
TP4: Running multiple MapReduce applications in
Hadoop

Shadi Ibrahim
(March 2nd, 2017)

MapReduce has emerged as a leading programming model for data-intensive com-
puting. It was originally proposed by Google to simplify development of web search
applications on a large number of machines.

Hadoop is a java open source implementation of MapReduce sponsored by Yahoo!
The Hadoop project is a collection of various subprojects for reliable, scalable distributed
computing. The two fundamental subprojects are the Hadoop MapReduce framework
and the HDFS. HDFS is a distributed file system that provides high throughput access
to application data. It is inspired by the GFS. HDFS has master/slave architecture. The
master server, called NameNode, splits files into blocks and distributes them across the
cluster with replications for fault tolerance. It holds all metadata information about
stored files. The HDFS slaves, the actual store of the data blocks called DataNodes, serve
read/write requests from clients and propagate replication tasks as directed by the Na-
meNode.

The Hadoop MapReduce is a software framework for distributed processing of large
data sets on compute clusters. It runs on the top of the HDFS. Thus data processing is
collocated with data storage. It also has master/slave architecture. The master, called
Job Tracker (JT), is responsible of : (a) Querying the NameNode for the block locations,
(b) considering the information retrieved by the NameNode, JT schedule the tasks on the
slaves, called Task Trackers (TT), and (c) monitoring the success and failures of the tasks.

The goal of this TP is to study how to configure the platform to run under a specific scheduler.
We shall examine how to allocate resources under the fair scheduler and how to enable preemption
technique.

1



Exercise 1: Configuring your scheduling policy

Question 1.1

Hadoop has recently been used to run multiple divers MapReduce applications
belonging to multiple concurrent users, thanks to its built-in schedulers (i.e., Fifo, Fair
and Capacity schedulers). The default scheduler in Hadoop is FiFo. To run under fair
scheduling policy, in conf/mapred-site.xml add:

<configuration>

<property>

<name>mapred.jobtracker.taskScheduler</name>

<value>org.apache.hadoop.mapred.FairScheduler</value>

</property>

</configuration>

Similarly, if you want to run under Capacity scheduler change the value to
org.apache.hadoop.mapred.CapacityTaskScheduler

Exercise 2: Configuring Fair scheduler

Question 2.1

Fair scheduler uses a two-level scheduling hierarchy. At the top level, cluster slots
are allocated across pools using weighted fair sharing i.e. the higher the weight a pool
is configured with, the more resources it can acquire. Each user, by default, is assigned
one pool. At the second level and within each pool, slots are divided among jobs, using
either Fifo with priorities (the same with Fifo scheduler) or a second level of fair sharing.
In the second level of fair scheduling, each job is assigned a weight equal to the product
of its (user-defined) priority and the number of tasks.

To set the number of pools (users and allocation policy which a pool), change the
value in conf/fair-scheduler.xml:

2



<allocations>

<pool name="root">

<minMaps>0</minMaps>

<minReduces>0</minReduces>

<minSharePreemptionTimeout>5</minSharePreemptionTimeout>

<schedulingMode>fair</schedulingMode>

</pool>

<pool name="sibrahim">

<minMaps>0</minMaps>

<minReduces>0</minReduces>

<minSharePreemptionTimeout>5</minSharePreemptionTimeout>

<schedulingMode>fifo</schedulingMode>

</pool>

</allocations>

In this example, two users (pools) are configured. The first pool are running with Fair
allocation within the pool and the second one is running with Fifo allocation within the
pool.
Run two RandomWriter (an application which generates 10GB of textual data per node)
under both Fifo and Fair (with fair allocation within the pool – you are using pool) and
see the execution time and the waiting time of both applications.

Run 6 sort applications (vary the size from 3*2GB, 2*4GB 1*10GB) under both Fifo and
Fair (with fair allocation within the pool – you are using pool) and see the execution
time, data locality and the waiting time of both applications.

Question 2.1

Preemption has been widely studied and applied for many different use cases in the area
of computing. Similarly, Hadoop can also benefit from the preemption technique in sev-
eral cases (e.g., achieving fairness, better resource utilization or better energy efficiency).
However, only kill technique is available in Hadoop which can be used by developers as
a preemption technique. This preemption enabled in Hadoop’s mapred-site.xml:

<configuration>

<property>

<name>mapred.fairscheduler.preemption</name>

<value>true</value>

</property>

</configuration>

3



Run two RandomWriter (an application which generates 10GB of textual data per node)
under Fair (with fair allocation within the pool) and enable and disable preemption. See
the execution time and the waiting time of both applications.

Run 6 sort applications (vary the size from 3*2GB, 2*4GB 1*10GB) under Fair (with fair
allocation within the pool – you are using pool) and enable and disable preemption. See
the execution time, data locality and the waiting time of both applications.

4


