
COmBinatorial optimisation and Related Algorithms

Practical Exercise 2019-2020

Integer Linear Programming Formulations for the
Elementary Longest/Shortest Path Problems (ELPP/ESPP)

The classical ELPP/ESPP states as follows:1

ELPP/ESPP : Given a directed graph G = (V,E, λ) where λe ≥ 0 denotes the length
of edge e ∈ E, find an elementary path with maximum/minimum total lengthfootnote2.

Firstly, you will study the below described formulations for solving this problem. Follow
carefully the list of tasks associated with any of the below models and report your observa-
tions.

1 Modeling by adding initial and final vertices s and t

Denote by δ+(v) ⊂ E and δ−(v) ⊂ E the set of outgoing and incoming edges of node v.
Denote G′ = (V ′, E′, λ) where

• V ′ = V ∪ {s, t} and s and t are such that s /∈ V and t /∈ V .

• E′ = E ∪ {(s, v)|v ∈ V } ∪ {(u, t)|u ∈ V }

We assume that |δ−(s)| = |δ+(t)| = 0.
The standard integer programming formulation to find a longest/shortest path from vertex

s to t is the following:

∀e ∈ E′, xe ∈ {0, 1} (1)

∀u ∈ V,
∑

e∈δ+(u)

xe ≤ 1 (2)

∀u ∈ V ′ :
∑

e∈δ+(u)

xe −
∑

e∈δ−(u)

xe =


1 if u = s
-1 if u = t
0 else

(3)

max(min)
∑
e∈E

xeλe (4)

Tasks :

1.1 Use AMPL to describe the model (1)-(4).

1An elementary (also called simple) is a path that traverses each vertex at most once.
2For the state of the art refer to ([1, 3, 5])



1.2 Run your model on the graph G1 from the set of benchmarks and verify the correctness
of the obtained results.3

1.3 Replace (1) with its relaxed version, i.e. with

∀e ∈ E′, 0 ≤ xe ≤ 1 (5)

1.4 Run again the model (2)-(5) on the graph G1 and analyse the obtained result. What is
the impact of replacing (1) by (5)? Give a theoretical explanation of your observation.

1.5 Run now the model (1)-(4) on the graph G2 from the set of benchmarks and interpret
the obtained result.

1.1 Sequential formulation (MTZ)

To derive an extended formulation à la Miller, Tucker and Zemlin ([4]) (hereafter MTZ)
we introduce, for each vertex ∀v ∈ V , an auxiliary variable yv and add the constraint (7)

∀v ∈ V, yv ≥ 0 (6)

∀(u, v) ∈ E, (yv − yu) ≥ xuv − (1− xuv)|V | (7)

Tasks :

2.1 Use AMPL to describe the model (1)-(7). Denote it by MTZ.

2.2 Run the model MTZ on the graph G2 and verify the correctness of the obtained result.
Give a theoretical explanation of your observation.

2.3 Run now the model MTZ on the graphs fast-10, ladder-8, wheel-15 and verify the
correctness of the obtained result.

2.4 Compute theoretically the number of the variables (either binary, integer, or real), the
number of equalities and the number of inequalities in the model (MTZ). Chose an
instance and check if the data provided by AMPL corroborates your estimation.

1.2 Single-flow formulation (SF)

A formulation similar to the single-flow Asymmetric Traveling Salesman Problem (ATSP)
formulation of Gavish and Graves ([3]) can be obtained introducing an auxiliary flow fe ∈ R+

to be delivered to the nodes belonging to the s− t path.

∀e ∈ E′ : 0 ≤ fe ≤ |V |. (8)

The variable fe expresses the quantity of the flow circulating along the edge e ∈ E. In
the case xe = 0, no flow can use this edge, as ensured by

3Many thanks to Sebastien François who generated some of the instances for this practical!



fe ≤ |V |xe ∀e ∈ E′. (9)

Furthermore, to any vertex v ∈ V a binary variable iv is associated.

∀v ∈ V, iv ∈ {0, 1} (10)

According to (11), the flow exiting s equals the number of nodes that are reached by the
s − t path. Constraints (12) ensure that the balance of the auxiliary flow on each node is
equivalent to iv, which, according to constraint (13), is either 1, if node v is in the s− t path,
or 0 otherwise. Constraints (14) and (15) ensure that the path begins with s and ends with
t. ∑

e∈δ+(s)

fe = |V | (11)

∀v ∈ V :
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = iv (12)

∀v ∈ V :
∑

e∈δ−(v)

xe = iv (13)

∑
e∈δ+(s)

xe = 1 (14)

∑
e∈δ−(t)

xe = 1 (15)

max(min)
∑
e∈E

xeλe (16)

Tasks :

3.1 Use AMPL to describe the model obtained by adding constraints (8)-(16) and denote
it by (SF).

3.2 Run the model SF on the graph G2 and verify the correctness of the obtained result.

3.3 Run now the model SF on the graphs fast-10, ladder-8, wheel-15 and verify the
correctness of the obtained result.

3.4 Compute theoretically the number of the variables (either binary, integer, or real),
the number of equalities and the number of inequalities in the model (SF). Chose an
instance and check if the data provided by AMPL corroborates your estimation.

3.5 Compare the performance of the model (MTZ) with the one of (SF) on larger instances
from the benchmarks data sets and/or using your own graph instances generator4. For
this purpose you should use the number of iterations, the number of branch and bounds
nodes and the time provided by the solver. Check if this statistic changes when using
cplex instead of gurobi.

4Many thanks to Kerian Thuillier who provided a graph instances generator!



2 Direct modelling (GAT model [2] )

This model uses the original graph G = (V,E) without adding new vertices. As in the
previous models, a binary variable is associated to any edge of the graph, i.e.

∀e ∈ E : xe ∈ {0, 1} (17)

Furthermore, to any vertex v ∈ V we associate three variables, iv, sv, and tv, which stand
respectively for intermediate, source, and target vertex for some path, and satisfy

0 ≤ iv ≤ 1, 0 ≤ sv ≤ 1, 0 ≤ tv ≤ 1. (18)

Each vertex can be visited at most once, i.e.

∀v ∈ V : iv + sv + tv ≤ 1. (19)

All three variables are set to zero when the associated vertex v is outside the path.
Otherwise, it could be either a source/initial vertex (sv = 1, tv = 0, iv = 0), or a target/final
(tv = 1, sv = 0, iv = 0), or an intermediate vertex (iv = 1, tv = 0, sv = 0). These four
possibles states for a vertex v are determined by the following constraints

sv + iv =
∑

e∈δ+(v)

xe (20)

and

tv + iv =
∑

e∈δ−(v)

xe. (21)

Finally, only one path is searched for∑
v∈V

sv = 1 and
∑
v∈V

tv = 1. (22)

Theorem 1. The variables iv, sv, tv,∀v ∈ V take binary values.

Proof. See [2].

We introduce a continuous variable fe ∈ R+ to express the quantity of the flow circulating
along the edge e ∈ E.

∀e ∈ E : 0 ≤ fe ≤ |V |. (23)

∀e ∈ E, the value of xe is set to 1, if the edge e is part of the path. Otherwise, xe = 0
and no flow can use this edge, as ensured by

fe ≤ |V |xe ∀e ∈ E. (24)

The balance of the auxiliary flow on each node is provided by the following constraints

∀v ∈ V :
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe ≥ iv + sv − tv|V | (25)



sv + iv|V | ≥
∑

e∈δ+(v)

fe. (26)

The purpose of the last two constraints is manifold. When a vertex v is a source (sv = 1),
(25) and (26) generate an initial flow of value 1. When v is an intermediate vertex (iv = 1),
constraint (25) forces the flow exiting v to increase in respect to the flow that inputs v. This
feature forbids cycles in the context of (20) and (21). When v is a final vertex, (25) is simply
a valid inequality.

We search for the longest path in the graph. The objective hence is :

max
∑
e∈E

xeλe (27)

Tasks :

4.1 Use AMPL to describe the model obtained by adding constraints (17)-(27) and denote
it by GAT from Genscale Assembly Tool.

4.2 Run the model GAT on the graphs G2, fast-10, ladder-8, wheel-15 and verify the
correctness of the obtained result.

4.3 Compute theoretically the number of the variables (either binary, integer, or real),
the number of equalities and the number of inequalities in the model GAT. Chose an
instance and check if the data provided by AMPL corroborates your estimation.

4.4 Verify experimentally Theorem 1

4.5 Compare the performance of above three models on larger instances from the bench-
marks data sets and/or using your own graph instances generator.
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