Region-of-Interest Intra Prediction for H.264/AVC Error Resilience

Fadi Boulos, Wei Chen, Benoît Parrein and Patrick Le Callet

IRCCyN lab., University of Nantes, France

fadi.boulos@univ-nantes.fr

November 10, 2009

Fadi Boulos Rol Intra Prediction for H.264/AVC Error Resilience

Motivations

• Packet loss affects QoE of video services over IP.

イロト イヨト イヨト

3

Motivations

- Packet loss affects QoE of video services over IP.
- Spatial position of the loss in the picture influences perceptual quality¹.

Motivations

- Packet loss affects QoE of video services over IP.
- Spatial position of the loss in the picture influences perceptual quality¹.
- Spatio-temporal error propagation heavily distorts video quality.

 $^{^{1}}$ F. Boulos, D. S. Hands, B. Parrein and P. Le Callet. Perceptual Effects of Packet Loss on H.264/AVC Encoded Videos. In *4th International Workshop on Video Processing and Quality Metrics for Consumer Electronics*, Scottsdale, AZ, January 2009. $< \square > < \bigcirc > < \circ < \bigcirc > < \circ > < \circ$

Error Propagation

Lost slice Inter-prediction

from lost MB

Intra-prediction from inter-predicted MB

Prediction order > 1

Fadi Boulos

Rol Intra Prediction for H.264/AVC Error Resilience

< D > < B > < E > < E >

3

Error Propagation

Lost slice

Inter-prediction from lost MB

Intra-prediction from inter-predicted MB

Prediction order > 1

イロト イヨト イヨト

3

Objectives

- Study the impact of packet loss in the Rol.
- Build an attention-based error resilience model against packet loss.
 - Determine the Rol which robustness should be enhanced.
 - Counter the effect of packet loss, namely spatio-temporal error propagation.

Outline

- Test Setup
- From Eye Tracking to Regions of Interest
- 2 Rol-based Error Resilience
 - Does Rol Matter?
 - Error Resilience

4 E 6 4 E

Test Setup From Eye Tracking to Regions of Interest

Track and record eye movement of observers while watching video sequences.

• Provide reliable information about viewer's visual attention.

イロト イボト イヨト イヨト

Test Setup From Eye Tracking to Regions of Interest

Test Setup

- Test performed in a standardized environment according to ITU Recommendation BT.500-11².
- Video set: SD and HD sequences, 8s or 10s duration.
- JM 14.0 codec, High Profile, IDRBBP... GOP structure of length 24.
- Encoding bitrates chosen such as to obtain good video quality.
- 37 subjects participated in the test.

²ITU-R. Methodology for the subjective assessment of the quality of television pictures, June 2002. $\Box \triangleright \triangleleft \Box \triangleright \triangleleft \Box \triangleright \triangleleft \Xi \triangleright \triangleleft \Xi \triangleright \blacksquare$

Test Setup From Eye Tracking to Regions of Interest

Some Definitions

• Fixation: the status of a region centered around a pixel position which was stared at for a predefined duration.

Test Setup From Eye Tracking to Regions of Interest

Some Definitions

- Fixation: the status of a region centered around a pixel position which was stared at for a predefined duration.
- Saccade: eye movement from one fixation to another.

Test Setup From Eye Tracking to Regions of Interest

Some Definitions

- Fixation: the status of a region centered around a pixel position which was stared at for a predefined duration.
- Saccade: eye movement from one fixation to another.
- Pursuit: eye movement allowing gaze to follow a moving target.

Test Setup From Eye Tracking to Regions of Interest

Some Definitions

- Fixation: the status of a region centered around a pixel position which was stared at for a predefined duration.
- Saccade: eye movement from one fixation to another.
- Pursuit: eye movement allowing gaze to follow a moving target.
- Saliency map: spatial locations of the eye gaze over time.

- 4 周 ト 4 月 ト 4 月 ト

Test Setup From Eye Tracking to Regions of Interest

From Eye Tracking to Saliency Maps

イロト イポト イヨト イヨト

-

Test Setup From Eye Tracking to Regions of Interest

From Eye Tracking to Saliency Maps

イロト イポト イヨト イヨト

Test Setup From Eye Tracking to Regions of Interest

From Eye Tracking to Saliency Maps

Test Setup From Eye Tracking to Regions of Interest

From Saliency Maps to Regions of Interest

• The encoder needs macroblock level information.

トイラトイラト

Test Setup From Eye Tracking to Regions of Interest

From Saliency Maps to Regions of Interest

- The encoder needs macroblock level information.
- A pixel belongs to an Rol if its saliency value is higher than a threshold (set empirically).

Does Rol Matter? Error Resilience

Rol-based FMO

- Group Rol macroblocks into one or more slices independently of other slices in the picture using FMO.
- FMO type 6 provides full control over the assignment of macroblocks to slices.
- Different Rol per picture => 1 PPS NALU per picture in the bitstream.

Slices 1-6: non-Rol. Slices 7 & 8: Rol.

イロト イポト イヨト イヨト

Does Rol Matter? Error Resilience

Loss Simulation

- Loss simulator³ operating on a NALU (slice) basis.
- One slice fits in one packet.
- Slice losses in I-pictures to test the robustness of the model against error propagation.
- JM spatial error concealment: weighted sample averaging.

Does Rol Matter? Error Resilience

Loss Patterns

Rol lost.

8 slices around the Rol lost.

イロト イヨト イヨト イヨト

Э

Rol Intra Prediction for H.264/AVC Error Resilience

Does Rol Matter? Error Resilience

Subjective Quality Test

- The most reliable way to assess video quality.
- $\bullet\ 25$ non-expert subjects rate the quality of video sequences.
- Absolute Category Rating (ACR) with a 5-level scale.

Excellent
Good
Fair
Poor
Bad

イロト イボト イヨト イヨト

Does Rol Matter? Error Resilience

Perceptual Importance of Rol

Fadi Boulos

Rol Intra Prediction for H.264/AVC Error Resilience

Does Rol Matter? Error Resilience

Rol Intra-Prediction

- Slice lost in a reference picture allows error drift to inter-coded pictures.
- Attenuate the temporal error drift in the Rol by coding all Rol macroblocks of P and B-pictures in intra-prediction mode.
- At constant bitrate, the model might incur a quality decrease.

B or P-picture

イロト イボト イヨト イヨト

Does Rol Matter Error Resilience

Rol Slices Lost

イロト イヨト イヨト

3

Does Rol Matter? Error Resilience

Overhead of Rol Intra-Prediction

< 同ト < ヨト < ヨト

3

Does Rol Matter? Error Resilience

Example

w/o error resilience.

w/ error resilience.

イロト イヨト イヨト

3

ICIP 2009

Fadi Boulos Rol Intra Prediction for H.264/AVC Error Resilience

Conclusion and Future Work

- We proposed an error resilient coding based on ground truth visual attention data.
- We created a database of video sequences with visual attention data (publically available soon).

Conclusion and Future Work

- We proposed an error resilient coding based on ground truth visual attention data.
- We created a database of video sequences with visual attention data (publically available soon).
- Use an objective saliency model.
- Investigate the tradeoff between Rol size and quality degradation/robustness.

Questions...

<ロト <回ト < 臣ト < 臣ト

E