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Abstract

Content-based queries in multimedia sequence databases where information is sequential is a tough issue, especially

when dealing with large scale applications. One of the key points is similarity estimation between a query sequence

and elements of the database. In this paper, we investigate two ways to compare multimedia sequences, one – that

comes from the literature – being computed in the feature space while the other one is computed in a model space,

leading to a representation less sensitive to noise. We compare these approaches by testing them on a real audio

dataset, which points out the utility of working in the model space.

Keywords: Multidimensional feature sequences, Support Vector Regression, Temporal aspects, Similarity estimation

in a model space

1 Motivations

Our everyday life is now flooded by multimedia sequence databases: access to TV archives, production and
sharing of personal videos, podcasts.

Nevertheless, there are still few techniques allowing fast content-querying of such databases. The need
for such techniques is especially important in the field of multimedia archiving where one wants to annotate
streams in order to allow future documentary search. This implies segmentation of a (video or audio) stream
into distinct programmes that can later be annotated, which requires the ability to query-by-content huge
databases in order to temporally localize items such as advertisement, TV show credits, Mr X’s interventions
on radio channel Y, and so on.

Until now, there has been no technique efficient enough to process real-size audiovisual archives – tens
or hundreds of thousands of hours. One of the main problems comes from the temporal aspect of such
sequences: working with audio or video implies to deal with multidimensional feature sequences, a sequence
being a series of features whose order is important. Because of the amount of data that is concerned, indexing
is necessary. There has been numerous works on the indexing of still images [AI06, NS06, LÁJA09] and the
indexing of temporal media is often viewed as a simple extension of these [LTCJ+07]. Nevertheless, these
works only use post-processing temporal robustification, instead of considering the sequential nature of the
media at each step of the process. There has also been a great interest, in the database community, for the
mining of time series data [DTS+08] that is often dedicated to the study of symbolic sequences, while the
problems we want to address require the use of numerical features.

We intend, in this paper, to present similarity measures that could, in future works, be used in a fully
temporal indexing scheme with application to audiovisual data. To do so, one has to investigate ways to
compare multidimensional feature sequences extracted from multimedia sequences. The point here is to
estimate similarity between a query sequence and a database of reference sequences. We explore two ways of
achieving such a goal. The first one comes from the state-of-the-art and is based on a direct comparison of the
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features by means of the computation of an alignment cost given by dynamic time warping (DTW) [SC78].
The second one is based on models of sequences and the similarity is computed at the model level. The
models we suggest to use are based on support vector machine theory [Vap95] and, more precisely, on
support vector regression (SVR). DTW and SVR are essentially different: while the former is very close to
the actual features, trying to directly align sequences, the latter computes similarity estimation at a higher
abstraction level, in the model space. In other words, instead of comparing sequences, we propose to model
these sequences using SVR and then compare the resulting models, stating that if models are similar, then
sequences on which they were fitted should also be similar.

The aim of this study is to evaluate the ability of each method to cope with distortions such as usual
temporal distortions (stretching, shrinking, timeshifting) or the presence of outliers in the sequences (due
to compression for example). We also intend to test the ability of each method to retrieve subsequences,
which correspond to real-life issues such as recognizing a song from which a sample was recorded. For this
study to be statistically sounded, we performed our experiments on a real dataset made of 100 hours of radio
recordings, leading to more reliable conclusions than in [TAG07].

DTW in its original form is incapable of comparing timeshifted sequences. Because of that, segmentation
of the stream into well-defined pieces, which is a tough issue [BGG99], is necessary as DTW is very sensitive
to shifts on initial and ending times. On the contrary, DTW is known to cope efficiently with local and global
temporal distortions in non-timeshifted sequences. We intend to study the behaviour of SVR in presence of
these same distortions. We also investigate the characteristics of SVR and DTW based similarity measures
in order to point out their advantages and drawbacks for later application to the indexing of large temporal
datasets.

This paper contribution is then double: first we suggest to use SVR to model sequences and process
comparison at the model level, and we then validate this approach on a real audio dataset.

This paper is structured as follows. Sections 2 and 3 explain both methods. Section 4 gives a theoretical
comparison of these, while section 5 describes the experimental setup and the results. Section 6 concludes
and gives prospects.

2 Dynamic Time Warping (DTW)

The dynamic time warping (DTW) algorithm was introduced by [SC78] and is now widely used to compare
sequences of possibly different lengths in databases [Keo02, YJF98]. The principle on which DTW relies
is to locally stretch both sequences in order to achieve the most probable alignment between them and
compensate for their possible time distortions. To do so, one allows for instertions and deletions in both
streams, each of these operations having a cost. The aim is then to find the set of operations that will lead
to a minimal cost.

Using DTW to compare two sequences boils down to building a similarity matrix that contains the
distances between all elements of the 2 sequences to compare and finding the optimal path inside this
matrix. Note that since DTW relies on a similarity matrix, it is very sensitive to outliers.

This section gives an overview of the basic idea behind DTW, presents typical optimizations that can be
used and a way to release DTW border constraints.

2.1 Basics

Let Q = q1, q2, . . . , qn and C = c1, c2, . . . , cm be two sequences of features to compare. The first step consists
in building a similarity matrix S of size n × m, such that:

∀(i, j) ∈ [1, n] × [1, m], si,j = dist(qi, cj) (1)

where dist(., .) is the distance defined in the feature space (typically Euclidian distance). Let us denote W

a path, of length K such that w1 = (1, 1) and wK = (n, m), leading to a minimum cost:

DTW (Q, C) = min
W

(

K
∑

i=1

S(wi)

)

(2)
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Such a path has to be continuous and monotone, which can be written:

(wk = (a, b) and wk−1 = (a′, b′)) ⇒







(a = a′ + 1 and b = b′ + 1) or
(a = a′ + 1 and b = b′) or
(a = a′ and b = b′ + 1)

(3)

This path and its cost can be computed using dynamic programming to evaluate the partial cost γi,j of the
best path up to (i, j) at each step:

γi,j = si,j + min{γi−1,j−1, γi−1,j , γi,j−1} (4)

This gives a simple way to compute DTW:

DTW (Q, C) = γn,m (5)

Note that, for this algorithm to return the path it used, one just has to store each element’s predecessor (i.e.
, argmin{γi−1,j−1, γi−1,j , γi,j−1}) at each step.

2.2 Typical optimizations

This algorithm is quadratic in the length of the sequences, which is one of its limitations. Several optimiza-
tions have been proposed to reduce computing time. They all rely on approximations of DTW.

Some of them [SC78] aim at not fully building the similarity matrix, considering that diagonal paths are
more likely than the other ones. This can be done in two ways: the first one is to set the elements of S

that are far from the diagonal to ∞, the other is to slightly modify possible transitions, changing insertions
(respectively deletions) into a combination of insertions (respectively deletions) and matches.

Other methods are based on the computation of lower bounds for DTW. These lower bounds can then
be used to filter out dissimilar enough sequences. Indeed, in the case of ε-search in a database given a query
Q, if LB denotes the considered lower bound, the following implication stands:

∀C, (LB(Q, C) > ε) ⇒ (DTW (Q, C) > ε) (6)

Then, exact DTW can be computed on sequences from the database for which LB(Q, C) is lower than the
threshold ε. The point here is then to find a lower bound that is both easy to compute and close to the actual
DTW. [YJF98] proposes a way to compute such a lower bound by referring to extrema of both sequences,
which has been improved by [Keo02] considering the high probability of diagonal paths. In both cases the
computational cost of the lower bound is linear, but the second one has the advantage of focusing on a small
portion of C, leading to a more accurate approximation of the DTW. Note that the lower bound introduced
by [Keo02] is a lower bound for the DTW with restriction to almost diagonal paths, not for the standard
DTW.

2.3 Releasing constraints

The basic implementation of DTW shows one major drawback: as the path is supposed to start from
w1 = (1, 1) and end in wK = (n, m), sequences are considered as not timeshifted. When sequences to
compare are timeshifted, what one would want to do would be to compare similar parts of the sequences,
instead of comparing the whole sequences. This implies to find anchor points in sequences to extract similar
subsequences to be compared, which is very time consuming [AGM+90].

[MGB09] propose to solve this issue by slightly modifying the algorithm described above in such a way
that the border constraints become w1 = (i1, 1), i1 ∈ [1, n] and wK = (i2, m), i2 ∈ [1, n]. The principle here
is just to alter initialization by stating that the path can start from any element of sequence Q:

∀i1 ∈ [1, m], γ0,i1 = 0 (7)
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and normalize the cumulative similarity measure γi,j by the length of the best matching path ending at point
(i, j). The similarity measure then becomes the minimal cost path ending in any element of sequence Q:

DTW (Q, C) = min
i2∈[1,n]

γi2,m

l(i2)
(8)

where l(i2) is the length of the path leading to (i2, m).
Note that this released version of DTW is incompatible with the computation of the lower bound intro-

duced in [Keo02], as the diagonal path cannot be considered as the most probable.

3 Support Vector Regression (SVR)

We propose another approach to sequence comparison that consists in modeling sequences and then process
comparison at the model level. The class of models we investigate in this paper comes from support vector
machine (SVM) theory [Vap95]. SVM are known to be very efficient classifiers. The core idea with SVM is
to find the separating hyperplane maximizing the gap between two sets of elements using kernel functions
that allow for non-linear classification. SVM can also be used in regression problems [VGS96, SS98] (it is
then called SVR) consisting in the approximation of a function g : R

H → R given a set of N observations
{xi, yi}

N
i=1 such that yi = g(xi) + η, η being considered as noise.

For both classification (for which sgn(g) is the classifier) and regression, g is modeled as

ĝ(x) =
L
∑

i=1

ciφi(x) + b (9)

where {φi}
L
i=1 denotes a set of basis functions and coefficients ci and b have to be optimized. The optimization

step consists in minimizing

1

2

L
∑

i=1

ciφi(xi) + C

L
∑

i=1

(ξi + ξ∗i ) (10)

subject to

yi − ĝ(xi) ≤ ε + ξi (11)

ĝ(xi) − yi ≤ ε − ξ∗i (12)

ξi, ξ
∗

i ≥ 0 (13)

where the constant C > 0 determines the trade-off between the flatness of ĝ and the amount up to which
deviations larger than ε are tolerated. [Vap95] showed that the function minimizing the quantity in (10) can
be expressed as

ĝ(x, α) =

N
∑

i=1

αiK(x,xi) + b (14)

under the condition

∀x,y ∈ R
HK(x,y) =

L
∑

i=1

φi(x)φi(y) (15)

The minimization of the quantity in (10) is done iteratively and loops while the approximation error is
greater than a threshold ε2.

Only a few terms of the sum in (14) will be non null. The corresponding xi will therefore be called
support vectors. The more support vectors, the better the approximation. Figure 1 presents the model of
the sinc function using two different values for ε and C, showing the effect of these parameters in the number
of support vectors in the model.

Note that (14) does not refer to the set of φi functions anymore, but only to its associated kernel K that
has to be a scalar product in some unknown space. Mercer’s theorem [Mer09] gives a caracterization of all
acceptable kernel functions. The most common ones are summarized in table 1.
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ε = 0.2 C = 0.1 ε = 0.5 C = 0.1

ε = 0.2 C = 5 ε = 0.5 C = 5

Fig. 1: Approximation of a sinc function. The function is sampled and plotted as dots, supports vectors as
filled circles, the extrapolated function as solid line and the dash lines represent the ε enveloppe of
the optimized function. One can easily notice that support vectors are concentrated in the regions
where the function is more difficult to predict. Moreover, the smaller ε, the better the approximation
and the larger C, the fewer points outside the enveloppe.

Denomination Form of K

Linear kernel K(x, y) = (x · y)
Polynomial function of degree k K(x, y) = [(x · y) + 1]k

Radial basis function (RBF) K(x, y) = exp[−γ‖x− y‖2]
2-level neural networks K(x, y) = tanh[(x · y)v + c]

Tab. 1: Usual kernels for SVM.

3.1 Modeling sequences using SVR

Assuming independance between the d dimensions of a sequence, modeling the latter using SVR can be done
by fitting one model per dimension. The set of d models then defines a super-model of the evolution of our
features along time.

For each i ∈ [1, d], a model is built that explicits, for each timestamp t ∈ [1, m] – where m is the
length of the corresponding sequence – the relationship between xi,t and its neighbours {xi,t̃}t̃∈vt

where
vt = {t − H

2 , · · · , t − 1, t + 1, · · · , t + H
2 } denotes the temporal neighbourhood of xi,t, of size H , that we

choose to be centered around t. The set of {gi}i∈[1,d] functions is then such that xi,t = gi({xi,t̃}t̃∈vt
) + η for

each i.
Each sequence is now represented by a set of d models. Comparison between two sequences can then

be achieved by estimating the similarity between their respective models. Unfortunately, there is no known
parametric distance between models, except for the linear kernel. For other kernels, one has to compute
cross-similarity [BMM03].

In other words, if GQ = {gQ,i}i∈[1,d] is the set of estimated models for sequence {Qt}
n
t=1 = {{q1,t, · · · , qd,t}}

n
t=1

and {Ct}
m
t=1 is another sequence one wants to compare with {Qt}, let us build a new sequence {Ĉt}

m
t=1 such
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that, for each t ∈ [1, m],
Ĉt = GQ(Ct−H

2

, . . . ,Ct−1,Ct+1, . . . ,Ct+H

2

) (16)

{Ĉt}
m
t=1 is the sequence of values predicted by GQ for {Ct}. Both sequences are then considered as

similar if {Ĉt} is close to {Ct}, or, in other words, if the model learnt on {Qt} could predict {Ct} precisely
enough.

As {Ct} and {Ĉt} are, by construction, aligned, L2-norm can then be used for similarity estimation:

Sim({Qt}, {Ct}) =

√

√

√

√

1

nd

d
∑

i=1

n
∑

t=1

(ĉi,t − ci,t)2 (17)

We chose L2-norm instead of L1 or L∞ because we wanted to strongly penalize large prediction errors
without focusing on a single outlier.

4 Compared study of the DTW and SVR approaches

As seen in section 1, SVR and DTW need to have certain characteristics in order to be useable, in a later
step, for multimedia indexing. These characteristics can be tightly linked to those of semi-distances, which
are

• Weak separation: ∀x, dist(x, x) = 0

• Symetry: ∀(x, y), dist(x, y) = dist(y, x)

• Triangular inequality: ∀(x, y, z), dist(x, z) ≤ dist(x, y) + dist(y, z)

These three items correspond to "natural" characteristics that one can expect from a similarity measure.
Moreover, the last one can be helpful in order to avoid some comparisons between elements of the database
and the query knowing similarity between elements of the database that can be computed offline [CPZ97].
Two other items can be added to this good property list that are low computational complexity and robustness
to distortions natural sequences could suffer.

Both approaches (relaxed DTW and SVR) are based on dissymmetric similarity measures. This means
that there are two ways of estimating the similarity between two sequences {Qt} and {Ct} : S1 =
Sim({Ct}, {Qt}) and S2 = Sim({Qt}, {Ct}), where Sim(., .) is the related similarity measure. Consid-
ering DTW, S1 (resp. S2) denotes alignment of {Ct} (resp. {Qt}) with a subsequence of {Qt} (resp {Ct}).
Regarding SVR, S1 (resp. S2) is the error obtained while trying to predict {Ct} (resp. {Qt}) using a model
fitted on {Qt} (resp. {Ct}).

We then study the behaviour of DTW and SVR with respect to the above items.

4.1 Weak separation

Regarding the weak separation paradigm, DTW in all the forms presented in section 2 satisfies it: one just
has to use the diagonal path which is made of null values in the case of auto-similarity estimation (dist being
a distance function, dist(qi, qi) = 0 for all i). SVR does not rigorously satisfy this weak separation paradigm
but the following inequality stands:

∀{Qt}, Sim({Qt}, {Qt}) ≤ ε2 (18)

For small values of ε2, SVR will then follow the philosophy of this paradigm.
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4.2 Enabling symetry

Note that, for both DTW and SVR, S1 should give more accurate estimation of the similarity when {Ct} is
a subsequence of {Qt}, whereas S2 should be more efficient when {Qt} turns to be a subsequence of {Ct}.
Both similarity measurements are then complementary and using only one of them would induce information
loss. That is why we introduce two new similarity measures in order to fuse information between S1 and S2:

Savg({Qt}, {Ct}) =
S1 + S2

2
Smin({Qt}, {Ct}) = min(S1, S2)

Savg and Smin are then symetric similarity measures.

4.3 Triangular inequality

As written above, similarity measure’s satisfying the triangular inequality can be very useful for application
to indexing of large databases.

In the case of numerical sequences (which is the one we are interested in), neither DTW nor its associated
lower bounds satisfy triangular inequality, as insertions, deletions and substitutions do not have a constant
cost, as for the Levenshtein distance. That is why [CN04] introduced a new distance measure based on
DTW with constant cost for insertions and deletions. Its main drawback is that it weakens DTW’s powerful
principle that the returned cost is equal to the exact sum of all costs needed to align both sequences.

Concerning SVR, the similarity measure we introduced does not satisfy triangular inequality neither.
Indeed, it is not possible to state that

Sim({Qt}, {Ct}) ≤ Sim({Qt}, {Yt}) + Sim({Yt}, {Ct}) (19)

for any {Yt} as the sequence {Ŷt} is built using a model optimized on {Yt} and, thus, not fully predictable.
In other words, for both DTW and SVR, the similarity measures we introduced do not satisfy triangular

inequality.

4.4 Computational complexity

Even if our study is exclusively focused on similarity estimation, one has to keep in mind that these similarity
measures are to be used in a complete data indexing scheme. Therefore, computational complexity of both
similarity measures is a crucial point for application to large databases.

Let us suppose that both sequences are made of N elements of dimension d. DTW requires to fill
coefficients for the similarity matrix, leading to the computation of N2 terms, each being a distance between
features in dimension d. Thus, temporal complexity is O(d × N2). Yet, there are possible improvements,
as presented in section 2.2, consisting in evaluating a lower bound for DTW [Keo02] (temporal complexity
becomes O(d × N) but the result is only an estimate of the real DTW similarity measure) or constraining
the path to be as diagonal as possible (temporal complexity is still quadratic but the constant term is much
lower1).

SVR necessitates prediction of N × d values and, for each prediction, one needs to compute the sum of
n terms, where n denotes the number of support vectors in the model. In practice, we have n ∼ N in our
experiments and the temporal complexity is then O(d × N2).

4.5 Robustness

Both approaches have to be robust to some usual distortions that sequences could suffer. These distortions
are, most of the time, due to post-production operations such as compression (that might lead to the presence
of outliers) or tempo modification. Timeshifting is another kind of time distortions that comes from our will
not to use a costly segmentation pre-process.

1 Note that this method might overestimate dissymilarity if the natural path contains a significant amount of non-diagonal

parts.
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Outliers. In the case of real sequences, some features can be noisy. Hence, sensitivity of the similarity mea-
sure to outliers in the sequences is a crucial point. DTW, as it is directly computed on signal descriptions,
suffers from such distortions. Indeed, a single outlier in one of the sequences to compare seriously modifies
the optimal path and therefore alters the similarity measure. On the contrary, SVR based similarity esti-
mation should be more robust to this kind of distortions, as SVMs are well-known to be capable of avoiding
overfitting.

Stretching. Real sequences can be stretched or shrinked for several reasons. For example, radio channels
sometimes shrink tunes they broadcast in order to catch up with their timeline. DTW is designed to deal
with this kind of distortions, as it allows insertions and deletions in sequences. SVR is not as devoted to
that task as DTW, but as it models the temporal evolution of the signal, it should also be able to deal with
such time distortions.

Timeshifting. Another kind of time distortion that similarity measures have to face is timeshifting. SVR
can deal with it quite accurately as it only requires a small neighbourhood of the point to estimate the value
in this point, without considering its global time location. DTW, even with released contraints, will compute
the shortest path to align a whole sequence inside the other one whereas, in the case of timeshifed sequences
the problem would consist in aligning parts of both sequences.

5 Experiments

In this section, we aim at empirically comparing the two methods presented above (namely relaxed DTW
and SVR) for a task of content-based sequence retrieval in a database. We first used a subset of the database
to fit the parameters for the SVR and then compared both methods on the full database.

5.1 Experimental Setup

The database consists of 100 hours of audio divided into 10 hours of a French radio channel called France

Info and of 90 hours of another French radio channel called FIP. These records contain show jingles and
other repeating parts.

The two data streams were segmented into pieces of 5 seconds each without any overlap between successive
chunks, each chunk being an entry in our database. These chunks are then represented as sequences of
features, each feature being made of the 12 first Mel Frequency Cepstral Coefficients (MFCC) [DM80]
computed over a window of 20 ms length with an overlap of 10 ms. Cepstral coefficients encode the spectral
enveloppe of the signal, which caracterizes sounds, over a short time period. Moreover, the Euclidian
distance between two MFCC vectors measures the spectral distance between the two corresponding spectral
enveloppes. In our experiments, each dimension of the features is normalized for the global distribution to
have zero mean and unit variance.

We used 3 different samples that are repeated in the France Info stream but not present in the FIP

stream and distorted them in order to get 7 different versions of each sample, leading to a set of 21 different
queries. The chunks from the database can then be similar to the queries in the sense that they share similar
parts, but are, in general, timeshifted. The first version, which is the original one, is 5 second long. We
extracted from the stream a sequence of 7 seconds that contains the original version of the query and a
subsequence of the latter that is 3 second long. We also altered the tempo of the original sequence to get a
version that is 10% faster and another one that is 10% slower. Two sequences are MP3-encoded (while the
France Info stream from which the query was extracted was in WAVE format) at different rates: 32kbps for
the low-quality version and 128kbps for the high-quality one. Finally, we used a sample that is not present
in the database in order to evaluate the ability of both approaches to give information about the absence of
a sequence in the database.

Experiments consist in ranking elements from the database by decreasing similarity to a query. To do
so, we estimate the similarity between the considered query and every elements of the database. Results are
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C = 0.5 C = 1 C = 2

ε = 0.005
ε2 = 0.005 0.921 0.939 0.951
ε2 = 0.05 0.924 0.939 0.950
ε2 = 0.5 0.859 0.913 0.938

ε = 0.05
ε2 = 0.005 0.924 0.939 0.951
ε2 = 0.05 0.924 0.939 0.949
ε2 = 0.5 0.863 0.913 0.936

ε = 0.5
ε2 = 0.005 0.928 0.936 0.954

ε2 = 0.05 0.918 0.939 0.953
ε2 = 0.5 0.809 0.870 0.909

Tab. 2: MAP scores for all parameter sets of SVR on the small database.

evaluated using the mean average precision (MAP) of the resulting ranked list given a hand-made ground-
truth.

5.2 Setting the SVR parameters

A first series of experiments aims at understanding and setting the parameters of the SVR. For that task
we use only a part of the above described database (5 hours of France Infos recordings) and a single query
without distortion so that the parameters are not completely database-specific. Here, we use the Smin

similarity measure as it proved to be the most stable in our experiments.
MFCC features are designed to be compared using the Euclidean distance. For that reason, the only

acceptable kernel for our task is the RBF one (see table 1). The parameters to adjust are therefore: the
cost-function threshold ε, the termination criterion ε2 and the trade-off between the number of support
vectors and the quality of reconstruction C.

As there is no proof of independance between these parameters, we tested all possible combinations,
with 3 possible values for each parameter. Results can be found in table 2, showing that the best is to set
ε = 0.5, ε2 = 0.005 and C = 2. Using this parameter set, we reached a MAP of 0.954 which means that
most of the samples from the ground truth were ranked at a high position in the list. We observed that
this parameter set led to a very precise representation of the samples, which was achieved thanks to a high
number of support vectors in the model.

The optimal value for ε can be quite surprising: as our data has been scaled to follow a standard normal
distribution, this value of 0.5 could be considered as being large, but one can see in table 2 that ε has little
influence on the MAP. The small value for ε2 indicates that going for numerous runs of optimization is
useful, while setting C = 2 shows that deviations from the acceptable enveloppe (defined by g ± ε) have to
be strongly penalized.

This parameter set will be used in the next section to evaluate SVR performances.

5.3 Comparison between DTW and SVR

Using the optimal parameter set for SVR, we can compare the results of the two methods in terms of
precision/recall graph, query-specific MAP and average MAP. To perform this comparison, we use the entire
database and the whole set of queries.

Figure 2 presents precision/recall curves for both methods and both symetric similarity measures Savg

and Smin. This shows that using Savg gives poorer results than the ones obtained with Smin for both
methods. This is due to the fact that Savg always takes into account information from both S1 and S2 while
Smin only relies, for each similarity estimation, on the minimum of S1 and S2, which is supposed to be
the best representation. Moreover, one can notice that the curves for DTW and SVR using Smin intersect
several times, showing that each method can be useful, depending on the range of precision and recall one
expects.
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Fig. 2: Precision/recall curves for SVR and DTW using the entire database and the whole set of queries.

Table 3 presents MAP values for both methods, showing that SVR performs better than DTW, especially
on original sequences. This proves the effectiveness of SVR for similarity estimation. Moreover, SVR also
outperforms DTW on MP3 encoded samples. This is due to a better robustness to outliers. Indeed, encoding
the chunks using MP3 alters the spectrum of the sequences, on which MFCC are based, generating outliers
in the features. Performances are comparable for subsequences and oversequences, while, as predicted, DTW
still performs better on tempo-modified sequences. This is due to the nature of DTW that is built to deal
with such distortions. The good point here is that SVR is reasonably robust to stretching, as the MAP does
not fall down for these chunks. We performed a non-parametric Wilcoxon test [Wil45] on the data. The
results were that DTW is not significantly better than SVR on this dataset. Using S2, which, in the case
of SVR, corresponds to predicting the query using a model fitted on the elements of the database, performs
significantly better than S1, leading to a bias in the computation of Savg and Smin.

Indeed, the audio descriptors we are using are very sensitive to the presence of speech in the audio
signal (so sensitive that they are often used for speech/non-speech classification). Therefore, the descriptors
tend to be located in very different parts of the multidimensional feature space, depending on whether they
describe speech or not. The point here is that our database was truncated into pieces of 5 seconds each.
Because of this arbitrary truncation, some of the chunks contain parts of the query (which is music) as well
as speech. These sequences were evaluated by the human expert as occurences of the query. Then, given
what we know about the differences between speech descriptors and non-speech ones, a model fitted on a
music query (which is the case for S2) is poor at predicting speech parts of the signal, and these chunks
are then considered as negative examples, while they should not. This explanation is supported by table 4
that shows the comparative impact on S1 and S2 of truncating the false negative chunks so that they do not
contain speech anymore.

We also tested the ability of both approaches to give information about whether a sequence is present or
not in the database. To do so, we used a sequence that was not present in the database as a query q and
computed, for both approaches, the following quantity

F (q) =
score(First(q))

1
nqueries

∑nqueries

i=1 score(First(qi))
, (20)

where score(First(q)) is the similarity measure given by the considered approach for the best match in the
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DTW SVR
S1 S2 Savg Smin S1 S2 Savg Smin

original 0.751 0.904 0.877 0.903 0.608 0.948 0.822 0.938
subsequence 0.714 0.942 0.928 0.941 0.613 0.937 0.865 0.938
oversequence 0.881 0.729 0.844 0.885 0.692 0.922 0.821 0.898
slow version 0.796 0.880 0.878 0.904 0.383 0.925 0.690 0.722
fast version 0.720 0.913 0.874 0.913 0.489 0.933 0.695 0.828
MP3 32kbps 0.735 0.880 0.852 0.879 0.536 0.938 0.760 0.918
MP3 128kbps 0.757 0.901 0.877 0.907 0.597 0.955 0.825 0.946

Average 0.765 0.878 0.876 0.905 0.560 0.937 0.782 0.884

Tab. 3: MAP scores for SVR and DTW using the entire database for each kind of versions of the set.

Similarity measure Original version Truncated version
S1 15.72 11.53 (-27%)
S2 12.26 12.65 (+3%)

Tab. 4: Impact of the truncation on the similarity measurements. These results were obtained for SVR with
optimal parameter set and the first query of the set.

list returned for query q and nqueries is the total number of queries we used in the previous experiments, that
is 21 (7 versions of 3 different samples). Therefore, the higher F (q), the better.

Results, presented in Table 5 show that, for each smilarity measure, SVR is better than DTW at dis-
criminating between sequences from the database and the others.

6 Conclusion

This paper aimed at assessing the feasability of estimating similarity between sequences in a model space for
later application to the indexing of large temporal databases. Performances of similarity estimation using
SVR models were compared to the ones of usual DTW similarity measure, in both theoretic and experimental
ways.

The study carried out above shows that using S2 similarity measure, SVR outperforms DTW for almost
all types of queries, exhibiting an interesting robustness to distortions such as tempo-modifications, MP3
encoding and subsequence extraction. Moreover, SVR is better than DTW at distinguishing between a
sequence that is present in the database and another one that is not.

These encouraging results point out the fact that SVR could be used as part of a complete sequence
indexing scheme. Before that, we will need to understand better the reasons why S2 performs significantly
better than S1 while we expected them to give similar results. Then, a special effort should be done to turn
these similarity measures into distances so that the process of querying can be fastened.
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