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Abstract. This paper describes a new approach to analyze hand gestures, based 
on an experimental approximation of the shape and kinematics of compressed 
arm trajectories. The motivation of such model is on the one hand the reduction 
of the gesture data, and on the other hand the possibility to segment gestures 
into meaningful units, yielding to an analysis tool for gesture coding and syn-
thesis. We show that the measures of the distance between adaptive samples 
and velocity estimated at these points are respectively correlated to the instan-
taneous curvature and tangential velocity directly computed on motion capture 
data. Based on these correlation results, we propose a way to identify an appro-
priate compression rate of the adaptive sampling algorithm. We also show that 
this new analysis tool can be applied on multidimensional data. 

1   Introduction 

The representation and the accurate understanding of human gesture is a crucial and 
challenging problem which was raised in several research fields, including animation 
of embodied agents, sport sciences, medicine or vision-based recognition. In recent 
years, the huge development of new technologies for motion capture has made the 
analysis of human motion feasible, and yielded to data-based methods for gesture 
classification, retrieval, and computer-generated animation.  

One major problem in representing gesture from recorded data is that these data 
are multidimensional and direct use of them is rather expensive and fastidious. An-
other problem is the lack of flexibility. Computing new motion from real motion clip 
necessitates the elaboration of huge data sets, or the development of data-based meth-
ods for editing, blending or adapting existing motion. Finally, finding the best motion 
representation is a central problem, depending on the application. In particular, ex-
tracting regular features, identifying segmental units or defining measures for com-
paring two similar motion clips can be useful for retrieval or recognition process. As 
these processes operate on multidimensional data, one way to characterize gesture is 
to compress the original information, and to use this data reduction to characterize 
significant movement units. The automatic extraction of targets [1] is also an efficient 
way to synthesize new gestures, which takes into account the spatial variability of 
gestures and the co-articulation effects. 



 
Motion capture data generally consist of sampled trajectories for each degree-of-

freedom characterizing the position and orientation of the human joints. These joint 
data can be represented by different sets of coordinates; in particular, angular coordi-
nates generally expressed by Euler angles or quaternion, and Cartesian coordinates. 

In this paper, as we are mainly interested in visual gestures, which are gestures that 
draw the 3D space, we express them by 3D Cartesian trajectories. These gestures 

are most of the time conveying meaningful information, as in sign languages gestures, 
or expressive gestures like dance or musical gestures. They can be characterized by 
their shape (change of curvature), as well as by their kinematic specificities. In sign 
language gestures for example, the signer can draw the shape of the symbol as an 
icon of some aspect of the object or the activity to be symbolized (Fig. 1.a and b). 
Expressive gestures may also implicitly contain some velocity or acceleration pro-
files. In particular variations in velocity are responsible for the aggregation of sam-
ples in some areas of the trajectories (Fig. 1.c).    

   

Fig. 1. left and middle: gesture drawing the space ; right: 3D end-point trajectory   

We propose here to study both these spatial and kinematics characteristics in a re-
duced representation space. First of all we will consider the arm end-point trajectory, 
and the method can then be extended to multidimensional arm trajectories. While 
basing our work on a compressed representation of trajectories, we define an ap-
proximation of adaptive velocity and curvature. We show that these approximations 
can be strongly related to curvature and tangential velocity, not only in 3D space, but 
in any dimensional space. These measures provide new tools to automatically analyse 
gestures. An interpretation is given for the segmentation of sign language gestures 
and it possible use for gesture representation and synthesis.  

The paper is mainly composed of four sections. Section 2 gives an overview of the 
related works. After presenting briefly the adaptive non uniform sampling algorithm 
used for data reduction, section three presents the analysis method. Section 4 presents 
some analysis for 3D arm end-point trajectories, in terms of correlation and compres-
sion rate. After illustrating some results about the segmentation of sign language end-
point trajectories in section five, the possibility to use this segmentation for different 
purposes is evoked. The paper concludes and gives some perspectives in section six. 



 
2   Related works   

Numerous techniques have been developed for the analysis of human motion capture 
data. These studies differ considerably, whether the emphasis is placed on the search 
of regular features for explaining neural mechanisms, or data reduction, or on gesture 
segmentation for animation purposes.  

The search for invariant features has been largely investigated in recent years. Re-
searchers tried to express these regularities in terms of motion laws. Some of them 
can be used for trajectory segmentation. In particular, the two-third power law, ex-
pressing a power relation between velocity and curvature [2] was proposed for seg-
menting three dimensional unconstrained drawing movements, on the basis of abrupt 
changes of the velocity gain factor. Another segmentation hypothesis was based on 
the observation that endpoint trajectories of human arm movements tend to be piece-
wise planar [3]. These segmentation hypotheses are largely discussed in the neurosci-
ence community. 

There are many different mathematical approaches for curves and surfaces ap-
proximations, which tend to reduce the dimensionality of the motion data. Few works 
concern motion trajectories. Polygonal approximation provides characteristics points 
to represent the shape of the trajectory. These points, which correspond to local cur-
vature extrema, can be connected by line segments. This method has been used by [4] 
for non-uniform sub-sampling of motion time-series. Another method proposes curve 
approximation using active contours [5]. These methods are developed for dance 
gesture recognition. 

Other methods have been proposed to the problem of approximating multidimen-
sional curves using piecewise linear simplification and dynamic programming in 
O(kn2) complexity [6]. Some efficient algorithms [7-8] (in O(nlog(n)) complexity) 
have been proposed.  

Independently of the data reduction method, we propose in this paper to character-
ize gesture trajectories expressed in the reduced space by approximated measures of 
spatial shape and kinematics.   

3   Analysis of arm movements 

The gestures consist of raw data composed of 3D Cartesian trajectories, each trajec-
tory representing the evolution with time of one coordinate x, y, or z expressing the 
position of a specific joint. For our study, we consider X(t) as constituted of time-
series in 3.p dimensions, represented by spatial vectors X(t) =[x1(t), y1(t), z1(t) x2(t), 
y2(t), z2(t) xp(t), yp(t), zp(t)]. In practice, we deal with the sampled trajectory at a 
constant frequency of 120 Hz: X(n) where n is the time-stamp index.   

In this analysis method, we rely on the algorithm described in [1], which is related 
to linear piecewise curve approximation. This algorithm finds samples in the time 
series X(t), not regularly located in time, as shown in figure 2.  



     

Fig. 2. An approximation of the end-point trajectory using the non uniform sampling algorithm    

The approach consists in seeking an approximation X of X(n), 

 

being the set of 

discrete time location {ni} of the segments endpoints. The selection of the optimal 

set of parameters in  is performed using a dynamic programming algorithm. The 

result of this method is the optimal identification of discrete XTi key-points 

 

we call 
them spatial targets 

 

delimitating the segments, for a given compression rate . The 
complexity of the algorithm is O(n2/k) where n is the number of samples, and k the 
number of segments, but can be decreased down to O(n) if optimality is somehow 
relaxed [9]. For detailed description of the method, see [1].  

In a first study we work on 3D end point trajectories X(t) =[x(t), y(t), z(t)], the co-
ordinates being calculated in the shoulder frame. For any smooth trajectory param-
eterized with t, we express the instantaneous velocity v(t) and the absolute value of 
the instantaneous curvature (t):  
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where R is the radius of curvature. The curvature measures how fast a curve is chang-
ing direction at a given point.  



 
These variables have been extensively studied for a variety of goal-directed ex-

perimental tasks. In particular, a number of regularities have been empirically ob-
served for end-point trajectories of the human upper-limb, during 2D drawing move-
ments.  

However, for 3D movements with great spatial and temporal variations, it can 
be difficult to directly extract significant features from these signals. Moreover, com-
puting the radius of curvature raises a problem, when the velocity is too high, or 
when there are inflexion points in the trajectories. In particular for noisy data the 
radius of curvature may be difficult to compute. Finally, for higher dimensions, the 
curvature is not defined, prohibiting its use in the angular space in particular.  

We propose to approximate these velocity and curvature by empirical measures 
calculated from the adaptive samples identified through the DPPLA algorithm [1]. 
We define the target-based velocity by the expression:  
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where ni+1 and ni-1  are temporal indices of the associated targets Tgi+1 and Tgi-1.  
As the targets are not regularly located, the addition effect of this measure, homoge-
neous to a velocity, is to filter the raw data. The filtering depends on the compression 
rate. 

We define as well the inverse distance between adjacent targets as: 
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With this formulation, we assume that this last quantity might be linked to a 
measure of aggregation points on the trajectory: when the movement velocity de-
creases, the distance between original samples decreases and the curvature appears to 
be important. Therefore, gi(ni) expresses a spatial quantity which might be corre-
lated to curvature at time-index ni. 

In the next section, we will study the correlation between the target-based ap-
proximations and the instantaneous values. We will also study the influence of the 
compression parameter k of the compression algorithm. 

4 Analysis of 3D endpoint arm data 

Corpus  

One deaf signer performed the gestures. He signed sequences of French sign lan-
guage gestures representing several versions of bulletin weather performed with dif-
ferent styles, relative to the subject s dynamics and emotional state. The sequences 
were composed of 12 phrases; the whole duration was about 30 s. The subject was 



 
asked to perform the gestures with variations of the geometry (large vs. small ampli-
tude), kinematics (high vs. low speed) and dynamics (smooth vs. jerky).   

Pre-processed data  

Raw data are first filtered by a low pass Butterworth filter with a cutoff frequency 
of 10.0 Hz. We consider sequences of about 10000 frames.  

Correlation between approximated and instantaneous variables  

The analysis of correlation is achieved, on the one hand between the log of target-
based velocity and the log of its instantaneous value, and on the other hand between 
the inverse of the distance between targets and the instantaneous curvature. The re-
sults concerning the velocity are shown in figure 3 (a). They illustrate an excellent 
correlation between the two variables, thus allowing us to use target-based velocity as 
a good approximation of instantaneous velocity. We may also compute the accelera-
tion of arm end-point trajectories on the basis of this target-based velocity.  

The correlation between the log of the inverse target distances and the log of its 
instantaneous curvature is also very good, as illustrated in figure 3 (b). The points 
with abrupt changes are located at the same place, but the target-based signal seems 
less noisy than the original one. This makes possible to approximate curvature as the 
inverse of target density.       

a) Tangential velocity (solid line) vs. target-based density (dotted line) 

 

b) Curvature (solid line) vs. target density (dotted line) 



    

Fig. 3. Correlation for 3D end-point trajectories of arm movements; a) correlation between 
instantaneous tangential velocity (solid line) and target-based velocity (dotted line); b) correla-
tion between instantaneous curvature (solid line) and inverse target density (dotted line) 
For each signal x, we computed: (log(x)  mean(log(x)))/std(log(x))   

Influence of the compression coefficient on the correlations  

The influence of the compression factor characterizing the adaptive sampling al-
gorithm is analyzed at the light of the correlation coefficient. The results can be seen 
in figure 4. It shows that for the target-based velocity, the correlation coefficient 
remains very close to 1, independently of the compression rate (from 50% to 95%). 
For the target-based acceleration, the correlation coefficient is very good (0.9), for a 
compression rate varying until 70%. Beyond this limit, the correlation coefficient 
abruptly falls. The correlation coefficient is lower for the inverse distance, but still 
high (.85), even for a high compression rate (until 80%). These results support the 
assumption that target-based variables can be used without a significant loss of data 
for the analysis of 3D end-point trajectories.   



   

Fig. 4. Correlation coefficient versus compression rate of the adaptive sampling algorithm; 
(circle): curvature vs. inverse target distance; (star): acceleration vs. target based acceleration; 
(square): tangential velocity vs. target based velocity 

5 Gesture segmentation, coding and data-driven synthesis 

Studies on gesture [10] showed that human gestures can be segmented into distinct 
phases. Some researches assumed that objective measures can be used to segment 
hand movement. In particular, Kita et al. showed that abrupt changes of direction, 
accompanied by a velocity discontinuity indicate phase boundaries in hand trajecto-
ries. These observations have been exploited by [11], who proposed a new distance 
metric to detect phase boundaries, based on the sign of the first and second deriva-
tives of endpoint trajectories. The analysis method described above can be used for 
automatically segmenting the 3D arm motion. Moreover, it can be used for a compact 
gesture representation and for data-driven synthesis. 

5.1 Segmentation 

Our segmentation is based on the observation that phase boundaries might occur 
when the radius of curvature becomes very small, and the velocity decreases at the 
same time, indicating a change of direction. Our segmentation algorithm is based on 
the product variable v(t). (t), and on its approximation, based on the approximated 
target-based variables :  vTgi(ni). Tgi(ni).  

A color-coding method allows to quantify the variations of the variable, according 
to an equally distribution of its values. The meaning of this coding is presented in 
table 1.   



 
     Table1. Coding values for the color coding 

coding Variable values Interpretation 
black --- lowest values 
blue -- very low values 
cyan - low values 
green 0 average values 

yellow + high values 
magenta ++ very high values 

red +++ highest values 

 

The color-coding is reported on 3D trajectories, as can be seen in figure 5. When 
the velocity is very low, the color is green (clear gray). In the contrary, when the 
velocity is high and the curvature low, the color is red (dark gray). The level of quan-
tification indicates the size of the segmental units. A great similarity can be observed 
between the segmentation of the curve v(t). (t) and vTgi(ni). Tgi(ni) (see figure 5 up and 
down).  

5.2 Gesture coding and synthesis 

The analysis algorithm described above can be used for representing in a compact 
way gesture trajectories. These trajectories can be just 3D end-point trajectories, or 
multidimensional trajectories. In the latter case, the trajectories may be represented by 
angular postures or Cartesian positions at each joint of the articulated chains. 

When applied to 3D end-point trajectories (hand motion), the discrete representa-
tion which is provided by the DPPLA algorithm can be directly used as input of our 
motion generation engines. These engines have to determine the angular parameters 
of the articulated chain, given the end-extremity position and orientation. This opera-
tion can be realized through an inverse kinematics (IK) process, such as the GSM 
controller [12-13] which automatically computes the Euler angles through a non lin-
ear optimization approach; we can also use a learning-based inverse kinematics or 
dynamics scheme [14]. 



  

Fig. 5. Example of end-point trajectories segmentation (in the xy plane) using a color-coding of 
quantified variables (different gray levels); up: segmentation using the product (t).v(t); down: 
segmentation using the product Tgi(t).vTgi(t); A great similarity between the two sequences can 
be observed.  



 
In any case, our inverse methods follow complete end-arm trajectories, or use dis-

crete time-stamped targets localized on the original trajectories. We assume that the 
target-based representations implicitly contain the main characteristics of the motion 
style and dynamics. They also provide a way to perform co-articulation, by ensuring 
transitions between consecutive motion chunks.  

The method can be extended to multidimensional trajectories. In the same way, we 
can represent gesture sequences as target-based vectors evolving with time. The 
method has been performed for 6D trajectories, representing wrist and elbow Carte-
sian trajectories. The results are similar to the ones obtained with 3D trajectories: we 
are able to identify segments along the sequence, with a varying compression factor. 

6 Conclusion and future work 

This paper presented a method for computing an approximation of the curvature and 
velocity characterizing arm trajectories. This method is applied on compressed data, 
obtained from an adaptive sampling algorithm. This algorithm extracts discrete target 
patterns from raw data, for a given compression rate. Given a desired trajectory, we 
already showed that the targets patterns can represent in an optimal way the original 
trajectory.  

We showed that the target-based approximations are correlated with the instanta-
neous tangential velocity and curvature. They can therefore be used as an alternative 
to represent both the shape and the kinematics of end-point trajectories. Moreover, 
this representation can be adjusted by adapting the compression rate, according to its 
influence on the correlation. The results obtained for 6D trajectories are very promis-
ing. This method for analyzing the shape and kinematics of gesture trajectories may 
lead to a new analysis tool for multidimensional data.  

These empirical approximations provide a significant way to segment gestures. 
The measure proposed in this paper, in terms of the product of the target-based veloc-
ity by the target-based curvature, gives us indeed an original means of delimitating 
segments which are more or less short, depending on our algorithm parameterization. 
In order to affirm that these segments represent meaningful components, we should 
compare them with those obtained through manual segmentation. Anyway, for ges-
tures composed of chunks whose kinematics strongly discriminate them (acceleration, 
deceleration ), it might by interesting to use our optimized automatic algorithm as 
an alternative method to the geometrical ones. In future works, an optimal compres-
sion rate might be found empirically, by temporally aligning the proposed segmenta-
tion with a semantically interpretable segmentation. Other variables should also be 
tested for segmentation, and confronted to manual segmentation. 

Finally, the analysis method defines a possible representation of motion trajecto-
ries, based on a kinematic interpretation of the sequences. This representation might 
be useful for motion retrieval in motion database, or motion synthesis driven by cap-
tured data. 



 
References 

1. Marteau, P.F., Gibet, S. Adaptive sampling of motion trajectories for discrete task-based 
analysis and synthesis of gesture, In Gesture in Human-Computer Interaction and Simula-
tion, GW 2005, Berder Island, France, Revised Selected Papers, Lecture Notes in Com-
puter Science, S. Gibet & al ed., Springer, Vol. 3881, Pages 168-171, 2006. 

2. Viviani, P., Terzuolo, C. Trajectory determines movement dynamics. Neuroscience 7:431-
437, 1982 

3. Soechting, J.F., Terzuolo, C.A. Organization of arm movements in three dimensional 
space. Wrist motion is piecewise planar. Neuroscience 23:53-61, 1987 

4. Chenevière, F., Boukir, S., Vachon, B. A HMM-based dance gesture recognition system. 
In: Proceedings of the 9th international workshop on systems, signals and image process-
ing, Manchester, UK, June 2002, pp. 322-326 

5. Boukir S.,  Chenevière F.: Compression and recognition of dance gestures using a de-
formable model, Pattern Analysis and Applications (PAA) Journal, Springer-Verlag, Vol. 
7, No 3, (2004) 308-316. 

6. Perez J.C., Vidal E.: Optimum polygonal approximation of digitized curves, Pattern 
Recognition Letters, Vol. 15. (1994) 743-750 

7. Goodrich M.T.: Efficient piecewise-linear function approximation using the uniform 
metric. Proceedings of the tenth annual symposium on Computational geometry Stony 
Brook, New York, United States, (1994) 322  331 

8. Agarwal P.K., Har-Peled S., Mustafa  N.H., Wang Y.: Near-Linear Time Approximation 
Algorithms for Curve Simplification Proceedings of the 10th Annual European Sympo-
sium on Algorithms (2002). 

9. Marteau, P.F., Ménier, G., Adaptive multiresolution and dedicated elastic matching in 
linear time complexity for time series data mining, Sixth International Conference on In-
telligent Systems Design and Applications (IEEE ISDA2006), Jinan Shandong, China, 16-
18 October, 2006. 

10. Kita, S., van Gijn, I., van der Hulst, H. Movement phase in signs and co-speech gestures, 
and their transcriptions by human coders. Gesture and Sign Language in Human-
Computer Interaction, GW 1997, Bielefeld, Germany, Lecture Notes in Computer Sci-
ence, I. Wachsmuth & al ed., Springer, Vol. 1371, Pages 23-35, 1998. 

11. A. Majkowska, V. Zordan, and P. Faloutsos. Automatic slicing for hand and body anima-
tions. Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006), pp. 
1-8, M.P. Cani, J. O Brien (Ed.) 

12. Gibet S., Marteau P.F.: A Self-Organized Model for the Control, Planning and Learning 
of Nonlinear Multi-Dimensional Systems Using a Sensory Feedback, Journal of Applied 
Intelligence, Vol. 4. (1994) 337-349 

13. Lebourque, T., Gibet, S., A complete system for the specification and the generation of 
sign language gestures. Gesture-Based Communication in Human-Computer Interaction, 
GW 99, Gif-sur-Yvette (France), In Lecture Notes in Artificial Intelligence, A. Braffort & 
al ed., Lecture Notes in Computer Science, Springer, Vol.1739, Pages 227-238, 2000. 

14. S. Gibet, P.F. Marteau, F. Julliard. Models with Biological Relevance to Control Anthro-
pomorphic Limbs: A Survey. In International Gesture Workshop on Gesture and Sign 
Languages in Human-Computer Interaction, Revised selected papers, LNAI, Pages 105-
119, London, UK, 2002. 



This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.win2pdf.com

