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Abstract—This paper presents a novel deep architecture for
saliency prediction. Current state of the art models for saliency
prediction employ Fully Convolutional networks that perform
a non-linear combination of features extracted from the last
convolutional layer to predict saliency maps. We propose an
architecture which, instead, combines features extracted at differ-
ent levels of a Convolutional Neural Network (CNN). Our model
is composed of three main blocks: a feature extraction CNN, a
feature encoding network, that weights low and high level feature
maps, and a prior learning network. We compare our solution
with state of the art saliency models on two public benchmarks
datasets. Results show that our model outperforms under all
evaluation metrics on the SALICON dataset, which is currently
the largest public dataset for saliency prediction, and achieves
competitive results on the MIT300 benchmark. Code is available
at https://github.com/marcellacornia/mlnet.

I. INTRODUCTION

When human observers look at an image, effective at-
tentional mechanisms attract their gazes on salient regions
which have distinctive variations in visual stimuli. Emulating
such ability has been studied for more than 80 years by
neuroscientists [1] and more recently by computer vision
researches [2].

Traditionally, algorithms for saliency prediction focused on
identifying the fixation points that human viewers would focus
on at first glance. Others have concentrated on highlighting the
most important object regions in an image [3], [4], [5]. We
focus on the first type of saliency models, that try to predict
eye fixations over an image.

Inspired by biological studies, researchers have defined
hand-crafted and multi-scale features that capture a large
spectrum of stimuli: lower-level features (color, texture, con-
trast) [6] or higher-level concepts (faces, people, text, hori-
zon) [7]. However, given the large variety of aspects that can
contribute to define visual saliency, it is difficult to design
approaches that combine all these hand-tuned factors in an
appropriate way.

In recent years, Deep learning techniques have shown
impressive results in several vision tasks, such as image
classification [8] and semantic segmentation [9]. Motivated by
these achievements, first attempts to predict saliency map with
deep convolutional networks have been performed [10], [11].
These solutions suffered from the small amount of training
data compared to the ones available in other contexts requiring
the usage of limited number of layers or the usage of pretrained

architectures generated for other tasks. The recent publication
of the large dataset SALICON [12], collected thanks to crowd-
sourcing techniques, allows researches to increase the number
of convolutional layers reducing the overfitting risk [13], [14].

Moreover, it is well known that when observers view com-
plex scenes presented on computer monitors, there is a strong
tendency to look more frequently around the center of the
scene than around the periphery [15]. This has been exploited
in past works on saliency prediction, by incorporating hand-
crafted priors into saliency maps, or by learning the relative
contribution of different priors.

In this paper we present a deep learning architecture for
predicting saliency maps, which exploits multi-level features
extracted from a CNN, while still being trainable end-to-end.
In contrast to the current trend, we let the network learn its own
prior from training data. A new loss function is also designed
to train the proposed network and to tackle the imbalance
problem of saliency maps.

II. RELATED WORK

In the last decade saliency prediction has been widely
studied. The seminal works by Koch and Ullman [16] and
Itti et al. [2] introduced a biologically-plausible architecture
for saliency detection that extracts multi-scale image features
based on color, intensity and orientation. Later, Hou and
Zange [6] proposed a method that analyzes the log spectrum
of each image and obtains the spectral residual, which allows
the estimation of the behavior of pre-attentive visual search.
Torralba et al. [17] show how global contextual information
can improve the prediction of observers’ eye movements in
real-world scenes.

Similarly, Goferman et al. [18] present a technique which
aims at identifying salient regions that are distinctive with
respect to both their local and global surroundings. Similarly
to Cerf et al. [7], Judd et al. [19] propose an approach that
combines low-level features (color, orientation and intensity)
with high-level semantic information (i.e. the location of
faces, cars and text) and show that this solution significantly
improves the ability to predict eye fixations. In general, these
approaches presented hand-tuned features or trained specific
higher-level classifiers.

A first attempt to model saliency with deep convolutional
networks (DCNs) has been recently proposed by Vig et
al. [10]. They propose Ensembles of Deep Networks (eDN),
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Fig. 1. Overview of our model (see Section III for details). A CNN is used to compute low and high level features from the input image. Extracted features
maps are then fed to an Encoding network, which learns a feature weighting function to generate saliency-specific feature maps. A prior image is also learned
and applied to the predicted saliency map.

a CNN with three layers. Since the amount of data available
to learn saliency is generally limited, this architecture cannot
scale to outperform the current state-of-the art.

To address this issue, Kümmerer et al. [11] present a
way of reusing existing neural networks, trained for image
classification, to predict fixation maps. In particular, they
present Deep Gaze, a neural network that uses the well-known
AlexNet [8] architecture to generate a high dimensional feature
space, which is used to create a saliency map. Similarly,
Huang et al. [12] propose an architecture that integrates
saliency prediction into DCNs pretrained for object recogni-
tion (AlexNet [8], VGG-16 [20] and GoogLeNet [21]). The
key component is a fine-tuning of DNNs weights with an
objective function based on the saliency evaluation metrics,
such as Normalized Scanpath Saliency (NSS), Similarity and
KL-Divergence.

Liu et al. [22] propose a multi-resolution CNN that is
trained from image regions centered on fixation and non-
fixation locations at multi-scales. Recently, Srinivas et al. [13]
presented DeepFix, in which they introduce Location Biased
Convolution filters that allow the network to exploit location
dependent patterns. Pan et al. [14] present two different
architectures: a shallow convnet trained from scratch and a
deep convnet that uses parameters previous learned on the
ILSVRC-12 dataset.

What the majority of these approaches share is the use of
Fully Convolutional Networks which are trained to predict
saliency map from a non-linear combination of high level
features, extracted from the last convolutional layer. Our ar-
chitecture learns how to weight features coming from different
levels of a CNN, and demonstrates the effectiveness of using
medium level features.

III. PROPOSED APPROACH

Our saliency model is composed by three main parts: given
an input image, a CNN extracts low, medium and high level
features; then, an encoding network builds saliency-specific

features and produces a temporary saliency map. A prior
is then learned and applied to produce the final saliency
prediction. Figure 1 reports a summary of the architecture.

Feature extraction network The first component of our
architecture is a Fully Convolutional network with 13 layers,
which takes the input image and produces features maps for
the encoding network.

We build our architecture on the popular 16 layers model
from VGG [20], which is well known for its elegance and
simplicity, and at the same time yields nearly state of the
art results in image classification and good generalization
properties. However, like any standard CNN architecture, it
has the significant disadvantage of reducing the size of feature
maps at higher levels with respect to the input size. This is
due to the presence of spatial pooling layers which have a
stride greater than one: the output of each layer is a three-
dimensional tensor with shape k ×

⌊
H
f

⌋
×
⌊
W
f

⌋
, where k is

the number of filters of the layer, and f is the downsampling
factor of that stage of the network. In the VGG-16 model there
are five max-pooling stages with kernel size k = 2 and stride
2. Given an input image with size W ×H , the output feature
map has size

⌊
W
25

⌋
×
⌊
H
25

⌋
, thus a Fully Convolutional model

built upon the VGG-16 would output a saliency map rescaled
by a factor of 32.

To limit this rescaling phenomenon, we remove the last
pooling stage and decrease the stride of the last but one, while
keeping unchanged its stride. This way, the output feature map
of our feature extraction network are rescaled by a factor of 8
with respect to the input image. In the following, we will refer
to the output size of the feature extraction network as w × h,
with w =

⌊
W
8

⌋
and h =

⌊
H
8

⌋
. For reference, a complete

description of the network is reported in Figure 2.
Encoding network We take feature maps at three different

locations: the output of the third pooling layer (which contains
256 feature maps), that of the last pooling layer (512 feature
maps), and the output of the last convolutional layer (512
feature maps). In the following, we will call these maps, re-



spectively, conv3, conv4 and conv5, since they come from
the third, fourth and fifth convolutional stage of the network.
They all share the same spatial size, and are concatenated to
form a tensor with 1280 channels, which is fed to a Dropout
layer with retain probability 0.5, to improve generalization.
A convolutional layer then learns 64 saliency-specific feature
maps with a 3× 3 kernel. A final 1× 1 convolution learns to
weight the importance of each saliency feature map to produce
the final predicted feature map.

Prior learning Instead of using pre-defined priors as done
in the past, we let the network learn its own custom prior.
To this end, we learn a coarse w′ × h′ mask (with w′ � w
and h′ � h), initialized to one, upsample and apply it to the
predicted saliency map with pixel-wise multiplication.

Given the learned prior U with shape w′×h′, we interpolate
the pixels of U to produce an output prior map V of size
w × h. We compute a sampling grid G of shape w′ × h′

associating each element of U with real-valued coordinates
into V . If Gi,j = (xi,j , yi,j) then Ui,j should be equal to V
at (xi,j , yi,j); however since (xi,j , yi,j) are real-valued, we
convolve with a sampling kernel and set

Vx,y =

w′∑
i=1

h′∑
j=1

Ui,jkx(x− xi,j)ky(y − yi,j) (1)

where kx(·) and ky(·) are bilinear kernels, corresponding to
kx(d) = max

(
0, ww′ − |d|

)
and ky(d) = max

(
0, hh′ − |d|

)
.

w′ and h′ were set to bw/10c and bh/10c in all our tests.
Training At training time, we randomly sample a minibatch

containing N training saliency maps (in our experiments N =
10), and encourage the network to minimize a loss function
through Stochastic Gradient Descent. Our loss function is
inspired by three objectives: predictions should be pixelwise
similar to ground truth maps, therefore a square error loss
‖φ(xi)−y‖2 is a reasonable choice. Secondly, predicted maps
should be invariant to their maximum, and there is no point
in forcing the network to produce values in a given numerical
range, so predictions are normalized by their maximum. Third,
the loss should give the same importance to high and low
ground truth values, even though the majority of ground truth
pixels are close to zero. For this reason, the deviation between
predicted values and ground-truth values yi is weighted by a
linear function α − yi, which tends to give more importance
to pixels with high ground-truth fixation probability.

The overall loss function is thus

L(w) =
1

N

N∑
i=1

∥∥∥∥∥∥
φ(xi)

maxφ(xi)
− yi

α− yi

∥∥∥∥∥∥
2

+ λ‖1− U‖2 (2)

where a L2 regularization term is added to penalize the
deviation of the prior mask U from its initial value, thus
encouraging the network to adapt to ground truth maps by
changing convolutional weights rather than modifying the
prior. Weights for the encoding network are initialized ac-
cording to [23], and biases are initialized to zero. SGD is
applied with Nesterov momentum 0.9, weight decay 0.0005
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Fig. 2. Architecture of the proposed networks. The convolutional layer param-
eters are denoted as “conv<receptive field size>-<number of channels>”.
The ReLU activation function is not shown for brevity.

and learning rate 10−3. Parameters α and λ are respectively
set to 1.1 and 1/(w′ · h′) in all our experiments.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

We evaluate the effectiveness of our proposal on two
publicly available datasets: SALICON [24] and MIT300 [28].
SALICON is currently the largest public dataset for saliency
prediction, and contains 10,000 training images, 5,000 valida-
tion images and 5,000 testing images, taken from the Microsoft
CoCo dataset [29]. Saliency maps were generated by collecting
mouse movements, as a replacement of eye-tracking systems,
and authors show an high degree of similarity between their
maps and those created from eye-tracking data.

MIT300 is one of the most commonly used datasets for
saliency prediction, in spite of its limited size. It consists of
300 natural images, in which Saliency maps have been created
from eye-tracking data of 39 observers. Saliency maps are
not public available, and predictions must be submitted to the
MIT saliency benchmark [30] for evaluation. Organizers of
the benchmark suggest to use the MIT1003 [19] dataset for
fine-tuning the model. This includes 1003 images taken from
Flickr and LabelMe, generated through eye-tracking data of
15 participants.

Evaluation metrics Saliency prediction results are usually
evaluated with a large variety of metrics: Similarity, Linear
Correlation Coefficient (CC), AUC Shuffled, AUC Borji, AUC
Judd, Normalized Scanpath Saliency (NSS) and Earth Mover’s
Distance (EMD). Some of these metrics compare the predicted
saliency map with the ground truth map generated from



TABLE I
COMPARISON RESULTS ON THE SALICON TEST SET [24].

CC AUC shuffled AUC Judd
Our method 0.7430 0.7680 0.8660
Deep Convnet - Pan et al. [14] 0.6220 0.7240 0.8580
Shallow Convnet - Pan et al. [14] 0.5957 0.6698 0.8364
WHU IIP 0.4569 0.6064 0.7923
Rare 2012 Improved [25] 0.5108 0.6644 0.8148
Xidian 0.4811 0.6809 0.8051
Baseline: BMS [26] 0.4268 0.6935 0.7899
Baseline: GBVS [27] 0.4212 0.6303 0.7899
Baseline: Itti [2] 0.2046 0.6101 0.6669

fixation points, while other directly compare the predicted
saliency map with fixation points [31].

The Similarity metric [28] computes the sum of pixel-
wise minimums between the predicted saliency map SM and
the human eye fixation map FM , where SM and FM are
supposed to be probability distributions and sum up to one.
A similarity score of one indicates that the predicted map is
identical to the ground truth one.

The linear correlation coefficient (CC), instead is the Pear-
son’s linear coefficient between SM and FM . It ranges
between −1 and 1, and a score close to −1 or 1 indicates
a perfect linear relationship between the two maps.

Earth Mover’s Distance (EMD) represents the minimal cost
to transform the probability distribution of the saliency map
SM into the one of the human eye fixations FM . Therefore,
a larger EMD indicates a larger difference between the two
maps.

The Normalized Scanpath Saliency (NSS) metric was de-
fined specifically for the evaluation of saliency models [32].
The idea is to quantify the saliency map values at the eye
fixation locations and to normalize it whit the saliency map
variance

NSS(p) =
SM(p)− µSM

σSM
(3)

where p is the location of one fixation and SM is the saliency
map which is normalized to have a zero mean and unit
standard deviation. The final NSS score is the average of
NSS(p) for all fixations.

Finally, the Area Under the ROC curve (AUC) is one of
the most widely used metrics for the evaluation of maps
predicted from saliency models. There are several different
implementations of this metric. In our experiments we use
AUC Judd, AUC Borji and shuffled AUC. The AUC Judd
and the AUC Borji choose non-fixation points with a uniform
distribution, otherwise shuffled AUC uses human fixations of
other images in the dataset as non-fixation distribution. In that
way, centered distribution of human fixations of the dataset is
taken into account.

B. Feature importance analysis

Our method relies on a non-linear combination of features
extracted at different levels of a CNN. To validate our mul-
tilevel approach, we first evaluate the relative importance of

features coming from each level. In the following, we define
the importance of a feature as the extent to which a variation
of the feature can affect the predicted map. Let us start by
considering a linear model where different levels of a CNN
are combined to obtain a pixel of the saliency map φi(x)

φi(x) = wTi x+ θi (4)

where wi and θi are the weight vector and the bias relative to
pixel i, while x represents the activation coming from different
levels of the feature extraction CNN, and φi(x) is the predicted
saliency pixel. It is easy to see that the magnitude of elements
in wi defines the importance of the corresponding features.
In the extreme case of a pixel of the feature map which is
always multiplied by 0, it is straightforward to see that part of
the feature map is ignored by the model, and has therefore no
importance, while a pixel with high absolute values in wi will
have a considerable effect on the predicted saliency pixel.

In our model, φi(·) is a highly non-linear function of the
input, due to the presence of the encoding network and of
the prior, thus the above reasoning is not directly applicable.
Instead, given an image xj , we can approximate φi(xj) in the
neighborhood of xj as follows

φi(xj) ≈ ∇φi(xj)Tx+ θ (5)

An intuitive explanation of this approximation is that the
magnitude of the partial derivatives indicates which features
need to be changed to affect the model. Also notice that Eq. 5
is equivalent to a first order Taylor expansion.

To get an estimation of the importance of each pixel in an
activation map regardless of the choice of xj , we can average
the element-wise absolute values of the gradient computed in
the neighborhood of each validation sample.

wi =
1

N

N∑
j=1

[∣∣∣∣ ∂φi∂x1
(xj)

∣∣∣∣ , ∣∣∣∣ ∂φi∂x2
(xj)

∣∣∣∣ , · · · , ∣∣∣∣ ∂φi∂xd
(xj)

∣∣∣∣] (6)

where d is the dimensionality of xj . Then, to get the relative
importance of each activation map, we average the values of
wi corresponding to that map, and L1 normalize the resulting
importances.

To get an estimate of the importance of feature maps
extracted from the CNN, we should compute φi(xj) for every



TABLE II
COMPARISON RESULTS ON THE MIT300 TEST SET [28].

Similarity CC AUC shuffled AUC Borji AUC Judd NSS EMD
Infinite humans 1.00 1.00 0.80 0.87 0.91 3.18 0.00
DeepFix [13] 0.67 0.78 0.71 0.80 0.87 2.26 2.04
SALICON [12] 0.60 0.74 0.74 0.85 0.87 2.12 2.62
Our method 0.59 0.67 0.70 0.75 0.85 2.05 2.63
Pan et al. - Deep Convnet [14] 0.52 0.58 0.69 0.82 0.83 1.51 3.31
BMS [26] 0.51 0.55 0.65 0.82 0.83 1.41 3.35
Deep Gaze 2 [11] 0.46 0.51 0.76 0.86 0.87 1.29 4.00
Mr-CNN [22] 0.48 0.48 0.69 0.75 0.79 1.37 3.71
Pan et al. - Shallow Convnet [14] 0.46 0.53 0.64 0.78 0.80 1.47 3.99
GBVS [27] 0.48 0.48 0.63 0.80 0.81 1.24 3.51
Rare 2012 Improved [25] 0.46 0.42 0.67 0.75 0.77 1.34 3.74
Judd [19] 0.42 0.47 0.60 0.80 0.81 1.18 4.45
eDN [10] 0.41 0.45 0.62 0.81 0.82 1.14 4.56

test image j and for every saliency pixel i. To reduce the
amount of required computation, instead of computing the
gradient of each saliency pixel, we compute the gradient of
the mean and variance of the output saliency map, in the
neighborhood of each test sample. Applying Eq. 6, we get
an indication of the contribution of each feature pixel to the
mean and variance of the predicted map.

Figure 3 reports the relative importance of activation maps
coming from conv3, conv4 and conv5 on the model
trained on SALICON. It is easy to notice that all features
give a valuable contribution to the final result, and that while
high level features are still the most relevant ones, medium
level features have a considerable role in the prediction of
the saliency map. This confirms our strategy to incorporate
activations coming from different levels.

C. Comparison with state of the art

We evaluate our model on the SALICON dataset and on the
MIT300 benchmark. In the first case, the network is trained on
training images from the SALICON dataset, in the latter after
training on SALICON we finetune on the MIT1003 dataset,
as suggested by the MIT300 benchmark organizers. Images
from all datasets were zero-padded to fit a 4 : 3 aspect ratio,
and then resized to 640× 480.
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Fig. 3. Contribution of features extracted from conv3, conv4 and conv5
to prediction mean and variance.

Table I compares the performance of our model on SAL-
ICON in terms of CC, AUC shuffled and AUC Judd. As it
can be observed, our solution outperforms all competitors by a
margin of 12% according to CC metric, 4% and 1% according
to AUC shuffled and AUC Judd.

For reference, the proposed solution is also evaluated on
the MIT300 saliency benchmark which contains results of
almost 60 different methods. Table II presents a comparison
between our approach and top performers in this benchmark.
Our method outperforms the vast majority of the approaches
in the leaderboard of the benchmark, and achieves competitive
results when compared to the top ranked approaches.

Figure 4 presents instead a qualitative comparison showing
eight randomly chosen input images from SALICON and
MIT1003 datasets, their corresponding ground truth annota-
tions and predicted saliency maps. These examples clearly
show how our approach is able to predict saliency maps that
are very similar to the ground truth, while saliency maps
generated by other methods are far less consistent with the
ground truth.

Finally, we present some failure cases in Figure 5. As
shown, when there is no a clear and explicit object in the
image, eye fixations tend to be biased toward image center,
which our model fails to predict.

V. CONCLUSIONS

This paper presented a novel deep learning architecture for
saliency prediction. Our model learns a non-linear combination
of medium and high level features extracted from a CNN, and
a prior to apply to predicted saliency maps, while still being
trainable end-to-end. Qualitative and quantitative comparisons
with state of the art approaches demonstrate the effectiveness
of the proposal on the biggest dataset and on the most popular
public benchmark for saliency prediction.
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Fig. 4. Qualitative results and comparison to the state of the art. Left: validation images from SALICON dataset [24]. Right: validation images from MIT1003
dataset [19]. Best viewed in color.
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Fig. 5. Example of failure cases on validation images from SALICON
dataset [24]. Best viewed in color.
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