

Visual Attention: low level and high level viewpoints

Fred Stentiford

University College London http://www.ee.ucl.ac.uk/~fstentif/

Outline

- Prior research
- Issues
- A top-down viewpoint
- Application to an illusion
- A bottom-up approach to attention
- Conclusions

Research – bottom-up

- Saliency features
 - Osberger, Luo, Itti, Harel
- Mismatching Stentiford, Fang
- Entropy Kadir
- Content Le Meur
- Mutual Information Gao
- Training Liu, Zhang, Bruce

Itti Model

Research – Top-down

- Contextual features Oliva
- Patch ensembles Boiman
- Spectral processing Hou

Issues

Bottom-up vs Top-down

- Representative data
- Feature selection
- Characterising the unusual

Graphical Representation

- Interest points or pixels are represented as nodes
- Nodes possess properties such as
 - Location
 - Colour
 - Brightness
 - Gradient
- A relationship exists between nodes if their properties and relative orientation match that of a pair in a second image.
- A maximal clique is the largest subset of nodes that all possess a relationship with each other

Cliques of Interest Points

Interest Points

Matching Interest Point Pairs

Image 1

Image 2

Gradient $\mathcal{E}_1 < 27^\circ$

Relative orientation $\mathcal{E}_2 < 11^\circ$

Movie Posters

Reference

Matching Maximal 8-Clique

b channel

Matching 7-Clique

b channel

Computation for formal maximal clique extraction goes up exponentially

Character Location & Recognition

Maximal Clique

4 nearest points plotted

Pixels in Maximal Cliques

Face Recognition

Yale faces

Expressions

460 points

Poggendorff Illusion

Limit the maximum distance between points

Similarity Scores

Effect at Varying Angles

	1	2	3	4	5	6	7	8	9	10
60	204	180	190	294	342	372	446	410	284	306
45	72	110	206	266	156	132	264	294	156	14
30	4	8	8	44	102	132	112	332	140	142

Peaks occur at greater shifts with smaller angles.

Acute and Obtuse Angled Variants

Stronger matching of interest point pairs in obtuse angles

Visual Attention

Self Matching

Constrain clique size

Composite Matches

Fives & Twos

5 5 5 5 5

Matching Distractor

Composite Matches

5 ς 5⁵5′ 52

Orientation disturbs attention

Composite matches

Natural Image

Self Matching

Composite

Conjunction

Orientation only

- Recognition by reflection is proposed
- Background is a driver in VA model
- More work on larger datasets