From ‘time’ elastic distances to ‘time’ elastic inner vector spaces

-Prospective applications in ‘time’ series, sequence or text classification-

P.-F. Marteau, SEASIDE
Challenging issue

• Embedding complex data in an inner vector space (or normed space) gives access to a wide range of applications relying on main linear algebra results
 – PCA, SVD (LSI, LSA), ‘Optimal’ Dimension Reduction, Matching pursuit, data compression, etc.

• For sequential or 'time-stamped' data, elastic distances (such as Levenshtein Dist., DTW, LCSS, ERP, TWED) have proved to be superior in general to Euclidean or Minkowski distances in particular for discrimination or regression tasks
 – Unfortunately, elastic distances do not derive from a norm (an inner product)

• **Existence of ‘time-elastic’ inner products?**
 – Preserving the access to main linear algebra results
 – Keeping benefiting from ‘time-elasticity’ capability
Content

- Challenging issue
- ‘Time’-stamped data
- ‘Time elastic’ distance or pseudo distance
- ‘Time elastic inner products’ (TEIP)
- Prospective applications
- Conclusion, perspectives
“times-tamped” data

- \(U \) : sequence set, \(A \in U \) is a finite sequence
- \(A_i^n = A(1)A(2)\ldots A(n) \) with \(A(i) \in S \times T \)
- \(S \) : “spatial” set (numeric or symbolic) : spatial dimensions
- \(T \) : “time” set : timestamp dimension
- \(A(i) = (a(i); t_{a(i)}) \)

Examples

By itself, not a whole lot. Genome sequencing is often compared to "decoding," but a sequence is still very much in code. In a sense, a genome sequence is simply a very long string of letters in a mysterious language.
‘Time’-elastic distances or pseudo distances

\[
DTW(A^p_i, B^q_i) = \delta(a(p), b(q)) + \min \begin{cases}
 DTW(A^p_i, B^{q-1}_i) \\
 DTW(A^{p-1}_i, B^q_i) \\
 DTW(A^{p-1}_i, B^{q-1}_i)
\end{cases}
\]

- Recursive definition
- O(N^2)
- Nonlinearity (Min, Max, \(\delta(\cdot;\cdot)\)),
 - Impossibility to derive from elastic distances inner (dot) products
 - Impossibility to derive a norm
 - Existence of ‘elastic’ inner vector space?
Dot/Inner Products

• Euclidean dot product

\[\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \]

• Inner product

• **Conjugate** symmetry: \[\langle x, y \rangle = \overline{\langle y, x \rangle} \]. Note that in \(\mathbb{R} \), it is symmetric.

• **Linearity** in the first argument:

\[\langle ax, y \rangle = a \langle x, y \rangle. \]
\[\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle. \]

• **Positive-definiteness**: \[\langle x, x \rangle \geq 0 \]
 with equality only for \(x = 0 \).
\((U^*, \oplus, \otimes)\) provided \((S, \oplus_S, \otimes_S)\)

Definition 2.3. For all \(A \in U^*\) and all \(\lambda \in \mathbb{R}\), \(C = \lambda \otimes A \in U^*\) is such that for all \(i \in \mathbb{N}\) such that \(0 \leq i \leq |A|\), \(C(i) = (\lambda.a(i), t_{a(i)})\) and thus \(|C| = |A|\).

Definition 2.4. For all \((A, B) \in (U^*)^2\), the addition of \(A\) and \(B\)

\(U^*\): set of sequences defined on \((S-\{0_s\}) \times T\)
From elastic distance to ‘time’
elastic products

Provided the existence of the addition \oplus and scalar multiplication \otimes on the sequence set U, what are the conditions on f, g, α, β and ξ to make it an inner product?

\[
\begin{align*}
< A^p_1, B^q_1 >_{tep} = & \sum \left\{ \begin{array}{l}
\alpha \cdot < A^{p-1}_1, B^q_1 >_{tep} \\
\beta \cdot < A^{p-1}_1, B^{q-1}_1 >_{tep} + f(a(p), b(q)) \cdot g(t_{a(p)}, t_{b(q)}) \\
\alpha \cdot < A^p_1, B^{q-1}_1 >_{tep} \end{array} \right. \\
< A, \Omega >_{tep} = & < \Omega, A >_{tep} = < \Omega, \Omega >_{tep} = \xi
\end{align*}
\]

where Ω is the null sequence, ξ, α, β are real

and g is strictly positive
‘Time’ elastic inner products

\((U, \oplus, \otimes) \) provided \((S, \oplus_S, \otimes_S) \)

\(U^* \) is the set of sequences whose elements are in \(S \setminus \{0_S\} \)
\((0_S, t) \) identifies the null sequence element for all \(t \)

Theorem 2.1. \(<\cdot,\cdot>_{tep} \) is an inner product on \((U^*, \oplus, \otimes) \) iff:

i) \(\xi = 0 \).

ii) \(g : (T \times T) \to \mathbb{R} \) is symmetric and strictly positive,

iii) \(f \) is an inner product on \((S, \oplus_S, \otimes_S) \), if we extend the domain of \(f \) on \(S \) while setting \(f(0_S, 0_S) = 0 \).

iv) \(\alpha = 1 \) and \(\beta = -1 \),

Note that according to this result, it is possible to embed sequences of various lengths or times series not-uniformly sampled and/or of various lengths in a unique ‘elastic’ vector space structure.
‘Time’ elastic **inner products**

Example of a ‘time elastic’ inner product

\[
\langle A_1^p, B_1^q \rangle_{teip} = \\
\sum \left\{
\begin{array}{l}
\langle A_1^p, B_1^{q-1} \rangle_{teip} \\
- \langle A_1^{p-1}, B_1^{q-1} \rangle_{teip} + a(p)b(q) \cdot e^{-\nu \cdot |t_{ap} - t_{bq}|} \\
\langle A_1^{p-1}, B_1^q \rangle_{teip}
\end{array}
\right.
\]

\(\nu: \text{stiffness parameter} \)
\(\nu = 0, \text{infinite elasticity} \)
\(\nu = \infty, \text{null elasticity} \)
Recursively embedded elastic dimensions

\[< A_1^p, B_1^q >_{teip} = \]
\[\sum \left\{ \begin{array}{l}
< A_1^{p-1}, B_1^q >_{tep} \\
- < A_1^{p-1}, B_1^{q-1} >_{tep} + g(t_{a(p)}, t_{b(q)}) \cdot < a(p), b(q) >_{teip(S)} \\
< A_1^p, B_1^{q-1} >_{tep}
\end{array} \right\} \]
Recursively embedded elastic dimensions

Time-stamped data
Time-elastic distance
Time-elastic inner prod
Prospective applications
Elastic measures

Elastic norm:
\[\| A_1^p \|_e = \sqrt{< A_1^p, A_1^p>_e} \]

Elastic distance
\[eDist(A_1^p, B_1^q) = \| A_1^p \oplus (-B_1^q) \|_e \]

Elastic cosine
\[eCos(A_1^p, B_1^q) = \frac{< A_1^p, B_1^q>_e}{\| A_1^p \|_e \cdot \| B_1^q \|_e} \]
Sanity check: Gram-Schmidt orthogonalization of a sine basis

\[\nu = 0.01 \]
Prospective applications in sequence or text matching

\[
< A_1^p, B_1^q >_{teip_{tm}} = \sum \left\{ \begin{array}{l}
< A_1^{p-1}, B_1^q >_{teip_{tm}} \\
- < A_1^{p-1}, B_1^{q-1} >_{teip_{tm}} + e^{-\nu|t_{a(p)}-t_{b(q)}|}\delta(a(p), b(q)) \\
< A_1^p, B_1^{q-1} >_{teip_{tm}}
\end{array} \right.
\]

(7)

where \(a(p)\) and \(b(q)\) are vectors whose coordinates identify words with weightings, \(\delta(a, b) = < a, b >\) is the Euclidan inner product, and \(\nu\) a time stiffness parameter.

Proposition 3.3. For \(\nu = 0\) and \(\delta\) redefined as \(\delta(a, b) = 1\) if \(a = b\), 0 otherwise, the elastic inner product defined in Eq. 7 coincides with the euclidean inner product between two vectors whose coordinates correspond to term frequencies observed into the \(A_1^p\) and \(B_1^q\) text sequences.

Proposition 3.4: if \(\nu \to \infty\), and if the two sequences in argument are uniformly sampled and have the same length, then the TEIP tends toward the Euclidean inner product.
Toy experiment

\[e\text{Cos}(A_i^p , B_i^q) = \frac{< A_i^p , B_i^q >_e}{ \| A_i^p \|_e \cdot \| B_i^q \|_e } \]

\[\delta(x, y) = 1 \text{ if } x = y, \ 0 \text{ otherwise} \]
Toy experiment

\[e\cos(A,D) = \frac{A \cdot B}{||A|| \cdot ||B||} \]

\[\delta(?,x) = \delta(x,?) = 1 \]

<table>
<thead>
<tr>
<th>A</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>D</td>
<td>b</td>
<td>b</td>
<td>?</td>
<td>b</td>
<td>a</td>
<td>?</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Toy experiment

Prospective applications

Time-stamped data
Time-elastic distance
Time-elastic inner prod

$$e\text{Cos}(x,y)$$

$$e\text{Cos}(A,E)$$
$$e\text{Cos}(B,E)$$
$$e\text{Cos}(C,E)$$
$$e\text{Cos}(D,E)$$

$$e\text{Cos}(A_1^p, B_1^q) = \frac{<A_1^p, B_1^q>}{\|A_1^p\|_e \|B_1^q\|_e}$$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>D</td>
<td>b</td>
<td>b</td>
<td>?</td>
<td>b</td>
<td>a</td>
<td>?</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>E</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

PFM, 8 April 2011
Toy experiment

Prospective applications

Time-stamped data
Time-elastic distance
Time-elastic inner prod

Prospective applications

eCOS(x,y)

<table>
<thead>
<tr>
<th>A</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>D</td>
<td>b</td>
<td>b</td>
<td>?</td>
<td>b</td>
<td>a</td>
<td>?</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CPER: support Invent’IST
IRISA, IETR, VALORIA, IRMAR, LMAM

Platform for “Massive” Data Processing: 250 k€

Dr Nicolas Bonnel
Implementation on GPU and cluster (today ~20 nodes, perspective 32 nodes)
Early results in Text Mining

Text classification experiment: Reuters 21578, WebKB datasets
Early results in Text Mining

Text classification experiment: WebKB classes

Classif. error rate

Time-stamped data
Time-elastic distance
Time-elastic inner prod
Prospective applications
Early results in sequence classification

- Protein Classification Benchmark Collection (ICGEB/EMBNet)
 - 3-phosphoglycerate kinase (3PGK) protein sequences

<table>
<thead>
<tr>
<th>ID</th>
<th>POSITIVE TEST</th>
<th>POSITIVE TRAIN</th>
<th>NEGATIVE TEST</th>
<th>NEGATIVE TRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaea_Crenarchaeota</td>
<td>4</td>
<td>11</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>Archaea_Euryarchaeota</td>
<td>11</td>
<td>4</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>Bacteria_Actinobacteridae</td>
<td>5</td>
<td>68</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>Bacteria_Firmicutes</td>
<td>35</td>
<td>38</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>Bacteria_Proteobacteria</td>
<td>30</td>
<td>43</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>Eukaryota_Alveolata</td>
<td>4</td>
<td>39</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Eukaryota_Euglenozoa</td>
<td>5</td>
<td>38</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Eukaryota_Fungi</td>
<td>10</td>
<td>33</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Eukaryota_Metazoa</td>
<td>12</td>
<td>31</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Eukaryota_Viridaeplanta</td>
<td>8</td>
<td>35</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>
Early results in sequence classification

–3-phosphoglycerate kinase (3PGK) protein sequences

![Graph showing error rate versus time-elastic distance]
Early results in sequence classification

3-phosphoglycerate kinase (3PGK) protein sequences

Error Rate

Time-stamped data
Time-elastic distance
Time-elastic inner prod
Prospective applications

eCOS

Archaea_Crenarchaeota
Archaea_Euryarchaeota
Bacteria_Actinobacteridae
Bacteria_Firmicutes
Bacteria_Proteobacteria
Eukaryota_Alveolata
Eukaryota_Euglenozoa
Eukaryota_Fungi
Eukaryota_Metazoa
Eukaryota_Viridaeplantae
Average AUC values for the 10 classification tasks

Prospective applications

<table>
<thead>
<tr>
<th>1NN</th>
<th>BLAST</th>
<th>SW</th>
<th>NW</th>
<th>LA</th>
<th>PRIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOP95_supfam_fam_1</td>
<td>0.70</td>
<td>0.84</td>
<td>0.84</td>
<td>0.79</td>
<td>0.89</td>
</tr>
<tr>
<td>SCOP95_supfam_fam_kfold_2</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>SCOP95_fold_supfam_3</td>
<td>0.57</td>
<td>0.65</td>
<td>0.67</td>
<td>0.58</td>
<td>0.85</td>
</tr>
<tr>
<td>SCOP95_fold_supfam_kfold_4</td>
<td>0.90</td>
<td>0.94</td>
<td>0.95</td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>SCOP95_class_fold_5</td>
<td>0.60</td>
<td>0.61</td>
<td>0.63</td>
<td>0.57</td>
<td>0.78</td>
</tr>
<tr>
<td>SCOP95_class_fold_kfold_6</td>
<td>0.92</td>
<td>0.92</td>
<td>0.93</td>
<td>0.88</td>
<td>0.93</td>
</tr>
<tr>
<td>CATH95_H_S_7</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>CATH95_H_S_kfold_8</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.95</td>
</tr>
<tr>
<td>CATH95_T_H_9</td>
<td>0.57</td>
<td>0.65</td>
<td>0.67</td>
<td>0.61</td>
<td>0.77</td>
</tr>
<tr>
<td>CATH95_T_H_kfold_10</td>
<td>0.90</td>
<td>0.93</td>
<td>0.93</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>CATH95_A_T_11</td>
<td>0.55</td>
<td>0.57</td>
<td>0.58</td>
<td>0.54</td>
<td>0.67</td>
</tr>
<tr>
<td>CATH95_A_T_kfold_12</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>CATH95_C_A_13</td>
<td>0.65</td>
<td>0.71</td>
<td>0.70</td>
<td>0.69</td>
<td>0.56</td>
</tr>
<tr>
<td>CATH95_C_A_kfold_14</td>
<td>0.91</td>
<td>0.90</td>
<td>0.91</td>
<td>0.86</td>
<td>0.81</td>
</tr>
<tr>
<td>Average</td>
<td>0.79</td>
<td>0.83</td>
<td>0.83</td>
<td>0.80</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Time-stamped data

Time-elastic distance

Time-elastic inner prod

SW: Smith-Waterman
NW: Needleman-Wunsch
LA: Local Alignment kernel
PRIDE: Probability of similarity (Histogram of distances between motifs)

AUC: Area under the Curve (ROC curve)
Conclusion, perspectives

• The existence of ‘time-elastic’ products seems to be proved given the existence of \oplus and \otimes
 – Elastic inner products generalize somehow the Euclidean inner product and the classical vector model defined for textual information retrieval
 – Several ‘time-elastic’ dimensions can be managed recursively
 – Leads to positive definite kernels (not the case for DTW-like distances)
• Early results on time series or sequential data classification show some potentiality that need to be consolidated
• Generalization to simultaneously elastic dimension? (can T be multidimensional?)
• ‘time-elastic’ Linear Algebra has to be further developed