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Abstract—In this paper, we propose to rely on a recent image
representation model, namely the α-tree, to achieve efficient
segmentation of images and videos. The α-tree is a multiscale
representation of an image, based on its quasi-flat zones. An
in-depth study of this tree reveals some interesting features
of image pixels and regions. These features are then used
in the design of both automatic and interactive segmentation
algorithms. Interactivity is achieved thanks to a new and
efficient implementation scheme. Experiments on the Berkeley
Segmentation Dataset lead to very promising results.
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I. INTRODUCTION

Image segmentation is a fundamental problem in com-
puter vision. While it has been deeply studied for decades,
it is still an open issue. Indeed, a generic image segmentation
hardly achieves accurate results on a wide panel of images.
Conversely, interactive methods may achieve better results
by involving the user in the process, but they require a low
computational cost and are irrelevant if a large set of images
has to be segmented.

Recently, a new image model, namely the α-tree [1], has
been introduced as a powerful tool for multiscale image
representation. It offers a compact and efficient way to
access image content, and can be further exploited in various
image analysis and processing tasks. We consider here the
α-tree for image segmentation purpose, and study how this
new image model can be used in such a context. Indeed,
some relevant image features can be extracted from the tree,
leading then in segmentation methods operating either auto-
matically or interactively. Moreover, we propose an efficient
implementation scheme which ensures user interactivity and
extension to video data. Preliminary results obtained on the
Berkeley Segmentation Dataset are very promising and show
the relevance of the α-tree in image processing and analysis.

This paper is organized as follows. In the next section, we
recall the definitions of flat and quasi-flat zones, that lead to
the α-tree model for image representation. We then describe
our contribution in Sec. III where we study how the α-tree
can provide relevant features for image segmentation before
introducing a new segmentation method and its efficient
implementation. In Sec. IV, we discuss parameter settings
and provide an experimental evaluation of our method on the
Berkeley Segmentation Dataset. We also provide an insight

into video matting. The last section is devoted to concluding
remarks and future directions.

II. BACKGROUND

The α-tree image model is a multiscale representation of
an image through its α-zones. We recall here the notions of
flat zones, quasi-flat zones (including α-zones) and finally
the recent α-tree model.

In the following, we will use the notations used in [1]. We
will denote by I a digital image and E its definition domain.
Let us recall that an image segmentation is a partition P
of E, i.e. a mapping x → P(x) from E into P(E) such
that ∀x ∈ E ⇒ x ∈ P(x) and ∀x, y ∈ E ⇒ P(x) =
P(y) or P(x)∩P(y) = ∅, with P(x) indicating a cell of P
containing a point x ∈ E. We thus have

⋃
x∈E P(x) = E.

Moreover, we will write π(x  y) a path of length N
between any two elements x, y ∈ E, i.e. a chain of pairwise
adjacent elements 〈x = x0, x1, . . . , xN−1 = y〉. Finally, let
Π 6= ∅ be the set of all possible paths between x and y. The
minimum dissimilarity metric between x and y is defined as

d̂(x, y) =∧
π∈Π

 ∨
i∈[0,...,N−1]

{
d(xi, xi+1) | xi, xi+1 ∈ Π

} (1)

with d(x, y) a predefined dissimilarity measure between
attributes of x and y (i.e. pixel intensities).

In a digital image, flat zones are defined as connected sets
of pixels sharing the same value. Formally, the flat zone of
x is defined as

Z(x) = {x} ∪ {y | ∃π(x y) :

∀xi ∈ π(x y) ∧ xi 6= y ⇒ d(xi, xi+1) = 0}. (2)

In the field of Mathematical Morphology, flat zones have
been shown to be elements with nice properties [2]. Indeed,
the partition of an image into its flat zones most often
includes any relevant image segmentation, since objects
edges are located between neighboring pixels with different
values, i.e. belonging to different flat zones. However, the
practical usage of flat zones is limited since it leads to an
extreme oversegmentation, flat zones being made of only a
few pixels. To counter this problem, softer definitions have



been introduced under the name quasi-flat zones. A recent
survey related to quasi-flat zones is provided by Soille in [3].

The simpler and most widely used definition of quasi-
flat zones is called α-zone. For a given pixel x, its α-zone
noted α-Z(x) is made of all pixels reachable from x through
a path with intermediary steps not higher than α. Using the
previous definitions, we have

α-Z(x) = {x} ∪ {y | ∃π(x y) :

∀xi ∈ π(x y) ∧ xi 6= y ⇒ d(xi, xi+1) ≤ α}, (3)

the specific case of α = 0 leading to standard flat zones. Let
us observe that α-zones define a partition or segmentation,
i.e.

⋃
x∈E α-Z(x) = E. The main drawback of α-zones is

their purely local behavior, which can lead to an artifact
called chaining effect. This is observed when the successive
steps in a path π(x  y) are low (w.r.t α) while the
dissimilarity measure between x and y is high, for instance
in the case of a gradual transition from black to white.

Soille [3], and later Soille and Grazzini [4], have then in-
troduced new α-zone definitions with additional constraints.
Among them, the (α, ω)-zones rely on both a local range to
be compared to α and a global range to be compared with
ω:

(α, ω)-Z(x) =
∨
{αi-Z | αi ≤ α ∨ R(αi-Z) ≤ ω} (4)

with R(·) denoting the global range of the quasi-flat zone.
Such quasi-flat zones have been already used in image seg-
mentation through an interactive framework [5]. However,
this require to set predefined values for α and ω parameters,
which is not an easy task in practice.

Another way to use the α-zones has been recently reported
by Ouzounis and Soille in [1]. In this seminal work, they
introduce the concept of α-tree based on a partition pyramid
of E. This latter is a mapping ∆A : E → ΠA(E) defined
by

∆A =
{
Pα=0,Pα=1, . . . ,Pα=αmax

}
| Pα′

� Pα,∀α, α′ ∈ A, α′ < α (5)

with ΠA(E) the set of all α-partitions of the definition
domain of I (i.e. E) and A = [0, 1, . . . , αmax] the range
of α values. The relation � denotes a notion of order with
respect to α ∈ A:

∀x ∈ E,α′ < α⇒ α′-Z(x) ⊆ α-Z(x)

⇒ Pα′
� Pα (6)

A pyramid level ∆A
α ∈ ∆A is a partition Pα of E, with

α ∈ A. Let j ∈ Jα, in which Jα ⊆ Z is an index set,
employed to address the α-zones making up Pα. Finally, the
α-partition hierarchy ΛA is a family of ordered mappings

ΛA
α : Jα → Kα with Kα ⊆ Jα, given by:

ΛA =
{
ΛA
α=0,Λ

A
α=1, . . . ,Λ

A
α=αmax

}
|ΛA

α′ ≺ ΛA
α ,∀α, α′ ∈ A, α′ < α (7)

and ∀α ∈ A \ 0 and ∀j ∈ Jα:

ΛA
α =

{
αj-Z|(αj-Z ∈ ∆A

α ) ∧ (αj-Z 6∈ ∆A
α−1)

}
(8)

III. FROM α-TREE TO IMAGE SEGMENTATION

In the previous section, we have recalled from [1] the
new concept of α-tree. This hierarchical image model leads
to new and efficient ways of accessing and manipulating
the image content. We study here how such a model can
be used in the context of image segmentation. Thus, we
first discuss how to build the α-tree from color images and
to derive from this tree some segmentation criteria. Then
we introduce a new segmentation algorithm based on this
model. Finally, we present an efficient algorithm for α-tree
computation which ensures low computation time.

A. α-tree on Color Images

The definitions provided in the previous section apply
directly to the greyscale case. However, when dealing with
color images, dissimilarity metrics require some specific
attention. Indeed, each pixel is not anymore described by
a single scalar value but rather by a vector of color compo-
nents, most often the RGB triplet. Contrary to other morpho-
logical operators, it is not necessary here to select a vector
ordering to compare pixels [6] since the ordering is imposed
on the (scalar) dissimilarity values. The local dissimilarity
metric computed between two pixels then measures the
dissimilarity between their two colors. While various metrics
are available, we have here chosen to use the Chebyshev
distance rather than other measures such as Euclidean or
Manhattan distance. Let us consider two colors c = (r, g, b)
and c’ = (r′, g′, b′), the Chebyshev distance between c
and c′ is given by max(|r − r′|, |g − g′|, |b − b′|). Since
the Chebyshev distance is the L∞ norm of the absolute
difference vector |c − c′|, the range of possible distance
values is kept low and similar to the input range of each color
component (i.e. 256 for an 8-bit image). On the opposite,
Manhattan or (worst) Euclidean distance lead to a range
respectively equal to 3 × 256 and 2563 possible distance
values. Since this range is to be compared with the various
α values, we prefer to set the depth of α-tree A = 256
rather than A = 16, 777, 216 for practical reasons related to
computation time. Let us notice that a quantization might
be involved to further reduce the range A, with the risk
to consider two pixels with different colors in the same
flat zone. The same motivation led us to keep the RGB
space instead of performing a conversion to a possibly more
relevant space for image analysis, e.g. Lab or HSL.

As we will show later, we do not involve global con-
straints (e.g. related to ω) at the time of α-tree computation,



but impose them on the tree in a post-processing before the
final segmentation step.

B. Analysis of α-tree

The α-tree image model can be studied from a pixel basis.
Indeed, for every given pixel x of an image, it is possible
to focus on the different α-zones (or nodes in the α-tree)
it belongs to, or in other words ∆A(x). Various measures
might be considered to perform this analysis and to describe
the nodes Pα(x) related to a pixel x at the different scales
or α values. These measures provide a characterization of
the nodes, e.g. related to their color, texture, shape, size, etc.
In the following, we will consider the zone area or size (i.e.
number of pixels) as a comprehensive measure to perform
a characterization of each pixel based on the α-tree:

ΩA(x) = {|Pα=0(x)|, |Pα=1(x)|, . . . , |Pαmax(x)|} (9)

with ∀α, α′, α′ < α, |Pα′
(x)| < |Pα(x)| and |E| the

cardinality of set E (computed as its number of pixels). Of
course, other measures might be involved, as long as they
are also monotonically increasing.

To illustrate the descriptive power of the α-tree and its
related measures (e.g. Ω), we have considered the sample
image of Fig. 1 taken from the Berkeley Segmentation
Dataset [7]. In this figure, 3 α-zones are highlighted, corre-
sponding to the sky, the wall and the sea. While the sky is
a very wide and uniform region (α close to 0), the wall is a
textured area and the sea is a uniform region but surrounded
by complex objects. ΩA curves for pixels belonging to these
3 zones are then plotted in Fig. 2. From these plots we can
made several observations:
• even in the case of very uniform areas, flat zones do

not spread among a lot of pixels. Such areas are better
represented by quasi-flat zones with a low (but not null)
α value;

• textured areas require higher values of α to be correctly
described. The required α value is directly proportional
to the contrast of the texture. In practice, some textures
such as the wall can be extracted with relatively low
value of α;

• in some cases, the complexity of the scene leads to a
large number of small plateaus separated by relatively
small steps. This is observed with the sea which is sur-
rounded by many objects. In such cases, an automatic
segmentation process most often fails to identify correct
object edges;

• for all pixels, the monotonically increasing curve ends
with the same plateau which correspond to the whole
image after the inclusion of some outlier pixels.

More generally, we can distinguish between several pat-
terns in these curves: steps, plateaus, and slopes of various
strength.

Steps are observed when increasing α value leads to a
high growth of the α-zone area. In other words, the region

Figure 1. A sample image with 3 selected objects.

Figure 2. ΩA evolution curves (zone area w.r.t α) for the 3 objects of
Fig. 1.

has passed a border and now includes significant neighboring
region(s). The height of the step is directly related to the size
of objects added to the growing α-zone.

Plateaus are zones for which a slightly increment of α
will not change the α-zones. They are most often located
between two steps, i.e. between two jumps over borders.
This means that plateaus represent indeed border areas. The
length of the plateau is then directly related to the strength
of the edge, with most significant edges being characterized
by wide plateaus.

Slopes may have two different explanations. They are
observed in case of very blurred edges (leading to some non
flat plateaus) but also in the case of successive inclusions of
small objects (as with the sea in Fig. 1).

C. Enriching the α-tree with Additional Features

We have seen that Ω curves built from α-tree may be
analyzed to identify accurate segmentation criteria. Nev-
ertheless, these measures only gather local dissimilarity
and size information. To bring further knowledge to the



segmentation process, we propose to equip the tree with
additional information, similar to the constraints imposed
on quasi-flat zones [1], [4]. More precisely, we consider a
global range constraint related to the hue and/or brightness
of the α-zones. To do so, we compute for each node both a
reduced average hue and an average brightness using a HSB
color space.

A specific attention is given to hue due to its particular
behavior. Indeed, we consider the hue of a pixel or zone only
if related saturation is higher than a given threshold Tsaturation.
Then, we compute the mean of relevant hues through circular
statistics [8]. To ensure a robust measure, we have designed
a specific scheme to compute the reduced average hue. Thus,
we only consider hues which are similar (w.r.t. a given
threshold Tangle) to the most representative hue to remove
the influence of outlier hue values in the computation of the
mean of several hues. Finally, a hue average is considered
as significant only if the number of removed hues is kept
lower than another threshold Toutliers. In the other case, we
mark the hue node as insignificant. The brightness and hue
values and the hue significance flag will be further used in
the segmentation process.

D. Image Segmentation Algorithm

The α-tree, equipped with some complementary features
making possible the use of additional constraints, is ready to
be used for image segmentation. To do so, we aim to focus
on the characteristic elements of pixelwise curves described
previously. Plateaus represent objects of the image which are
stable over α values (thus sharing probably some similarities
with Maximally Stable Extremal Regions (MSER), but this
is beyond the scope of this paper). Unfortunately, a given
pixel may lead to several plateaus. In order to focus on
relevant objects only, we consider nodes in the tree with
an area comprised in a predefined interval [Tmin, Tmax].

Starting from the tree root, we further analyze the nodes
using the global hue constraint discussed previously. This
additional constraint has shown great improvement (thus we
do not show in this paper the use of local constraint only).
The detailed algorithm is given in Alg. 3. It is made of
two steps: (1) attribute computation which is a bottom-up
approach required to compute average hue and brightness
values; (2) automatic node selection which is a top-down
approach starting from the root and selecting only relevant
nodes. If these nodes fulfill the predefined criteria, their
related subtrees are not further explored.

Segmenting color images based on a global hue constraint
coupled with local differences in the RGB space might not
seem to be the most relevant strategy. Let us recall that our
goal here is to illustrate the potential of the α-tree model
in the context of image segmentation. Our proposal is not
at all limited to these local and global criteria, and can be
set up with other more robust criteria. However, this point
is not addressed here and is left for future studies.

Result: automatic segmentation
// Step #1 bottom up attribute

computation
computeAttributes( root, parameters) begin

if alpha = 0 then
set size of pixels;

else
foreach spare in siblingSpares do

foreach subset in spare do
computeAttributes(subset,
parameters);

foreach spare in siblingSpares do
foreach subset in Spare do

define allAttributes with attributes of
subset;

// to be sure to start with
significant data

inverseSort( allAttributes);
forall the allAttributes do

aggregate pixels according to their features;
// Step #2 automatic node selection
autoSelect( root, parameters) begin

if minArea then
// nothing else in that branch

else if not maxArea and (valid hue or valid
brightness) then

addSelection( root) ;
else if root is a leaf then

// nothing else in that branch
foreach spare in root.siblingSpares do

for subset in spare do
autoSelect(subset, parameters);

Figure 3. Alpha-Tree Automatic Segmentation

The complexity of the proposed procedure has been
estimated as follows: O(N log(A)) for the first step, where
every nodes have to be scanned; O(K log(A)) for the second
step. Here N denotes the number of pixels in the image
while K is the number of relevant nodes or objects to be
kept (limited to 100 in practice).

E. Efficient Implementation of α-tree Computation

Manipulating an image through its α-tree leads to very
efficient algorithms (such as segmentation as addressed in
this paper). However, the computational cost of the α-tree
building step might also require some study to improve
efficiency.

We consider here a parallel implementation to speedup the
building process and introduce the parallel algorithm given
in Alg. 4. In this algorithm, the function distance refers to
the local dissimilarity measure in use (here the Chebyshev
distance). The function link is more complex and aims to
link two leaves by looking for a compatible node. When the



two considered nodes do not belong to the same subtree (i.e.
they are not connected), this function creates a link between
the two subtrees (which can be as high as the tree root if
necessary). Thus the image model is always a single tree
and not a forest.

Result: α-tree building
pix ← createPixels() ;
for x ← 0 to width do

for y ← 0 to height do
val[x][y] ← compute( h, s, b);

for scale in scales do
for tile at scale do

m ← (top+bottom)/2;
for x ← left to right do

d ← distance( pix[x][m-1], pix[x][m]);
link( val[x][m-1], val[x][m], d);

c ← (left+right)/2;
for y ← top to bottom do

d ← distance( pix[c-1][y], pix[c][y]);
link( val[c-1][y], val[c][y], d);

reduceTree;

Figure 4. Alpha-Tree Creation

The input image is split into several areas which will
be simultaneously processed with the same operations. This
will lead to several independent subtrees. Let us note that
depending on image content (some areas might be more
complex than others), these trees may have different depth
and require various computational costs to be built. There
is thus a need for synchronization, followed by a merging
procedure which occurs on both spatial dimensions. During
this step, each pixel is compared to his previous neighbors in
the horizontal and vertical axes, to create a new node which
is inserted in the tree according to the local dissimilarity
value.

We have observed that most of the computation time
is spent during the update of node children. In particular,
gathering flat zones leads to many merging operations. We
thus have adopted a data structure which allows for a late
merging of these zones. To do so, we first scan the image
to build the α-tree. Then we require a second pass on the
image to reduce the tree by performing late fusions and
simplifying useless nodes. The overall complexity of this
algorithm is then O(2N log(A)) with N the number of
pixels and A = 256 the tree height.

IV. EXPERIMENTS

In order to evaluate the original segmentation method
proposed in the previous section, we have conducted a set
of experiments, which will be presented here. But first, we
discuss how to set the different parameters involved in our
algorithm.

Figure 5. Illustration of automatic image segmentation

A. Parameter settings

As indicated previously, our segmentation method relies
on several parameters to be set. In the presented experiments,
parameter settings has been achieved empirically, with a
single set of parameters for all images to be segmented.
To ensure reproducibility, we provide here the values used
in our experiments. Tsaturation = 0.02, Tangle = 0.07, Toutlier =
0.14 are used to describe the average hue of each α-zone.
[Tmin, Tmax] = [0.02, 51] denotes the interval of significant
α-zones in terms of relative area w.r.t the whole image
(i.e. the other nodes in the tree will not be selected). If an
image comes in greyscale, or some image parts have a low
saturation, the parameters involved are T ′outlier = 0.02 and
T ′outlier = 0.3.

Fig. 5 illustrates the behavior of our automatic segmen-
tation method. Each region is represented by the average
hue of its highest (in the tree hierarchy) node. Grey and
black colors are respectively used for low contrast and
unsegmented areas.

B. Automatic image segmentation

Let us recall that our algorithm does not lead to a complete
segmentation or partition of the image. Based on the α-tree
features, it kept only relevant nodes and branches, leaving
some parts of the image out of the resulting partition. Of
course, a full partition might be obtained by adding all leaves
of removed branches to the set of selected branches.

To achieve a fair evaluation w.r.t. the state-of-the-art,
we have experimented our algorithm on the Berkeley Seg-
mentation Dataset [7]. This dataset offers a wide range of
natural images, along with some reference segmentation
maps produced with manual user segmentation. We have
measured the performance of our algorithm based on several
criteria taken from [9] and [10]. More precisely, we have
obtained an overall oversegmentation ratio (OV) equal to
23.66 and an overall maximal precision (PM) equal to 60%.
While these preliminary results are still far from being



Figure 6. Illustration of video matting

perfect, they are very promising since we have not optimized
the parameter settings yet. Let us precise that only 70% of
the image content is analyzed (the insignificant nodes are
removed). We can thus modify the PM measure to deal with
such an incomplete segmentation, leading then to a new PM
value of 87%. Of course, manual tuning of the parameters
may lead to better results on some images, e.g. up to PM
equal to 97% in our experiments.

C. Interactive video matting

Besides automatic image segmentation, the proposed
scheme can also be used in an interactive framework. In
this case, the user is expected to pick one or several pixels
from which relevant branches from the α-tree are extracted.
This processing is also known as image matting in the
computer vision and graphics community and provides, for a
given pixel or area, the main object-of-interest it belongs to
(together with his edges). Since our algorithm comes with
a very small computation time, it has been experimented
in the context of matting of still images but also of video
sequences. For the sake of conciseness, only experiments on
video matting are presented here.

We show in Fig. 6 the matting of 5 objects-of-interest
marked by the user on the middle frame. Only a sample of
the video frames are shown. We can observe that objects are
accurately extracted. This process is achieved in less than a
few milliseconds once the tree has been fully built. Indeed,
the online matting has a complexity equals to O(log(A)),
with here A = 256.

V. CONCLUSION

In this paper, we have considered the α-tree image model
in the context of image segmentation. From an in-depth
study of the tree properties, we have introduced some
relevant features to drive the segmentation process. The
subsequent image segmentation algorithm comes with a low
complexity thanks to an efficient implementation scheme.
Moreover, this make possible to use this algorithm both
in an interactive way and with video data. Preliminary
results obtained with the Berkeley Segmentation Dataset are
promising and appeal for further studies.

More precisely, the tree structure has to be further ex-
plored to understand how it can provide more image knowl-
edge. Since it shares some similarities with the concept
of MSER (Maximally Stable Extremal Region) [11], a
comparative study is worth being achieved. Besides, various

information (object size, edge sharpness) might be extracted
to distinguish between object-of-interest and other objects in
an automatic fashion. We are also replacing the manual and
empirical step for parameter settings by a machine learning
strategy, relying on a genetic algorithm. For experimental
setups such as the Berkely Segmentation Dataset, the avail-
ability of some reference segmentation maps has indeed to
be exploited. Finally, following this first experiment, we
would like to consider other tree models (i.e. hyperconnected
trees [12]) in such a segmentation paradigm.
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