Getting Started with Spark

Shadi Ibrahim
March 30th, 2017

MapReduce has emerged as a leading programming model for data-intensive com-
puting. It was originally proposed by Google to simplify development of web search
applications on a large number of machines.

Apache Spark is a powerful open source processing engine for Hadoop data built
around speed, ease of use, and sophisticated analytics. It was originally developed in
2009 in UC Berkeley’s AMPLab, and open sourced in 2010.

Spark enables applications in Hadoop clusters to run up to 100x faster in memory,
and 10x faster even when running on disk. It lets you quickly write applications in Java,
Scala, or Python. It comes with a built-in set of over 80 high-level operators. And you can
use it interactively to query data within the shell. Sophisticated Analytics. In addition
to simple “map” and “reduce” operations, Spark supports SQL queries, streaming data,
and complex analytics such as machine learning and graph algorithms out-of-the-box.
Better yet, users can combine all these capabilities seamlessly in a single workflow.

The goal of this TP is to study the implementation and the operation of the Spark Platform.
We will see how to deploy the platform, alongside Hadoop. We will run simple examples using the
MapReduce paradigm.

Exercise 1: Installing Spark platform on your local machine alongside your existing Hadoop

The goal of this exercise is to learn how to set up and configure a single-node
Spark installation so that you can quickly perform simple operations using Hadoop
MapReduce and the Hadoop Distributed File System (HDEFS).

Question 1.1
Download the Hadoop platform from (https://spark.apache.org). Extract the contents of
spark-1.1.0-bin-hadoop1-2.tar.gz in your home. To run Spark, we assume that you have
successfully deployed and configured your Hadoop platform

To make Spark aware of your Hadoop configuration, go to your Spark home directory,
in conf/spark-env.sh.template add:

HADOOP_CONF_DIR=../hadoop/conf

Now save the file as spark-env.sh.

Then you will need to add your workers to the slaves file, go to your Spark home
directory, in conf/slaves add:

xxx.rennes.gridb000.fr
yyy.rennes.grid5000.fr

To be able to view the web Ul of an application, set spark.eventLog.enabled
to true before starting the application, go to your Spark home directory, in
conf/spark-defaults.conf.template add:

spark.eventLog.enabled true

Now save the file as spark-defaults.conf.

Question 1.2
We will now start the platform, and start all daemons:

e First starting HDFS:

— Format a new distributed-filesystem:
$ bin/hadoop namenode -format

— Start the HDFS daemons:

$bin/start-dfs.sh

— A nifty tool for checking whether the expected HDFS processes are running is

jps.

e Starting Spark master and workers:

— Start the Spark daemons:
$ sbin/start-all.sh

— A nifty tool for checking whether the expected Spark processes are running is

jps.

Question 1.3

To Browse the web interface for the NameNode and the JobTracker; by default they are

available at:

e Master - http://Master:8080/

e Worker - http://worker:8081/

The Master and Worker GUI should look like this:

_gpqﬁ? Spark Master at spark://loarshin.irisa.fr:7077

URL: spark://loarshin.irisa.fr:7077

Workers: 1

Cores: 4 Total, 0 Used

Memory: 15.0 GB Total, 0.0 B Used
i 0 Running, 6 C

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers
Id

worker-20141031102613-loarshin.irisa.fr-51476

Running Applications

D Name Cores Memory per Node
Completed Applications

D Name
app-20141031104608-0005 JavaWordCount
app-20141031104237-0004 JavawordCount
app-20141031104007-0003 Spark Pi
app-20141031103919-0002 Spark Pi
app-20141031103750-0001 Spark Pi
app-20141031103705-0000 Spark Pi

Address State
loarshin.irisa.fr:51476 ALIVE

Submitted Time

Cores Memory per Node Submitted Time

0 512.0 MB 2014/10/31 10:46:08
Q 512.0 MB 2014/10/31 10:42:37
0 512.0 MB 2014/10/31 10:40:07
0 5120 MB 2014/10/31 10:39:19
0 512.0 MB 2014/10/31 10:37:50
0 512.0 MB 2014/10/31 10:37:05

Figure 1: Spark Master

Cores

4(0 Used)

User

shadiibrahim
shadiibrahim
shadiibrahim
shadiibrahim
shadiibrahim

shadiibrahim

Memory

15.0 GB (0.0 B Used)

State Duration

State

FINISHED
FINISHED
FINISHED
FINISHED
FINISHED
FINISHED

Duration
6s

7s

30s

6s

7s

6s

qu,:j;? Spark Worker at loarshin.irisa.fr:51476

ID: worker-20141031102613-loarshin.irisa.fr-51476
Master URL: spark://loarshin.irisa.fr:7077

Cores: 4 (0 Used)

Memory: 15.0 GB (0.0 B Used)

Back to Master
Running Executors (0)

ExecutoriD Cores State Memory Job Details Logs

Finished Executors (6)

ExecutorlD Cores State Memory Job Details Logs

0 4 EXITED 512.0 MB ID: app-20141031103918-0002 stdout stderr
Name: Spark Pi
User: shadiibrahim

0 4 EXITED 512.0 MB ID: app-20141031104007-0003 stdout stderr
Name: Spark Pi
User: shadiibrahim

0 4 EXITED 512.0 MB ID: app-20141031104608-0005 stdout stderr
Name: JavaWordCount
User: shadiibrahim

0 4 EXITED 512.0 MB ID: app-20141031103750-0001 stdout stderr
Name: Spark Pi
User: shadiibrahim

0 2 EXITED 512.0 MB ID: app-20141031103705-0000 stdout stderr
Name: Spark Pi
User: shadiibrahim

0 4 EXITED 512.0 MB ID: app-20141031104237-0004 stdout stderr

Name: JavaWerdCount
User: shadiibrahim

Figure 2: Spark Worker

Question 1.4

To stop all the daemons running on your machine:
In Hadoop directory:

$ bin/stop-all.sh

In Spark directory:

$ sbin/stop-all.sh

Exercise 2: Running your first MapReduce program

The goal of this exercise is to execute two MapReduce examples, typically used for
benchmarking, which come with the default Spark distribution.

Question 2.1
Run the Pi estimator:

e spark-submit ——class org.apache.spark.examples.SparkPi
——master spark://yourMasterNode:7077 (check the Master GUI)
——num-executors NUMBER (number of executors) ——executor-memory
(Amount of memory to use per executor process e.g., 512m)
——executor-cores X (number of cores -- concurrent tasks-- per
executor)

./1ib/spark-examples-1.1.0-hadoopl.0.4.jar samples

Run the Pi estimator with 10000 sample.

Question 2.2
Run the wordcount example:

e spark-submit ——class org.apache.spark.examples.JavaWordCount
——master spark://yourMasterNode:7077 (check the Master GUI)

——num-executors NUMBER (number of executors) ——executor-memory
(Amount of memory to use per executor process e.g., 512m)
——executor-cores X (number of cores -- concurrent tasks-- per
executor)

./1ib/spark-examples-1.1.0-hadoopl.0.4.jar hdfs://namenode:9000/input

Use the 2 GB data set and check the output (notice that the output is printed on your
screen).

To write the output to HDFS, copy the spark-example. jar to the lib directory then
run the following command:

e spark-submit ——class org.apache.spark.examples.JavaWordCount
——master spark://yourMasterNode:7077 (check the Master GUI)
——num-executors NUMBER (number of executors) ——executor-memory
(Amount of memory to use per executor process e.g., 512m)
——executor-cores X (number of cores -- concurrent tasks-- per
executor)

./1ib/spark-example. jar
hdfs://namenode:9000/input
hdfs://namenode:9000/output

Use the 2 GB data set and check the output in the HDFS.

Question 2.3

Run Wordcount using the 2 GB data set and check the output in the HDFS. Use three
different scenarios (1 core, two cores and 3 cores)

See the execution times, what can you observe?

Exercise 3: Running your Spark application using the Scala shells

To start one of the shell applications, run one of the following commands:
In Spark directory:
$ bin/spark-shell

scala> val myfile = sc.textFile("hdfs://namenode:8020/path-to—input")

scala> val counts = myfile.flatMap(line => line.split("™ ")).map(word => (word, 1)).
reduceByKey(_ + _)

scala> counts.saveAsTextFile("hdfs://namenode:8020/path-to-output")

Figure 3

Question 3.1
Run Wordcount using the 2 GB data set and check the output in the HDFS.

Exercise 4: Running your Spark application using the Python shells

To start one of the shell applications, run one of the following commands: In Spark
directory:

$ bin/bin/pyspark

>>> myfile = sc.textFile("hdfs://namenode:8020/path-to-input")

>>> counts = myfile.flatMap(lambda line: line.split(™ ™)).map(lambda word: (word, 1)).
reduceByKey(lambda v1,v2: vl + v2)

>>> counts.saveAsTextFile("hdfs://namenode:8020/path-to-output™)

Figure 4

Question 4.1
Run Wordcount using the 2 GB data set and check the output in the HDFS.

