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Problem statement: Nearest Neighbors search 
 

–  Finding the closest vector(s) from a database for a given query  

–  In this paper: 

 

 

 

Problem: Exhaustive search has complexity 
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2 approaches to Nearest Neighbor Search 

–  Space partitioning 

•  The search no longer exhaustive 

•  Example: indexing technique involving several hash functions 

 

 

–  Approximate distance 

•  Faster to compute but exhaustive 

•  In this paper: we use an Hamming Embedding  
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Hamming embedding 

•  Design a mapping function  

•  Objective 

–  neighborhood in Hamming space reflects true neighborhood 

 

•  Advantages 
–  compact descriptor 
–  fast distance computation 
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•  Initialization: Randomly draw L directions  

•  For a given vector    , compute a bit for each direction, as 

1.  Project 

2.  And sign  

 

•  Properties 

–  For two vectors      and   

–  The Hamming distance is related in expectation to the angle as 

Locality Sensitive Hashing (LSH) 
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Our approach 

•  Synthesis point of view 

–  Reconstructed vector 

–  If          ‘close’ to            on the sphere, then  

•  Minimizing the quantization error  

–  If L < D and                      ,  ‘project and sign’ is optimal 

–  If L > D, it is a combinatorial problem 

•  Not tractable for large D 
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Reconstruction point of view 

•  ‘Project and sign’ with a frame W 
•  ‘Project and sign’ with a tight frame W 

•  Our algorithm qoLSH 
–  quantization optimized LSH 

•  ‘AntiSparse’  [Jégou 11] 
–  Too slow for large D 

•  Optimal 
–  Untractable for large D 
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qoLSH algorithm 
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•  Parameter: randomly draw a tight frame  

•  Initialization: input  
–  ‘project and sign’: 

•  Iteration k + 1 
–  For any j 

•  Flip j-th bit:  
•  Measure cosine: 

–  Keep best flip  
•    



Estimated angle vs True angle  
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Synthetic data 
D = 8, L=64 



Angle estimation error analysis 
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Synthetic data 
D = 128, L=256 

qoLSH reduces estimation bias and variance compared to LSH  



Application the Nearest Neighbor Search 

- 11 

query qoLHS Symmetric 
similarity 

Candidates 

reconstruction 

Asymmetric 
similarity 

Candidates 

database 

Re-ranking 

Max-heap 



Experimental details 

•  Dataset 
•  Synthetic ( n = 1 million, D = 8) 
•  SIFT ( n = 1 million,  D = 128) 

•  http://corpus-texmex.irisa.fr 

•  Algorithms 
•  LSH with or without tight frame  
•  qoLSH 
•  anti-sparse 
•  quantization optimal (if tractable) 

•  Performance measurement 
•  1-Recall@R: probability that the true nearest neighbor belongs to a short list 
of R candidates 
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Recall on synthetic data (n = 1M, D = 8) 
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Recall on real SIFT data (n = 1M, D = 128) 
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Conclusion 

•  Hamming embedding dedicated for cosine similarity estimation 
•  L<D 

–  ‘Project and sign’ is optimal with orthogonal random projection 
•  L>D 

–  Tight frame is a good choice 
–  ‘Project and sign’ is suboptimal 
–  Our reconstruction based approach 

•  decreases quantization error 
•  improves cosine similarity estimation 
•  improves quality of approximate NN search 
•  strikes a good trade-off between quality and complexity 
 
 
http://people.rennes.inria.fr/Raghavendran.Balu/code/qolsh.zip 

Package 
Online! 
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QUESTIONS? 
Thank You! 
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LSH suboptimality when L > D 

•  When L>D,                                is not orthogonal 

–  Entropy  H(B) < L bits 

•  Example 

 

•  LSH (sub optimal): 

•  Optimal 
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