
COBRA=COmBinatorial optimisation and Related Algorithms

Rumen Andonov (Part 1) and Sophie Pinchinat (Part 2)

University of Rennes 1 and INRIA Rennes Bretagne-Atlantique

Contents of Part 1

Contents of Part 1 (Rumen Andonov)

1 Formulating logical implications as linear programs
2 Linear Programming : the basics
3 Fundamental graphs algorithms

I Searching for Shortest/Longest paths in digraphs with cycles.
I Maximum flow and minimum cut relationships.

4 Duality theory in Linear Programming
5 Efficient Primal-Dual Algorithms

I Max-Flow Min-Cut Algorithm
I The assignment problem (Hungarian (Kuhn’s) Algorithm)

6 References
I Algorithms, S. Dasgupta, C. H. Papadimitriou, et U. V. Vazirani, McGraw-Hill 2006
I Graphes et algorithmes, Michel Gondran et Michel Minoux, Eyrolles, 1995
I Networks : An Introduction, M.E. Newman, 2010
I Aide à la décision : Une approche par les cas, Philippe Vallin, Daniel Vanderpooten, Ellipses,

2002
I Problems and exercises in Operations Research, Leo Liberti, Ecole Polytechnique, 2006
I Formulating logical implications in combinatorial optimisation, Frank Plastria, European Journal of

Operational Research 140 (2002) 338–353

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 2 / 94

Formulating logical implications as linear programs

Modeling (formulating linear programs)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 3 / 94

Formulating logical implications as linear programs

Exercise : Modeling in service of the elegance

An elegant and pretty student has to fly to the United States for her summer internship. Besides
her professional possessions and a few necessary objects, she must decide upon a certain
number of clothes from her wardrobe for her stay. Due to aerial rules, it turns out there are only 4
kilograms of clothes she is allowed to take on the plane. A first selection in her wardrobe leads to
the student keeping, besides the dress she has decided to wear on the plane, 3 skirts, 3 (pairs of)
pants, 4 tops and 3 dresses. The weight in grams of each piece of clothing is shown in Table (1).
The student decides that :

1 she must wear at least one dress
2 if she takes the skirt n01 then she will also take the top n02 as it matches very well with that

skirt
3 she won’t take the top 4 if she takes the tops 1 and 2
4 if she takes no skirts, no pants, no tops, she needs to take at least one dress.
5 if she takes no skirts, she needs to take at least two pants.
6 if she doesn’t take all her dresses, then she needs at least two skirts.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 4 / 94

Formulating logical implications as linear programs

Modeling in service of the elegance II

Clothing Skirt Pants Top Dress
1 2 3 1 2 3 1 2 3 4 1 2 3

Weight (g) 500 400 700 600 500 500 400 300 300 400 600 700 800

Table 1: Weight in grams for each piece of clothing.

top
1 2 3 4

1 + + +
skirt 2 + +

3 +
1 + +

pants 2 +
3 + +

Table 2: Acceptable combinations (outfits)

The goal is to maximize the number of different outfits she will be able to wear in the USA. A
dress makes up an outfit. The other outfits will consist of a top paired with a skirt or pants.
However, the rules of fashion allow only certain combinations, indicated by a cross in the table (2).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 5 / 94

Formulating logical implications as linear programs

Exercise : Optimizing an anti-fire system

The port company COSMAR wishes to improve its anti-fire security by buying new anti-fire
systems SLIC. The company identifies 7 zones of the port to be specially protected. These zones
are denoted by X on the below figure.

D GFA B C E

NORTH

WEST

1

2

3

5

6

4

X

X

X

XXX

X

Figure 1: The 7 zones to be protected by the company COSMAR

COSMAR intends to allocate the SLIC systems on the North and West sides of the port. A SLIC
system protects the zones situated on the same row or column. For example, a SLIC installed on
D covers zones (1,D) et (6,D).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 6 / 94

Formulating logical implications as linear programs

Optimizing an anti-fire system

Questions:
1 Formulate the corresponding linear program that allows to minimize the number of the anti-fire systems

needed to cover the 7 special zones.

2 Add a constraint requiring that these anti-fire systems cannot be placed on consecutive columns, that at
least one SLIC is allocated on row 1 or on column A, and that at least 60% of the SLIC are placed on
the North side.

3 Add a constraint requiring that if no SLIC has been placed on a even-numbered row, then at least two
SLICs need to be placed on odd-numbered rows.

4 Add a constraint requiring that if the number of SLICs placed on columns A,B,C,D is less than 2, then
the number of SLICs placed on columns E, F, G must be at least 2.

5 Since the cost of one SLIC is 8070 euros, COSMAR wishes to buy at most 3 of them. For the
non-protected zones COSMAR plans to take out insurance against fire. This insurance costs 2000
euros for each zone on lines 1, 2, 3 and 3000 euros for the other lines. Modify the previous linear model
in order to minimize the total cost.

6 Are you aware of software packages permitting to solve such problems?

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 7 / 94

Formulating logical implications as linear programs

Tasks allocation

m tasks must be run on n CPUs which have the same performance. The length of each task is
known (say Li for the i th task). The goal is to allocate all tasks to the processors so that the
completion time of the last task is minimized.

1 Formulate the corresponding linear program.
2 Add a constraint forcing task 2 to be executed on P2 if task 1 is executed on P1.
3 Add a constraint forcing tasks 3 and 4 to be both executed on P1 if task 1 is executed on P1.
4 Add a constraint forcing at least one of the processors to run no more than some given

constant time E .
Hint: Denote by M an upper bound for the sum of task lengths and us it in a big-M
constraint.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 8 / 94

Formulating logical implications as linear programs

Formulating logical implications as linear programs

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 9 / 94

Formulating logical implications as linear programs

Is modeling an "art"?

Yes, unfortunately modeling cannot be reduced to a standard set of procedure and sometimes
can be quite discouraging. But some "tricks of the trade" do exist which are very helpful.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 10 / 94

Formulating logical implications as linear programs

Basic Logical Implication Principle (LIP)

A logical implication is a property expressed as :
If A holds then B holds

Theorem 1 (LIP-Logical Implication Principle)

Let xi be a 0-1 variable for all i in some finite index set I and y any variable satisfying 0≤ y ≤ 1,
then the logical implication
If xi = 0,∀i ∈ I then y = 0
is exactly expressed by the inequality

y ≤∑
i∈I

xi (1)

Proof. Straightforward .

Question: How to adapt the theorem to the case : 0≤ y ≤ c where c > 1?

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 11 / 94

Formulating logical implications as linear programs

Using complementarity

Theorem 2
Let xi be a 0-1 variable for all i in some finite index set I ; let I0 and I1 be two disjoint subsets of I and let y be
an integer or continuous variable satisfying 0≤ y ≤ 1. Then the logical implication
If xi = 0,∀i ∈ I0 and xi = 1,∀i ∈ I1 then y = 0
is exactly expressed by the inequality

y ≤ ∑
i∈I0

xi + ∑
i∈I1

(1− xi) (2)

while the similar logical implication
If xi = 0,∀i ∈ I0 and xi = 1,∀i ∈ I1 then y = 1
is exactly expressed by the inequality

1− y ≤ ∑
i∈I0

xi + ∑
i∈I1

(1− xi) (3)

Proof. Direct application of Th. 1 to the 0-1 variables xi , i ∈ I0 and (1− xi), i ∈ I1 and respectively y or 1− y .

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 12 / 94

Formulating logical implications as linear programs

Using complementarity II

Instead of remembering the theorem, it is easier to apply the following complementarity rule
directly:

When the logical implication involves some xi = 1 and/or y = 1 instead of 0, use (LIP) replacing
each such xi and/or y by its corresponding complementary variables 1− xi and/or 1− y .

Example : If x1 = 1 and x2 = 0 and x3 = 1 then y = 0
is equivalent to
If 1− x1 = 0 and x2 = 0 and 1− x3 = 0 then y = 0
which is expressed by

y ≤ (1− x1) + x2 + (1− x3) (4)

or
x1− x2 + x3 + y ≤ 2 (5)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 13 / 94

Formulating logical implications as linear programs

Linearization of quadratic 0-1 variables

In order to linearize, we often need to set yij = xi xj where yij ,xi ,xj ∈ {0,1} which means exactly

yij = 1 If and only if xi = 1 and xj = 1.

In other words,
If yij = 1 then xi = 1
If yij = 1 then xj = 1
If xi = 1 and xj = 1 then yij = 1
We apply LIP to these three logical implications and obtain:

1− xi ≤ 1− yij (6)

1− xj ≤ 1− yij (7)

1− yij ≤ 1− xi + 1− xj (8)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 14 / 94

Formulating logical implications as linear programs

Other techniques for modeling

Write a model with objective function: minmax{e1,e2, . . . ,en} where e1,e2, . . . ,en are linear
functions.

Introduce y ∈ R s.t. y ≥ e1,y ≥ e2, . . . ,y ≥ en. Then miny .

Write a model with objective function: maxmin{e1,e2, . . . ,en} where e1,e2, . . . ,en are linear
functions.

Introduce y ∈ R s.t. y ≤ e1,y ≤ e2, . . . ,y ≤ en. Then maxy .

Write a model with objective function: min | e | where e is a linear functions

Note that | e |= max{e,−e}. Then use min−max model.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 15 / 94

Formulating logical implications as linear programs

Big-M constraints

Let x ≥ 0 be such that, if x > 0 then K ≤ x ≤M.

Introduce y ∈ {0,1} and add the constraints: x ≤My and x ≥ Ky .

Let 0≤ x ≤M and 0≤ z ≤ N represent incompatible activities. That is:
If x > 0 then z = 0 and (vice versa) if z > 0 then x = 0.

Introduce s, t ∈ {0,1} and add the constraints: x ≤Ms, z ≤ Nt and s + t = 1.

Exclusive OR relation: Let the function f (x1,x2, . . . ,xn) be such that ν≤ f (x1,x2, . . . ,xn)≤M or (otherwise)
f (x1,x2, . . . ,xn)≤ µ

Introduce y ∈ {0,1}. Add the constraints:

f (x1,x2, . . . ,xn)≤ µ + My and f (x1,x2, . . . ,xn)≥ ν−M(1− y) (9)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 16 / 94

Linear Programming : the basics

Linear Programming (LP)
Why ?

This formalism successfully models a large number real situations.

Efficient solvers like (IBM ILOG CPLEX, Gurobi, COIN, MINOS etc.) exist today.

Modeling languages like "A Mathematical Programming Language (AMPL)" have been
developped.

Pyomo : Python-based, open-source optimization modeling language for formulating,
solving, and analyzing optimization models.

Any linear program can be written in its standard form :

max c1x1 + · · ·+ cnxn
s. c. a11x1 + · · ·+ a1nxn ≤ b1

...
...

...
am1x1 + · · ·+ amnxn ≤ bm
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

A LP requires :

an objective function (linear)

m + n constraints (linear) .

n variables xi , i = 1, . . . ,n

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 17 / 94

Linear Programming : the basics

LP : matrix forms

Maximize
n

∑
j=1

cj xj

s. c.
n

∑
j=1

aij xj ≤ bj , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . ,n

or
max{cx | Ax ≤ b, x ≥ 0}

where

A =

a11 . . . a1n
...

...
am1 . . . amn

 , x =

x1
...

xn

 , b =

b1
...

bm

 ,

c = (c1 . . .cn)

c is a given objective,
b is a given right hand RHS,
and Am×n – constraints matrix .

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 18 / 94

Linear Programming : the basics

LP formulation for Shortest/Longest path problem (SPP/LPP)
Given a directed acyclic graph (DAG) G = (V ,E ,s, t) where m = |E |, n = |V | and weights wij
associated with each arc (i, j) ∈ E . Find a path from s to t with the minimum/maximum total
weight.
Definition :
The node-arc incidence matrix
A = [ai,j] i = 1,2, . . . , |V |
and j = 1,2, . . . , |E | is defined by ai,j =

+1 if arc ej leaves node i
−1 if arc ej enters node i
0 otherwise

Example

A =

u1 u2 u3 u4 u5
s +1 +1 0 0 0
t 0 0 0 −1 −1
a −1 0 +1 +1 0
b 0 −1 −1 0 +1

A weighted directed graph and the corresponding node-arc incidence matrix A. The weights
are in squared brackets.
Exercise : Use the node-arc incidence matrix to describe the LP formulation of the above
SPP/LPP.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 19 / 94

Linear Programming : the basics

LP formulation for Shortest/Longest path problem (SPP/LPP)

Any path from s to t can be represented by the vector x where xe = 1 if the arc e belongs to the
path, xe = 0 otherwise and under the conditions

flow conservation law for any intermediate vertex v :

∀v ∈ V ∑
(u,v)∈E

xuv = ∑
(v ,u)∈E

xvu (10)

a flow of value 1 exits the vertex s and enters the vertex t :

∑
(s,v)∈E

xsv = 1 et ∑
(u,t)∈E

xut = 1 (11)

the goal is to maximize/minimize the total weight :

max(min)z = ∑
(u,v)∈E

xuv wuv (12)

Equations (10), (11) and (12) represent a linear program (LP).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 20 / 94

Linear Programming : the basics

LP formulation for Shortest/Longest path problem (SPP/LPP)

Let A be the node-arc incidence matrix and denote by ai its i th row. The flow conservation
law for any intermediate vertex i is written :

ai x = 0 (13)

The linear program is :

let d ∈ Rn be defined as

di =

+1 i = s
−1 i = t
0 otherwise

max(min) ∑
e∈E

xewe (14)

Ax = d (15)

∀e ∈ E , xe ∈ {0,1} (16)
Exemple:

A =

xsu xsv xuv xut xvt

s +1 +1 0 0 0
t 0 0 0 −1 −1
a −1 0 +1 +1 0
b 0 −1 −1 0 +1

Values in red are the weights.
Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 21 / 94

Linear Programming : the basics

PL formulation versus AMPL code
for more details see AMPL : STREAMLINED MODELING FOR REAL OPTIMIZATION
(https://ampl.com)

flow conservation law for any intermediate vertex v :

∀u ∈ V\{s, t} : ∑
(u,v)∈E

xuv = ∑
(v ,u)∈E

xvu (17)

AMPL: conservation{v in V diff {start, target}} : sum{(u,v) in E} x[u,v] = sum{(v,u) in E} x[v,u];

a flow of value 1 exits the vertex s and enters the vertex t :

∑
(s,v)∈E

xsv = 1 et ∑
(u,t)∈E

xut = 1 (18)

AMPL: source_only_one_output: sum{(start,v) in E} x[start, v] = 1;

AMPL: target_only_one_input: sum{(u,target) in E} x[u, target] = 1;

the goal is to maximize/minimize the total weight :

max(min)z = ∑
(u,v)∈E

xuv wuv (19)

AMPL: minimize pcc : sum{(u,v) in E} x[uv]*w[uv];

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 22 / 94

Linear Programming : the basics

Exemple

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 23 / 94

Linear Programming : the basics

Max-Flow Min-Cut (MFMC) Problem

Let N = (s, t,V ,E ,C) be a directed graph G with n = |V | nodes, m = |E | edges with
edge-capacity c(i, j)≥ 0 and two special notes s, t which are, respectively a source and sink
of G. Such graphs are called networks and we will be searching for feasible flows in
networks.

Denote by δ+(u) (resp. δ−(u)) the set of output/input edges for the vertex u. A feasible flow
is defined by a vector φ = [φ1,φ2, . . .φm], s.t. ∀e ∈ E , 0≤ φe ≤ ce, and such that the flow
conservation holds ∀u ∈ V\{s, t}, i.e.

∑
e∈δ+(u)

φe = ∑
e∈δ−(u)

φe (20)

By φ0 we denote the size of a flow and therefore

∑
e∈δ+(s)

φe = ∑
e∈δ−(t)

φe = φ0 (flow value) (21)

The Max-Flow Problem consists in finding the flow that maximizes φ0.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 24 / 94

Linear Programming : the basics

Modeling MFMC as a LP problem

The Max-Flow Problem reduces to linear programming (maximizing a linear objective function
under a set of linear constraints).

Let ai denote the i th row of A. The flow conservation at a node i (except s, t) is expressed by
:

ai φ = 0 (22)

The LP formulation of the MFMC is :

let d ∈ Rn be defined by

di =

−1 i = s
+1 i = t
0 otherwise

maxφ0 (23)

dφ0 + Aφ = 0 (24)

φ ≤ c (25)

φ ≥ 0 (26)

φ0 ≥ 0 (27)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 25 / 94

Linear Programming : the basics

PL formulation versus AMPL code

the conservation law : ∀u ∈ V\{s, t}, i.e.

∑
(u,v)∈E

φ(u,v) = ∑
(v ,u)∈E

φ(v ,u) (28)

AMPL: conservation{v in V diff {start, target}} : sum{(u,v) in E} f[u,v] = sum{(v,u) in E} f[v,u];

Goal: Find a compatible flow φ′ = [φ0,φ1,φ2, . . .φm] (i.e.

0≤ φu ≤ cu ,∀u =∈ E (29)

AMPL: limit_flow{(u,v) in E}: f[u,v] <= capacite_max[u,v];
such that φ0 is maximized .
AMPL: maximize flow_max : sum{(u,target) in E} f[u, target];

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 26 / 94

Linear Programming : the basics

Exemple

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 27 / 94

Linear Programming : the basics

Exemple : manufacturing

A factory manufactures four products with profits 7,9,18 et 17 e respectively. The
factory uses three raw materials (ressources) A,B,C with availabilities 42,17,24 units.
The coefficients aij in the below table indicate the number of units of material i product j
needs in ordre to be produced. The goal is to maximize the total profit.

product 1 product 2 product 3 product 4 stock
ressource A 2 4 5 7 42
ressource B 1 1 2 2 17
ressource C 1 2 3 3 24

profit 7 9 18 17

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 28 / 94

Linear Programming : the basics

Exemple : manufacturing

Let xi be the amount of product i produced.

product 1 product 2 product3 product 4 stock
ressource A 2 4 5 7 42
ressource B 1 1 2 2 17
ressource C 1 2 3 3 24

profit 7 9 18 17

Maximize z = 7x1 + 9x2 + 18x3 + 17x4
s. c. 2x1 + 4x2 + 5x3 + 7x4 ≤ 42

x1 + x2 + 2x3 + 2x4 ≤ 17
x1 + 2x2 + 3x3 + 3x4 ≤ 24
x1 , x2 , x3 , x4 ≥ 0

The above is a linear program in its canonical form .

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 29 / 94

Linear Programming : the basics

Feasible region

The feasible region (set of admissible/feasibles solutions) is given by the intersection of
a finite number of closed half-spaces. This region is a convex polyhedron
P = {x | Ax ≤ b, x ≥ 0} ⊆ Rn.
P is a convex polyhedron dans Rn (if x ∈ P, y ∈ P and 0≤ λ≤ 1 then
λx + (1−λ)y ∈ P)

convexe non convexe

A point x ∈ S is an extreme point or vertex of a convex set S if it cannot be expressed
as x = αy + (1−α)z with y ,z ∈ S,0 < α < 1 and y ,z, 6= x .

Major result:
Any linear program with finite optimal solution has an optimal extreme point (corner of
the polyhedron) P.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 30 / 94

Linear Programming : the basics

Basic solutions

Consider a linear program in standard form, i.e.

z = max{cx | Ax = b, x ≥ 0}

where A ∈ Rm×n, b ∈ Rm×1, c ∈ R1×n, x ∈ Rn×1, m ≤ n and A has full rank (rows are linearly
independent).
A point x is a basic solution if (i) satisfies Ax = b and (ii) the columns of the constraint matrix
corresponding to the nonzero components of x are linearly independent. The components of x
are separated into two subvectors : n−m nonbasic variables xN (all are zero) and m basic
variables xB , whose constraints coefficients correspond to an invertible m×m basis matrix B.
Then we have

BxB + NxN = b, and hence

xB + B−1NxN = B−1b = b

A point x is a basic feasible solution if in addition x ≥ 0.
The objective fonction can be written as

z = cBxB + cNxN = cBb + (cN − cBB−1N)xN

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 31 / 94

Linear Programming : the basics

Extreme points of P

Theorem : A point x is an extreme point of the set {x : Ax = b,x ≥ 0} iff it is a basic
feasible solution.
The number of basic feasible solutions is bounded by the number of ways that the m
variables xB can be selected among the n variables x .(

n
m

)
=

n!
m!(n−m)!

The solution is amongst these extreme points of P.

x1 + 3x2 ≤ 18
x1 + x2 ≤ 8

2x1 + x2 ≤ 14
x1 ≥ 0

x2 ≥ 0

(0,0) (7,0)

(8,0) (18,0)

(0,6)

(0,8)

(0,14)

(6,2)

(3,5) (4.8,4.4)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 32 / 94

Linear Programming : the basics

The simplex method

Idea : perform an intelligent search in the set of extreme points.

Move from an extreme point to one of its adjacent if this move improves the objective.
Stop if no move improves the value of the objective.

0 140

180

180

210

Figure 2: The value of the objective function is indicated on the vertices.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 33 / 94

Linear Programming : the basics

The simplex algorithm

Initialisation : Chose an initial vertex x0 ∈ P, t = 1.
Iteration t : Let y1, . . . ,yk be all the extreme points adjacent to x (two bases are
adjacent if they have m−1 variables in common (connected with x t by an edge)).

I If cx t > cys, s = 1, . . . ,k , stop. The optimal solution is x t .
I Otherwise, chose an adjacent vertex ys, such that cys ≥ cx t . Set x t+1 = ys

and move to itération t + 1.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 34 / 94

Linear Programming : the basics

Simplex – why does it work ?

Since the polyhedron is convexe and the objective is linear, any local maximum is also
global.

montagne convexe montagne nonïconvexe

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 35 / 94

Linear Programming : the basics

Exemple

product1 product 2 product 3 product 4 stock
ressource A 2 4 5 7 42
ressource B 1 1 2 2 17
ressource C 1 2 3 3 24

benefice 7 9 18 17

Maximize z = 7x1 + 9x2 + 18x3 + 17x4

s. c. 2x1 + 4x2 + 5x3 + 7x4 ≤ 42
x1 + x2 + 2x3 + 2x4 ≤ 17
x1 + 2x2 + 3x3 + 3x4 ≤ 24
x1 , x2 , x3 , x4 ≥ 0

The problem is written in its canonical form.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 36 / 94

Linear Programming : the basics

Introducing slack variables

7x1 + 9x2 + 18x3 + 17x4 =⇒ Max
2x1 + 4x2 + 5x3 + 7x4 + x5 = 42

x1 + x2 + 2x3 + 2x4 + x6 = 17
x1 + 2x2 + 3x3 + 3x4 + x7 = 24
x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥ 0

x5 = 42 − 2x1 − 4x2 − 5x3 − 7x4
x6 = 17 − x1 − x2 − 2x3 − 2x4
x7 = 24 − x1 − 2x2 − 3x3 − 3x4

z = 7x1 + 9x2 + 18x3 + 17x4

Tr. 1

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 37 / 94

Linear Programming : the basics

Basic solution and improvement

x5,x6,x7 are the basic variables, while x1,x2,x3,x4 are the nonbasic variables. The
basic solution is given by x1 = 0, x2 = 0, x3 = 0, x4 = 0 and x5 = 42, x6 = 17, x7 = 24. The
profit is z = 0.
Can we do better ?
Chose x3 and increase its value by ensuring the solution stays feasible. Hence

x5 ≥ 0 ⇒ 42−5x3 ≥ 0 ⇒ x3 ≤ 8.4
x6 ≥ 0 ⇒ 17−2x3 ≥ 0 ⇒ x3 ≤ 8.5
x7 ≥ 0 ⇒ 24−3x3 ≥ 0 ⇒ x3 ≤ 8

The most restrictive constraint is x3 ≤ 8.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 38 / 94

Linear Programming : the basics

Change of the basic solution

Solve in respect to x3 and replace in the other constraints. This gives

x5 = 2 − 1
3 x1 − 2

3 x2 + 5
3 x7 − 2x4

x6 = 1 − 1
3 x1 + 1

3 x2 + 2
3 x7

x3 = 8 − 1
3 x1 − 2

3 x2 − 1
3 x7 − x4

z = 144 + x1 − 3x2 − 6x7 − x4

Tr. 2

x7 exits the basis and x3 enters in the basis. The basic solution is x1 = x2 = x7 = x4 = 0,
x5 = 2, x6 = 1, x3 = 8. The profit is z = 144.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 39 / 94

Linear Programming : the basics

Can we do better ?

The only variable with non-negative coefficient is x1. Chose it to enter the basis

x5 ≥ 0 ⇒ x1 ≤ 6
x6 ≥ 0 ⇒ x1 ≤ 3
x3 ≥ 0 ⇒ x1 ≤ 24

from where x1 ≤ 3. x6 exits the basis and we obtain

x5 = 1 + x6 − x2 + x7 − 2x4

x1 = 3 − 3x6 + x2 + 2x7

x3 = 7 + x6 − x2 − x7 − x4

z = 147 − 3x6 − 2x2 − 4x7 − x4

Tr. 3

The profit is z = 147. This is optimal since all coefficient on the last row are negative.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 40 / 94

Linear Programming : the basics

Geometrical interpretation

A [0]

C [102]

I [144]

L [147]

J [145]

F [129]

B [94.5]

H [143]

K [146,5]

E [127]

D [119]

G [135]

vertex x1 x2 x3 x4 z
A 0 0 0 0 0
B 0 10.5 0 0 94.5
C 0 0 0 6 102
D 17 0 0 0 119
E 11.67 0 0 2.67 127
F 13 4 0 0 129
G 0 3 6 0 135
H 0 0 7 1 143
I 0 0 8 0 144
J 4 1 6 0 145
K 3 0 6.5 0.5 146.5
L 3 0 7 0 147

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 41 / 94

Linear Programming : the basics

Convergence and complexity of simplex algorithm

One moves from an extreme point to another increasing the value of the objective
function z. The number of vertices is bounded by

(n
m

)
.

If the objective function is bounded, the optimum will be found.

Otherwise, the simplex detects that the objective function is unbounded (no
candidat to enter in the basis).

Complexity issues:

In 1972 Klee and Minty showed that the worst case complexity of the simplex is
exponential.

However, it is has been shown that on average the simplex behaves polynomially
(O(min{(m−n)2,n2}).
In 1979 the Soviet mathematician Leonid Khachiyan described a polynomial-time
algorithm for linear programming (the ellipsoid method). However, it is too slow to
be of practical interest.

In 1984 Narendra Karmarkar proposed another polynomial-time algorithm for linear
programming (the interior-point method). It is considered competitive with the
simplex method.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 42 / 94

Linear Programming : the basics

Solve graphically

Maximize z = 2x1 + x2
s. c. 4x1 + 2x2 ≤ 8

x2 ≤ 2
x1,x2 ≥ 0

Maximize z = x1 + 2x2
s. c. −x1 + x2 ≤ 2

x2 ≤ 3
x1,x2 ≥ 0

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 43 / 94

Max-Flow Min-Cut (MFMC)

Max-Flow Min-Cut (MFMC)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 44 / 94

Max-Flow Min-Cut (MFMC)

LP formulation for Shortest/Longest path problem (SPP/LPP)

Given a directed acyclic graph (DAG) G = (V ,U) and weights wj associated with each arc uj ,
find a path from s to t with the minimum/maximum total weight.
Definition :
The node-arc incidence matrix
A = [ai,j] i = 1,2, . . . , |V |
and j = 1,2, . . . , |E | is defined by ai,j =

+1 if arc ej leaves node i
−1 if arc ej enters node i
0 otherwise

Example

A =

u1 u2 u3 u4 u5
s +1 +1 0 0 0
t 0 0 0 −1 −1
a −1 0 +1 +1 0
b 0 −1 −1 0 +1

A weighted directed graph and the corresponding node-arc incidence matrix A. The weights
are in squared brackets.
Exercise : Use the node-arc incidence matrix to describe the LP formulation of the above
SPP.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 45 / 94

Max-Flow Min-Cut (MFMC)

Max-Flow Min-Cut (MFMC) Problem

Let N = (s, t,V ,E ,C) be a directed graph G with n = |V | nodes, m = |E | edges with
edge-capacity c(i, j)≥ 0 and two special notes s, t which are, respectively a source and sink
of G. Such graphs are called networks and we will be searching for feasible flows in
networks.

Denote by δ+(u) (resp. δ−(u)) the set of output/input edges for the vertex u. A feasible flow
is defined by a vector φ = [φ1,φ2, . . .φm], s.t. ∀e ∈ E , 0≤ φe ≤ ce, and such that the flow
conservation holds ∀u ∈ V\{s, t}, i.e.

∑
e∈δ+(u)

φe = ∑
e∈δ−(u)

φe (30)

By φ0 we denote the size of a flow and therefore

∑
e∈δ+(s)

φe = ∑
e∈δ−(t)

φe = φ0 (flow value) (31)

The Max-Flow Problem consists in finding the flow that maximizes φ0.

The Max-Flow Problem reduces to linear programming (maximizing a linear objective
function under a set of linear constraints).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 46 / 94

Max-Flow Min-Cut (MFMC)

Modeling MFMC as a LP problem

Let ai denote the i th row of A. The flow conservation at a node i (except s, t) is expressed by
:

ai φ = 0 (32)

The LP formulation of the MFMC is :

let d ∈ Rn be defined by

di =

−1 i = s
+1 i = t
0 otherwise

maxφ0 (33)

dφ0 + Aφ = 0 (34)

φ ≤ c (35)

φ ≥ 0 (36)

φ0 ≥ 0 (37)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 47 / 94

Duality in Linear Programming

The magic thing called duality 1

1This section is largely influenced by the book Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani
Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 48 / 94

Duality in Linear Programming

Duality and Shortest paths

S

T

A physical model of a weighted undirected graph. Each edge is a string of length equal to the edge’s weight,
while each node is a knot at which the strings are tied.

How to find the shortest path from S to T?

Just pull S away from T until the gadget is taut.

Why does it work?

Because by pulling S away from T we solve the dual of the shortest-path problem!

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 49 / 94

Duality in Linear Programming

Duality and Max Flow problem

Consider the below network with edge capacities

Figure 3: Find the maximum flow in the above network using the Ford-Fulkerson algorithm (1).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 50 / 94

Duality in Linear Programming

Ford-Fulkerson algorithm : basic idea

Start with zero flow
Repeat : choose an appropriate path from s to t , and increase flow along the edges of this
path as much as possible.

Figure 4: An illustration of the max-flow algorithm. (a) A toy network. (b) The first path chosen. (c) The
second path chosen. (d) The final flow. (e) We could have chosen this path first. (f) In which case, we would
have to allow this second path. Edge (b,a) of this path isn’t in the original network and has the effect of
canceling flow previously assigned to edge (a,b). Such a path is called augmenting path.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 51 / 94

Duality in Linear Programming

Ford-Fulkerson algorithm (FF): a closer look
FF algorithm searches for s ; t path in the residual network Ḡ(φ) = [V , Ē(φ)], where for any
feasible s ; t flow φ = [φ1,φ2, . . .φm], to any u = (i, j) ∈ E , we associate in Ē(φ) two types of arcs,
(u+,u−), with residual capacities as follows:

forward edge : if φu < cu ⇒ u+ = (i, j) with residual capacities cu−φu > 0.
backward edge : if φu > 0⇒ u− = (j, i) with residual capacities φu > 0.

Algorithm 1 Ford-Fulkerson algorithm

Require: A network N = (s, t,V ,E ,C) and an initial flow φ

Ensure: maximal s ; t flow φ∗ = [φ∗1,φ
∗
2, . . .φ

∗
m]

1: Initialisation : k ← 0, and set φk to be the current flow
2: while (∃s ; t path in Ḡ(φk)) do
3: Let πk be the current s ; t path in Ḡ(φk)
4: Let εk be the minimum of the residual capacities on πk (bottleneck (πk ,φk))
5: Define a new flow φk+1 as follows
6: φk+1

u ← φk
u + εk if u+ ∈ πk

7: φk+1
u ← φk

u− εk if u− ∈ πk

8: φk+1
0 ← φk

0 + εk

9: set k ← k + 1
10: end while
11: φ∗← φk

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 52 / 94

Duality in Linear Programming

Min-Cut is a certificate of optimality

A truly remarkable fact: not only does Ford-Fulkerson (FF) algorithm correctly compute a
maximum flow, but it also generates a short proof of the optimality of this flow!

Figure 5: Partition the nodes of the above network into two groups, L = {s,a,b} and R = {c,d ,e, t} Any s ; t
flow must pass from L to R. Therefore, no flow can possibly exceed the total capacity of the edges from L to
R, which is 7. This simply means that any s ; t flow of size 7, must be optimal!

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 53 / 94

Duality in Linear Programming

MFMC : Max-Flow Min-Cut Relationships

An s− t cut is a partition (A, Ā) of V , s.t. s ∈ A and t ∈ Ā.

The capacity of an s− t cut is C(A, Ā) = ∑
e∈δ+(A)

ce.

Theorem

For any flow φ and any s− t cut (A, Ā), size(φ) ≤ C(A, Ā) holds.

Theorem

The size of the maximum flow in a network equals the capacity of the smallest s− t cut.

Proof : Suppose φ is the final flow when FF algorithm terminates. We know that node t is no
longer reachable from s in the residual network Ḡ(φ). Let L be the nodes that are reachable from
s in Ḡ(φ), and let R = V \L be the rest of the nodes. Then (L,R) is a cut in the graph G. By the
way L is defined, any edge going from L to R must be at full capacity (in the current flow φ), and
any edge from R to L must have zero flow. Therefore the net flow across (L,R) is exactly the
capacity of the cut and hence size(φ) = C(L,R)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 54 / 94

Duality in Linear Programming

What is duality about?

Consider the below LP

Maximize z = x1 + 6x2
c1 x1 ≤ 200
c2 x2 ≤ 300
c3 x1 + x2 ≤ 400

x1, x2 ≥ 0

A clever student declares the optimum solution to be (x1,x2) = (100,300), with objective value
1900. Can we check this answer? Suppose we take the inequality c1 and add it to six times c2.
We get x1 + 6x2 ≤ 2000. Interesting, this upper bound is not far from 1900. Can we improve it?
After a little experimentation, we find that multiplying the three inequalities by 0, 5, and 1,
respectively, and adding them up yields x1 + 6x2 ≤ 1900. So 1900 must indeed be the best
possible value! The multipliers (0,5,1) magically constitute a certificate of optimality!

We’ll show that such a certificate can be found systematically.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 55 / 94

Duality in Linear Programming

Deriving a systematic manner for computing a certificate for optimality

Let’s see what we expect of these three multipliers, called y1,y2,y3.

y1 x1 ≤ 200
y2 x2 ≤ 300
y3 x1 + x2 ≤ 400

First, these yi ’s must be nonnegative (otherwise they are unqualified to multiply inequalities).
After the multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3. (38)

We want the left-hand side to look like our objective function x1 + 6x2 so that the right-hand side is
an upper bound on the optimum solution. This could be obtained if y1 + y3 ≥ 1 and y2 + y3 ≥ 6.
Thus, we get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3 if

y1 + y3 ≥ 1
y2 + y3 ≥ 6
y1 ≥ 0,y2 ≥ 0,y3 ≥ 0

Since we want a bound that is as tight as possible, so we should minimize 200y1 + 300y2 + 400y3 subject to
the preceding inequalities. And this is a new linear program!

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 56 / 94

Duality in Linear Programming

Primal-Dual relationships and LP bounds generations

The best upper bound on the original LP is computed by solving a new LP problem

Minimize z = 200y1 + 300y2 + 400y3
y1 + y2 ≥ 1

y2 + y3 ≥ 6
y1, y2, y3 ≥ 0

By design, any feasible value of this dual LP is an upper bound on the original primal LP. So if we
somehow find a pair of primal and dual feasible values that are equal, then they must both be
optimal. Here is just such a pair:

Primal: (x1,x2) = (100,300); Dual:(y1,y2,y3) = (0,5,1)

They both have value 1900, and therefore they certify each other’s optimality.

This is a main result in duality theory stating that
If a linear program has a bounded optimum, then so does its dual, and the two optimum values
coincide.
We’ll prove it formally.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 57 / 94

Duality in Linear Programming

Primal-Dual relationships in Linear Programming

Let A ∈ Rm×n,b ∈ Rm×1,c ∈ R1×n, ai is the i-th row and Aj is the j-th col. of A.
To any primal (P) is associated its dual (D) by associating a dual variable to each primal
constraint and following the rules:

Primal Dual
max min

variables x constraints
constraints variables y

objective coefficients c constraint right hand sides c
constraint right hand sides b objective coefficients b

ai x ≤ bi yi ≥ 0
ai x ≥ bi yi ≤ 0
ai x = bi yi unconstrained
xj ≥ 0 yAj ≥ cj
xj ≤ 0 yAj ≤ cj

xj unconstrained yAj = cj

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 58 / 94

Duality in Linear Programming

Duality theory : Canonical Forms

Let be given a primal (P) in a canonical form (i.e.)

(P) z = max{cx |Ax ≤ b,x ∈ Rn,x ≥ 0} (39)

Its dual (D) is as follows.

(D) w = min{yb|yA≥ c,y ∈ Rm,y ≥ 0} (40)

In general, the following relationships hold:

primal/dual constraint dual/primal constraint (41)

consistent with canonical form ⇐⇒ variable ≥ 0 (42)

reversed from canonical form ⇐⇒ variable ≤ 0 (43)

eqaulity constraint ⇐⇒ variable unrestricted (44)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 59 / 94

Duality in Linear Programming

Duality theory : Primal/Dual relationship (Illustration)

A primal problem and its dual

maxz = 6x1 + x2 + x3
4x1 + 3x2−2x3 = 1
6x1−2x2 + 9x3 ≥ 9
2x1 + 3x2 + 8x3 ≤ 5
x1 ≥ 0,x2 ≤ 0,x3 unrestricted

minw = y1 + 9y2 + 5y3
4y1 + 6y2 + 2y3 ≥ 6
3y1−2y2 + 3y3 ≤ 1
−2y1 + 9y2 + 8y3 = 1
y1 unrestricted ,y2 ≤ 0,y3 ≥ 0

Lemma :

It is easy to verify that the dual of the dual is the primal.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 60 / 94

Duality in Linear Programming

The shortest path problem (SPP)

Given a directed graph G = (V ,U) and weights wj ≥ 0 associated with each arc uj , find a path
from s to t with the minimum total weight.

A =

s +1 +1 0 0 0
t 0 0 0 −1 −1
a −1 0 +1 +1 0
b 0 −1 −1 0 +1

A weighted directed graph and the corresponding node-arc incidence matrix A. The weights are
in squared brackets.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 61 / 94

Duality in Linear Programming

SPP : Primal-Dual LP formulation

A path from s to t can be thought of as a flow φ of unit 1 leaving s and entering t . The primal (P)
of (SPP) and its dual (D) where a variable πi is assigned to each node i , are given below.

(P)

min wφ (45)

Aφ =
+1 row s
−1 row t

0 otherwise

φ≥ 0 (46)

(D)

max πs−πt (47)

πi −πj ≤ wij ∀(ij) ∈ U (48)

πi unrestricted ∀i ∈ V (49)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 62 / 94

Duality in Linear Programming

König’s Theorem

A graph G = (U ∪V ,E) is bipartite if the set of vertices U ∪V is partitioned into two subsets U
and V such that U ∩V = /0 and E(G[U]) = E(G[V]) = /0 so that all edges have one vertex in U and
one in V . A matching of G is a set of edges meeting each vertex of G no more than once. Let
δ(v) denote the set of edges having exactly one endpoint at v . If xe is a binary variable
associated with any e ∈ E , the above is equivalent to ∑e∈δ(v) xe ≤ 1, ∀v ∈ V and ∀v ∈ U.
A vertex cover is a set of vertices C ⊆ (U ∪V) such that any edge of the graph is adjacent with at
least one vertex from C.

The below result is a famous characterization of maximum-cardinality matching in bipartite
graphs.

Theorem

König’s Theorem : The number of edges in a maximum-cardinality matching in a bipartite graph
G is equal to the minimum number of vertices needed to cover some endpoint of every edge of G.

Proof : Write the Primal and the Dual of the above problem.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 63 / 94

Duality in Linear Programming

Weak Duality in Linear Programming (cont.)

Consider the following couple primal-dual (it is just a matter of convenience).

(P) z = max{cx |Ax ≤ b,x ∈ Rn
+} (50)

(D) w = min{yb|yA≥ c,y ∈ Rm
+ } (51)

Theorem

Weak Duality : If x∗ is feasible to P and y∗ is feasible to D, then cx∗ ≤ z ≤ w ≤ y∗b.

Proof : cx∗ ≤ y∗Ax∗ ≤ y∗b. Hence w ≥ cx∗ for all feasible solution x∗ to P , and z ≤ y∗b for all
feasible solution y∗ to D, so that z ≤ w . Hence

1 if cx∗ = y∗b, then x∗ and y∗ are optimal
2 if either is unbounded, then the other is infeasible.

Proof : Suppose P is unbounded. By weak duality w ≥ λ for all λ ∈ R1. Hence D has no
feasible solution.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 64 / 94

Duality in Linear Programming

Weak Complementary-Slackness in Duality theory

Let us denote by ai the i-the row of the matrix A and by Aj its j-the column.
Points x ∈ Rn and y ∈ Rm are complementary, with respect to P and D, if

yi (bi −ai x) = 0, for i = 1, . . .m and xj (cj − yAj) for j = 1, . . .n (52)

Theorem

Weak Complementary-Slackness If feasible solutions x∗ and y∗ are complementary, then they
are optimal solutions.

Proof : Let s∗ = b−Ax∗ ≥ 0 be the vector of slack variables of the primal, and let
t∗ = y∗A− c ≥ 0 be the vector of surplus variables of the dual. Then we have

cx∗ = (y∗A− t∗)x∗ = y∗Ax∗− t∗x∗ (53)

= y∗(b− s∗)− t∗x∗ = y∗b− y∗s∗− t∗x∗.

Since x∗ and y∗ are complementary, we have y∗s∗ = t∗x∗ = 0. Hence cx∗ = y∗b and from the
weak duality x∗ and y∗ are optimal for P and D respectively.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 65 / 94

Duality in Linear Programming

Duality theory in Linear Programming (cont.)

Consider the following couple primal-dual . (P) is given in the so called standard form to which any LP form
can be transformed.

(P) z = max{cx |Ax = b,x ∈ Rn
+} (54)

(D) w = min{yb|yA≥ c,y ∈ Rm} (55)

We suppose rank (A) = m ≤ n (all redundant equations were removed). Since rank (A) = m, ∃ m×m
nonsingular (invertible) submatrix B, such that A = (B,N) (after permuting the columns). Then
Ax = BxB + NxN = b where x = (xB ,xN). Then xB = B−1b−B−1NxN and
z = cBxB + cN xN = cBB−1b + (cN − cBB−1N)xN .

Definition

1 The m×m nonsingular submatrix B is called a basis

2 The solution xB = B−1b,xN = 0 is called a basic solution of Ax = b.

3 xb is the vector of basic variables and xN is the vector of nonbasic variables.

4 If B−1b ≥ 0, then (xB ,xN) is called a basic primal feasible solution and B is called a primal feasible
basis.

5 Let y = cBB−1 ∈ Rm . If cN − cBB−1N ≤ 0 then B is called a dual feasible basis.

6 cN − cBB−1N are called reduced costs.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 66 / 94

Duality in Linear Programming

Strong Duality in Linear Programming (cont.)

Consider the following couple primal-dual .

(P) z = max{cx |Ax = b,x ∈ Rn
+} (56)

(D) w = min{yb|yA≥ c,y ∈ Rm} (57)

Theorem
Strong Duality : If one the above problems has an optimal solution then so does the other, and the optimal
objective functions are equal. If either is infeasible, then the other is either infeasible or unbounded.

Proof : Assume x∗ = (xB ,xN) is an optimal solution for (P). Then cN − cBB−1N ≤ 0 (i.e. cN ≤ cBB−1N).
Let y∗ = cBB−1. We have y∗A = cBB−1(B,N) = (cB ,cBB−1N)≥ (cB ,cN) = c. Hence y∗A≥ c (i.e. y∗ is
feasible for (D).
Furthermore, z(x∗) = cx∗ = cBxB = cBB−1b and w(y∗) = y∗b = cBB−1b = z(x∗). Then according the Weak
duality theorem the points x∗ and y∗ are optimal for P and D respectively.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 67 / 94

Duality in Linear Programming

Strong Complementary-Slackness in Duality theory
Let us denote by ai the i-the row of the matrix A and by Aj its j-the column.
Points x ∈ Rn and y ∈ Rm are complementary, with respect to P and D, if

yi (bi −ai x) = 0, for i = 1, . . .m and xj (cj − yAj) for j = 1, . . .n (58)

Theorem

Strong Complementary-Slackness If feasible solutions x∗ and y∗ are optimal solutions to P
and D, respectively, then they are complementary.

Proof : Let s∗ = b−Ax∗ ≥ 0 be the vector of slack variables of the primal, and let
t∗ = y∗A− c ≥ 0 be the vector of surplus variables of the dual. Then we have

cx∗ = (y∗A− t∗)x∗ = y∗Ax∗− t∗x∗ (59)

= y∗(b− s∗)− t∗x∗ = y∗b− y∗s∗− t∗x∗.

From the strong duality cx∗ = y∗b . Hence y∗s∗ + t∗x∗ = 0 with y∗,s∗,x∗, t∗ ≥ 0 so that the result
follows.

Theorem

Variant: A pair (x∗,y∗) feasible in P and D respectively, is optimal iff.

y∗i (bi −ai x
∗) = 0, for i = 1, . . .m x∗j (cj − y∗Aj) = 0, for j = 1, . . .n (60)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 68 / 94

Duality in Linear Programming

MFMC : LP formulation

Let (as usual) ai denote the i th row of A.

The flow conservation at a node i (except s, t) is expressed by :

ai φ = 0 (61)

The LP formulation of the MFMC is :

let d ∈ Rn be defined by

di =

−1 i = s
+1 i = t
0 otherwise

maxφ0 (62)

dφ0 + Aφ = 0 (63)

φ ≤ c (64)

φ ≥ 0 (65)

φ0 ≥ 0 (66)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 69 / 94

Duality in Linear Programming

MFMC : Primal-Dual LP formulation

Assign variables λi , i ∈ V to (68) and variables γi,j , (i, j) ∈ E to (69). Then we obtain :

(P)

maxφ0 (67)

dφ0 + Aφ = 0 (68)

φ ≤ c (69)

φ ≥ 0 (70)

φ0 ≥ 0 (71)

(D)

min ∑
(i,j)∈E

γi,j ci,j (72)

λi −λj + γi,j ≥ 0 ∀(i, j) ∈ E (73)

−λs + λt ≥ 1 (74)

γi,j ≥ 0 ∀(i, j) ∈ E (75)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 70 / 94

Duality in Linear Programming

MFMC : Max-Flow Min-Cut Relationships

Definition

An s− t cut is a partition (A, Ā) of V , s.t. s ∈ A and t ∈ Ā.
The capacity of an s− t cut is C(A, Ā) = ∑

e∈δ+(A)

ce.

Theorem

Every s− t cut determines a feasible solution with cost C(A, Ā) to (D) as follows:

γi,j =

{
1 (i, j) s.t. i ∈ A, j ∈ Ā
0 otherwise

λi =

{
0 i ∈ A,
1 i ∈ Ā

Proof: Just by checking. Note that (73) is strict inequality iff i ∈ Ā and j ∈ A. Note also that
−λs + λt = 1.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 71 / 94

Duality in Linear Programming

Max-Flow Min-Cut Theorem

Theorem

The value φ0 is no greater than the capacity C(A, Ā) of any s− t cut. Furthermore, the value of
the maximum flow equals the capacity of the minimum cut, and a flow φ and cut C(A, Ā) are jointly
optimal iff

φi,j = 0 for (i, j) ∈ E such that i ∈ Ā and j ∈ A (76)

φi,j = ci,j for (i, j) ∈ E such that i ∈ A and j ∈ Ā (77)

Proof. Trivial, use the complementary slackness.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 72 / 94

Well-Solved Problems

Well-Solved Problems

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 73 / 94

Well-Solved Problems

The assignment problem (AP) : a mathematical model

Suppose we have m individuals and m jobs. If individual i is assigned to job j , the cost will
be cij .

Find the min. cost assignment or a one-to-one matching of individuals to jobs.

min z =
m

∑
i=1

m

∑
j=1

cij xij (78)

m

∑
j=1

xij = 1, i = 1,m (79)

m

∑
i=1

xij = 1, j = 1,m; (80)

xij ∈ {0,1} (81)

In matrix form :
min cx {Ax = b, xij = 0 or 1, i, j = 1,m} (82)

where x = (x11 . . .x1m . . .xm1 . . .xmm)t , A2m×mm is the node-edge incidence matrix whose (i, j)
column is aij = ei + em+j , i = 1,m, j = 1,m; and b = (1)t (vector of 2m ones)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 74 / 94

Well-Solved Problems

Max-Bipartite Matching

Definition

Given a graph G = (V ,E), a matching M ⊆ E is a set of disjoint edges. A a covering by nodes is
a set R ⊆ V of nodes such that every edge has at least one endpoint in R.

Problem: Given bipartite graph G, find a maximum matching.

Suggestion: Use max-flow algorithm.
Question: Give the complexity of the proposed algorithm.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 75 / 94

Well-Solved Problems

Matching and Covering

Definition

Given a graph G = (V ,E), a matching M ⊆ E is a set of disjoint edges. A a covering by nodes is
a set R ⊆ V of nodes such that every edge has at least one endpoint in R.

Let A be the node-edge incidence matrix of a graph G = (V ,E) where n =| V | and m =| E |. The
maximum cardinality matching problem can be formulated as the integer program:

z = max{1x |Ax ≤ 1,x ∈ Z m
+ } (83)

and the minimum cardinality covering problem as:

w = min{1y |yA≥ 1,y ∈ Z n
+ } (84)

Let zLP and wLP be the values of their corresponding LP relaxation. Then z ≤ zLP = wLP ≤ w
and hence pbs. (83) and (84) are weak-dual pair. When z = w holds, the corresponding couple of
problems form a strong-dual pair.
Note: Any dual feasible solution provides an upper bound on z!
However, pbs. (83) and (84) are not strong-dual pair (i.e. z = w doesn’t hold always) (take for
example a triangle). We will see below that strong duality holds for this pair of problems when the
graph G is bipartite.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 76 / 94

Well-Solved Problems

Total Unimodularity
When solving an LP problem always gives integer solution?
Consider the problem (IP) max{cx |Ax ≤ b,x ∈ Z n

+ ,} with integral data (A,b).
When its linear programming relaxation (LP) max{cx |Ax ≤ b,x ∈ Rn

+ ,} will have integral optimal
solution?
Sufficient condition: if for the optimal basis B, det(B) =±1, then the linear programming
relaxation solves IP.
Proof: From Cramer’s rule B−1 = adj(B)

det(B) and since the adjoint matrix adj(B) is an integral matrix,

then B−1 is integral for all integral b.

Definition

An integer matrix A is called totally unimodular (TUM) if the determinant of each square
submatrix of A equals 0,+1, or -1.

P(A) = {x |Ax ≤ b,x ≥ 0,} (85)

Theorem

If A is TUM, then all the vertices of P(A) are integer for any integer vector b.

Proof. First prove the case {x |Ax = b,x ≥ 0,}. Any basic solution x = B−1b = adj(B)b
det(B) . Then show

that (A|I) is TUM.
Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 77 / 94

Well-Solved Problems

Total Unimodularity (cont I)

Theorem

An integer matrix A with aij = 0,±1 is TUM if no more than two nonzero entries appear in any
column, and if the rows of A can be partitioned into two sets I1 and I2 s.t.:

1 If a column has two entries of the same sign, their rows are in different sets;
2 If a column has two entries of the different signs, their rows are in the same sets;

Proof. By induction of the size of submatrices. Let C be a submatrix of size k . For k = 1 it is true.
Let k > 1. It is obvious when C has a column of all zeros or with one nonzero. Let C has two
nonzero entries in every column. Then the conditions of the theorem imply:

∑
i∈I1

aij = ∑
i∈I2

aij for every column j

. i.e. a linear combination of rows is zero, hence det(C) = 0.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 78 / 94

Well-Solved Problems

Total Unimodularity (cont II)

Corollary

Any LP in standard or canonical form whose constraint matrix A is either
1 The node-arc incidence matrix of a directed graph, or
2 The node-edge incidence matrix of an undirected bipartite graph,

has only integer optimal vertices. This includes the LP formulation of shortest path, max-flow, the
transport problem, the assignment problem and weighted bipartite matching.

Proof. The matrices in Case 1 satisfy the condition of the theorem with I2 = /0; those in Case 2
with I1 = V and I2 = U, where the bipartite graph is G = (V ,U,E).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 79 / 94

The assignment problem :

The assignment problem (AP)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 80 / 94

The assignment problem :

The assignment problem (AP)

Suppose we have m individuals and m jobs. If individual i is assigned to job j , the cost will
be cij .

Find the maximum cost assignment of individuals to jobs (the maximum weight perfect
matching of a complete bipartite graph).

We shall exploit the special structure to get a competitive primal-dual type of algorithm (the
so called Kuhn’s Algorithm (also called Hungarian Algorithm)).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 81 / 94

The assignment problem :

The assignment problem (AP) : a mathematical model

Primal P:

max z =
m

∑
i=1

m

∑
j=1

cij xij (86)

m

∑
j=1

xij = 1, i = 1,m (87)

m

∑
i=1

xij = 1, j = 1,m; (88)

0≤ xij ≤ 1 (89)

In matrix form :
max cx {Ax = b, 0≤ xij ≤ 1, i, j = 1,m} (90)

where x = (x11 . . .x1m . . .xm1 . . .xmm)t , A2m×mm is the node-edge incidence matrix whose (i, j)
column is aij = ei + em+j , i = 1,m, j = 1,m; and b = (1)t (vector of 2m ones)

Remark: the variables should be required to be binary, but we get that for free because the
matrix A is totally unimodular and the right-hand side is integer.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 82 / 94

The assignment problem :

The Dual Problem

ui : dual var. related to the first m constraints (individuals).
vj : dual var. related to the second m constraints (jobs).

Dual D:

minw =
m

∑
i=1

ui +
m

∑
j=1

vj (91)

ui + vj ≥ cij , i = 1,m, j = 1,m; (92)

ui ,vj unrestricted , i, j = 1,m, (93)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 83 / 94

The assignment problem :

Complementarity

The complementarity slackness conditions are given by

(cij −ui − vj)xij = 0 i, j = 1,m (94)

Thus if we can find a set of feasible u’s, v’s and x’s that satisfy (94), those u’s, v’s and x’s will
be optimal.

A feasible dual solution is given by

ûi = max
1≤j≤m

{cij} i = 1,m (95)

v̂j = max
1≤i≤m

{cij − ûi} j = 1,m (96)

(i.e. ûi is the max of cij in row i and v̂j is the max of cij − ûi in column j .

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 84 / 94

The assignment problem :

Towards the solution

Consider a reduced cost coefficient matrix ĉij where cij is replaced by ĉij = cij − ûi − v̂j . This
matrix will have a zero in every row and column and all its entries will be ≤ 0.
Let us associate xij = 1 to any zero cell (i, j). Then by complementarity condition we have the
optimal solution if these xij ’s are feasible for the primal. Note that in a feasible primal solution
there will be exactly one xij = 1 in each row and exactly one xij = 1 in each column (i.e. there will
be exactly m of these xij ’s s.t. xij = 1, the rest being zero).

Definition

Cells(matrix coefficients) set to zero, such that no two cells occupy the same row or column are
called independent.

Theorem

The maximum number of independent zero cells in a reduced assignment matrix is equal to the
minimum number of lines to cover all zeros in the matrix.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 85 / 94

The assignment problem :

Modifying the Reduced Matrix (RM)

Suppose that we cannot find a feasible set of positive xij ’s from among the zero cells of the RM.
Consider the covered matrix, the RM with zeros covered by the fewest number of lines (say k).
Let Sr = {i1, i2, . . .} be the set of uncovered rows and p = |Sr |
Let Sc = {j1, j2, . . .} be the set of uncovered columns and q = |Sc |.
Set S̄r = M rSr and S̄c = M rSc , where M = {1,2, . . . ,m}.

We define
c0 = max

i∈Sr ,j∈Sc

{ĉij}< 0 (i.e. max uncovered element) (97)

A new dual feasible solution is given by

ūi = ûi + c0, i ∈ Sr ; ūi = ûi , i ∈ S̄r ; v̄j = v̂j , j ∈ Sc ; v̄j = v̂j − c0, j ∈ S̄c

(In the new RM c0 is subtracted from each uncovered element and added to each twice-covered
element).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 86 / 94

The assignment problem :

Example 1

Solve the assignment problem with the following cost matrix

a b c d
1 6 15 12 13
2 18 8 14 15
3 13 12 17 11
4 18 16 14 10

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 87 / 94

The assignment problem :

Example 2

Let A,B,C,D,E,F be young programmers we want to entrust with the development of the tasks
a,b,c,d,e,f. Their skills being diverse we have marked their ability to program such or such task
out of 100, and we have obtained the data below.

a b c d e f
A 86 94 82 84 37 85
B 59 22 56 27 30 75
C 56 19 64 20 20 22
D 54 26 95 75 17 97
E 28 68 45 49 97 19
F 31 24 88 1 17 70

1 Apply the Hungarian algorithm in order to to find the best assignment.
2 At any iteration this algorithm requires finding the maximum number of independent zero

cells in a reduced assignment matrix. To prove that you have found this number, you’ll apply
the Ford-Fulkerson algorithm (at least in the first iteration). Indicate clearly how you use the
max flow model to find the maximum number of independent zero cells and give the
correspondence between the solutions of both models.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 88 / 94

The assignment problem :

The assignment problem in terms of bipartite graphs :
Max-Weight Bipartite Matching

We have a complete bipartite graph G = (X ∪Y ,E) with m =| X | vertices X and m =| Y | vertices
Y and each edge has a weight w(i, j). We want to find a perfect matching with maximum weight.
Some notations and definitions :

A graph G = (V ,E) is bipartite if there exists partition V = X ∪Y with X ∪Y = /0 and
E ⊆ X ×Y .

A matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a
common vertex.

A Perfect Matching is a matching M in which every vertex is adjacent to some edge in M.

The weight of matching M is sum of the weights of edges in M, w(M) = ∑
e∈M

w(e).

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 89 / 94

The assignment problem :

Max-Weight Bipartite Matching (cont)

Some notations and definitions (cont):

Vertex v is matched if it is an endpoint of edge in M; otherwise v is free.

A path is alternating if its edges alternate between M and E \M.

An alternating path is augmenting if both end-points are free.

Augmenting path has one less edge in M than in E \M; replacing the M edges by the E \M
ones increments size of the matching.

Figure 6: Left: Y2, Y3, Y4, Y6, X2, X4, X5, X6 are matched, other vertices are free. ; Right: Y1, X2,
Y2, X4, Y4, X5, Y3, X3 is alternating.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 90 / 94

The assignment problem :

Max-Weight Bipartite Matching (cont)

Some notations and definitions (cont):

In the primal problem (P) the objective now is to maximize w(M).

A vertex labeling is a function l : X ∪Y → R. This function is also called a potential. It sets
the values of the dual problem variables.

The dual (D) is a minimisation problem and the constraint (92) becomes

l(x) + l(y)≥ w(x ,y). (98)

A feasible labeling is one such that (98) is satisfied.

the Equality Graph is Gl = (X ∪Y ,El) where: El = {(x ,y) : l(x) + l(y) = w(x ,y)}.

Theorem

[Kuhn-Munkres theorem] : If the labeling l is feasible and M is a perfect matching in El , then M
is a max-weight matching.

Proof: Follows from the complementary-slackness theorem.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 91 / 94

The assignment problem :

Max-Weight Bipartite Matching

The KM theorem transforms the problem from an optimization problem of finding a max-weight
matching into a combinatorial one of finding a perfect matching.

Sketch of the Hungarian algorithm :

Start with any feasible labeling l and some matching M in El .
While M is not perfect repeat the following:

1. Find an augmenting path for M in El ; this increases size of M.
2. If no augmenting path exists, improve l to l ′ such that El ⊂ El ′ . Go to 1.

In each step of the loop we will either be increasing the size of M or El so this process must
terminate.

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 92 / 94

The assignment problem :

Hungarian algorithm in terms of bipartite graphs

Finding an initial feasible labeling is simple. Just use: ∀y ∈ Y , l(y) = 0, ∀x ∈ X , l(x) = max
y∈Y

w(x ,y)

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 93 / 94

The assignment problem :

Max-Weight Bipartite Matching

Rumen Andonov COmBinatorial optimisation and Related Algorithms January 14, 2019 94 / 94

	Contents of Part 1
	Formulating logical implications as linear programs
	Linear Programming : the basics
	Max-Flow Min-Cut (MFMC)
	Duality in Linear Programming
	Well-Solved Problems
	The assignment problem :

