

Dominating phase Shuffle Map Reduce

Resource Network CPU CPU

Input size 24.5GB 24.6GB 100MB

Output size 24.5GB 200MB 9.7GB

Map tasks 394 396 200

Reduce tasks 40 40 160

5 nodes
1-core

5 nodes
2-core

5 nodes
3-core

5 nodes
4-core

Heterogeneous cluster

Hadoop – INRIA     S.IBRAHIM 68



Homo-environment: Execution 
time
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Homo-environment: 
Unsuccessful speculative ratio

Local

Remote

Execution

ExecutionFetch

time
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Successful speculative tasks
Unsuccessful speculative tasks

4.4% 13.1%

1 Ibrahim et al., Maestro: Replica- aware map scheduling for MapReduce, CCgrid2012

Non-local tasks take longer 
time to finish1
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Homo-environment: 
Energy consumption

The unsuccessful speculative copies result in extra energy 
consumption
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Speculation benefit in Hete-
environment
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The energy reduction is not proportional to the execution time 
improvement 
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Zoom on speculation 
behavior and impact
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• Reduce the longest tasks

Successful speculative copies reduce the execution time of slow 
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Impact of speculation on 
power consumption
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Straggler handling 

• Mantri (Ananthanarayanan et al.)
• Cloning (Ananthanarayanan et al.)

Hadoop – INRIA     S.IBRAHIM 76



Open Issues 
• ...in production clusters

• LATE: The slowest task runs 8 times slower* 
than the median task in a job

• Mantri: The slowest task runs 6 times slower* 
than the median task in a job

• (but they work well for large jobs...)

Effective Straggler Mitigation: Attack of the 
Clones. NSDI 2013
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Open Issues 
Considering When and where ?

Provide better task/job scheduling 
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Data Locality: 
Task and job scheduling
Maestro: Replica-Aware Map Scheduling for 
MapReduce.
The 12th IEEE/ACM International Symposium on 
Cluster, Cloud and Grid Computing CCGrid 
2012, May 13-16, 2012, Ottawa, Canada 
(CCGRID2012).
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Why Data locality?
• Data locality is crucial for Hadoop�s 

performance
• How can we expose data-locality of Hadoop 

in the Cloud efficiently?
• Hadoop in the Cloud

– Unaware of network topology
– Node-aware or non-local map tasks
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Data locality in the Cloud 

Node1 Node2 Node3 Node5Node4 Node6
31 105 13 9764 5 67 1082 2 4

9 12 12 8 11 11
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Data locality in the Cloud 
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Data locality in the Cloud 
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The simplicity of Map tasks Scheduling leads to

Non-local maps execution (25%)    



Side impacts: 
• Increase the execution time
• Increase the number of useless 

speculation 
• Slot occupying

– Imbalance in the Map execution 
among nodes
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Maestro: Replica-Aware 
scheduling in Hadoop
Schedule the map tasks in two waves:
First wave: fills the empty slots of each data node 

based on the number of hosted map tasks and on 
the replication scheme for their input data

Second wave: runtime scheduling takes into account 
the probability of scheduling a map task on a given 
machine depending on the replicas of the task’s 
input data.

Results: Maestro can achieve optimal data locality 
even if data are not uniformly distributed among 
nodes and improve the performance of Hadoop 
applications
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Maestro Details
• Selecting Data nodes 

– Has minimal potential to execute map tasks localy
– Has minimal impacts on other nodes 

• Share chunks with more nodes 
• Selecting chunks

– Has maximal probability of not being processed locally  
• The three heuristics are all applied for the first wave 
• Only the third one applied in the runtime wave (heartbeat)
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Maestro: First Wave

• Sort the node ascendingly according to their NodeW:
– Node with less chunks are preferred 
– Node with low share rate are preferred

• The higher the share rate indicates higher NodeW 

No. of shared chunks between nodei

and the nodej
Node weight

No. of Chunks Replication Factor
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Maestro: Runtime

• Chunks share data with nodes host more data are prioritized

No. of chunks hosted by the node host 

the replica 

Chunk weight
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Maestro: Refinements
Fault-Tolerance

• [Cw1= ½] > [Cw2=1 – (1/2+1/HCNr)]

The weight of other chunks within

The same node
Chunk weight of failed Map tasks

Node1
1 2
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Maestro: Refinements
• Heterogeneous Cloud

– Maestro prefers the chunks shared with low 
computation capacity 
– Prevent the nodes with higher computation capacity 
to be out of chunks

Higher Sr results with lower Cw
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Results
• Sort application 

Local 

maps 

Virtual 

Cluster 

Native 

Hadoop 

83% 

Maestro 96%

Grid5000 Native 

Hadoop 

84%

Maestro 97%

S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Maestro: Replica-aware map scheduling for 

mapreduce, in: CCGrid 2012
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Data Locality in Shared 
Cluster

Delay scheduling: a simple technique for achieving 
locality and fairness in cluster scheduling. In 
Proceedings of the 5th European conference on 
Computer systems (EuroSys '10).
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Motivation
• MapReduce / Hadoop originally designed for 

high throughput batch processing
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Motivation
• MapReduce / Hadoop originally designed for 

high throughput batch processing
• Today’s workload is far more diverse:

– Many users want to share a cluster
• Engineering, marketing, business intelligence, etc

– Vast majority of jobs are short
• Ad-hoc queries, sampling, periodic reports

– Response time is critical
• Interactive queries, deadline-driven reports

Ø How can we efficiently share MapReduce 
clusters between users?
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Example: Hadoop at Facebook
• 600-node, 2 PB data warehouse, growing at 15 

TB/day
• Applications: data mining, spam detection, ads
• 200 users (half non-engineers)
• 7500 MapReduce jobs / day
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• Applications: data mining, spam detection, ads
• 200 users (half non-engineers)
• 7500 MapReduce jobs / day

Median: 84s
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Approaches to Sharing
• Hadoop default scheduler (FIFO)

– Problem: short jobs get stuck behind long ones

• Separate clusters
– Problem 1: poor utilization
– Problem 2: costly data replication

• Full replication across clusters nearly infeasible at 
Facebook/Yahoo! scale
• Partial replication prevents cross-dataset queries
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Solution
• Hadoop Fair Scheduler

– Fine-grained sharing at level of map & reduce 
tasks
– Predictable response times and user isolation
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The Problem

Master
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The	Problem

Job	1Master Job	2
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Problem: Fair decision hurts locality
Especially bad for jobs with small input files
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Special Instance: Sticky Slots
• Under fair sharing, locality can be poor even 

when all jobs have large input files
• Problem: jobs get “stuck” in the same set of task 

slots
– When one a task in job j finishes, the slot it was running 
in is given back to j, because j is below its share
– Bad because data files are spread out across all 
nodes

Job Fair 
Share

Running
Tasks

Job 1 2 2
Job 2 2 2

Slave Slave Slave Slave

Master

Task Task Task Task
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Solution:	Delay	Scheduling
• Relax queuing policy to make jobs wait for a 

limited time if they cannot launch local tasks

• Result: Very short wait time (1-5s) is enough to 
get nearly 100% locality
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Delay	Scheduling	Example
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Hadoop – INRIA     S.IBRAHIM 158



Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6Task 1Task 3
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Delay	Scheduling	Example

Job	1Master Job	2
Scheduling	order

Slave Slave Slave SlaveSlave Slave
42

1 1 22 33

95 33 6756 9 48 782 1 1

Task 2 Task 3

File	1:

File	2:

Task 8 Task 7Task 2 Task 4Task 6

Idea:	Wait	a	short	time	to	get	data-local	
scheduling	opportunities

Task 5Task 1 Task 1Task 3
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Evaluation
• Macrobenchmark

– IO-heavy workload
– CPU-heavy workload
– Mixed workload

• Microbenchmarks
– Sticky slots
– Small jobs
– Hierarchical fair scheduling

• Sensitivity analysis
• Scheduler overhead
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Macrobenchmark
• 100-node EC2 cluster, 4 cores/node
• Job submission schedule based on job sizes 

and inter-arrival times at Facebook
– 100 jobs grouped into 9 “bins” of sizes

• Three workloads:
– IO-heavy, CPU-heavy, mixed

• Three schedulers:
– FIFO
– Fair sharing
– Fair + delay scheduling (wait time = 5s)
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Results	for	IO-Heavy	Workload

Small	Jobs
(1-10	input	blocks)

Medium	Jobs
(50-800	input	blocks)

Large	Jobs
(4800	input	blocks)

Job	Response	Times

Up to 5x
40%
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Results	for	IO-Heavy	Workload
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Sticky	Slots	Microbenchmark

• 5-50 jobs on EC2

• 100-node cluster

• 4 cores / node

• 5s delay scheduling
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Job scheduling under 
Failures 
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Hadoop at large-scale 
clouds

Failures

Performance 
Variability 
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Towards Failure-aware scheduling 

In large-scale cloud, node failures are inevitable
o1000 machine failures in the 1st year of Google cluster1

o10% -15% job failure rate in a CMU cluster

Failure recovery in Hadoop
o Hadoop re-executes the tasks of failed machines

O. Yildiz, S. Ibrahim, G. Antoniu . Enabling fast failure recovery in shared Hadoop
clusters: Towards failure-aware scheduling. FGCS 2016

1J. Dean, “Large-scale distributed systems at Google: Current systems and future directions" in keynote speech at 
the 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, 2009
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In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F
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In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F

Job 1: Waits uncertain 
amount of time for a 
free slot 

The runtime of Map and 
Reduce tasks varies from 
2 to 84631 s and from 
9 to 81714 s, respectively
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In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 E F

Job 1: Waits uncertain 
amount of time for a 
free slot 

The runtime of Map and 
Reduce tasks varies from 
2 to 84631 s and from 
9 to 81714 s, respectively

Violation
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In Shared Hadoop Cluster

Master

CA E EB BC EDDA F
File 1:

Job 1 Job 2
Scheduling order

11 22
File 2:

1 2 1 F

Job 1: Ignores the data 
locality of the recovery 
tasks

1
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Hadoop Under Failures: 
Experimental Analysis
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Chronos

Chronos is a failure-aware scheduling strategy:
oTakes early action upon failure

o Employs light-weight preemption technique 
oEmbraces a smart selection algorithm 
o Considers three criteria: the progress scores of 
running tasks, the scheduling objectives, and 
the recovery tasks input data locations. 
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Chronos: Overview 
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Chronos: Overview 

Hadoop – INRIA     S.IBRAHIM 176



Chronos: Overview 
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Evaluation

Chronos is independent of scheduling policy

Sort: Chronos reduces the waiting 
time from  325 to 2 s

WordCount: Chronos  reduces the 
waiting time from  48 s (16% of the 
total execution time) to 1.5 s

55%

14%
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Evaluation

Hadoop – INRIA     S.IBRAHIM 179



Job scheduling: 
Waiting Time

On the Usability of Shortest Remaining Time First 
Policy in Shared Hadoop Cluster, In the 31st 
ACM Symposium On Applied Computing ACM 
SAC 2016.
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Motivation?

A practical problem is how to reduce job 
makespans (waiting time + execution time), 
especially for latency-sensitive small jobs
– 75% of the jobs in Facebook clusters are small jobs
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Built-in Hadoop Schedulers
Fifo

Capacity Scheduler 

Fair Scheduler

•Jobs are grouped into 
queues 
•Resources are partitioned 
among queues

•Jobs are grouped into “pools” 
•Resources are allocated across 
pools using weighted fair sharing
•Delay technique to expose 
data locality 

Focus on improving job 
execution times by optimizing 

data locality
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Problem definition 
A few efforts have focused on reducing 

job waiting times, although waiting time 
is as important as execution time to 
improve job makespans.

Evaluating and prioritizing jobs according 
to their input data sizes may result in 
long waiting times 
– Some jobs may have smaller input sizes but higher 
execution complexity.
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CMU Hadoop research clusters 
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Why hSRTF?
An adaption of the Shortest Remaining 

Time First scheduler in shared Hadoop 
clusters.

• Prioritize short jobs
– With critical response times 

• Conceived to reduce waiting time
• Challenges:

– Remaining time estimation 
– Multi-mode adoption
– Fast allocation of resources
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hSRTF in Hadoop
• Estimates remaining time of running jobs

– Make full use of map slots and reduce slots

– Up-to-date time estimation
• The remaining time is recomputed every 10 sec to 
cope with the dynamicity of currently running jobs and 
infrastructure. 
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hSRTF in Hadoop
• Provides fast allocation of resources to 

the job with shortest remaining time
– Equipped with wait and kill primitives 

• Multi mode 
– Pure  hSRTF (hSRTF-Pu)

• All the resources are allocated to the job with the 
shortest remaining time.

– Time-based proportional sharing (hSRTF-Pr)
• Allocates resources to jobs according to their 
remaining times.
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Methodology: testbed and 
platform

Each node has: 
• Intel 4-core CPU
• 8GB memory
• Gigabit connection

58 nodes on 
Toulouse Site

Hadoop 1.0.4

4 Map slots, 2 Reduce slots per node 
Replication factor: 3
Block size: 128MB
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Methodology: benchmarks

We run a mixed workload consisting of sort and 
wordcount applications.
– Total of 31 jobs
– Each job is submitted 10 seconds after each other.
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Methodology: List of schedulers
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Small Jobs: Reducing the waiting 
time

hSRTF-Pr reduces the makespans of 
small jobs with an average speedup of 
26% compared to Fair.

hSRTF-Pr vs Fair 
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Small Jobs: Co-locating map and 
reduce tasks

Fair achieves 100%
data locality while 
hSRTF-Pr obtains only 
5% data locality.

Due to the fine-grained co-location of map 
and reduce tasks which reduces data 
transfer during the shuffle phase

hSRTF-Pr vs Fair 
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Small jobs: Avoid blocked jobs 
hSRTF-Pu vs Fifo 

hSRTF-Pu reduces the makespans of small 
jobs with an average speedup of 43% 
compared to Fifo.
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Large Jobs: Adversely impact
hSRTF introduces a performance degradation 
for large jobs by (on average) 10% and 0.2% 
compared to Fifo and Fair schedulers, 
respectively.

Preemption adversely impacts the performance of 
large jobs because theses jobs will los the work of 
killed tasks 
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