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Image lying on irregular domain

How to perform Deep learning on such data ?




Michael M. Bronslein, Joon Bruna, Yonn LeCun,
Athur Szlam, and Pierre Vandergheynst

any scientific fields study data with an underlying

ics, and meshed surfaces in computer graphics. In
many applications, sch geometric data are large and com-
plex (in he case of social etworks, on the scale of illons)

which have recently proven to be powerful tools for abroad
Fange of problems from computer vision, natura-language

processing, and audio analysis. Howeer, these t0ols have.

Structures are built nto networks used o mode them,
Geomeric deep learning is an umbrela term for emerging
echy o

el to non-Euclidean domains, such as graphs and manifolds. The iy

; ¢ i
pupose of this artice is to overview dierent examples of geometric &
decp-learing problems and present availble soluions, key diffcul- |
ties, applications, and future research directions in this nascent field. " ot ]
Overview of deep learnin ¢ O
Deep learning refers to learning complicated concepts by building them from L4
simpler ones in 2 hierarchical or mullayer manner. Artificial neural networks are .
‘popula ealizarions of such deep multilayer hicrarchic.In the past fow s, the growing
computational power of modern graphics processing urit (GPUbased computrs and the avil-
abilty of large taining dat sets have allowed successfuly rining neural etvorks with masy lyers .
and degrees o fredom (DoF) (1. This has led to qualitative breakthroughs on 2 wide variety of tasks, from >

2. 3] and ] 10 image analysis and computer vision [5]-[11] see [12] 4

s .
.
.

Geometric Deep Learning - .

Going beyond Euclidean data .
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% CNN on graphs, what's the problem ?

CNN — Pooling (downsampling)

50% of the nodes ?




% CNN on graphs, what's the problem ?




% CNN on graphs, what's the problem ?

CNN — Fixed grid



% CNN on graphs, what's the problem ?

CNN — Fixed grid

o

From left to right: a signal, frequency-domain edge detection, same detection applied when the topology slightly changes

[Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.]



@® Translation and convolution

® Graph reduction: Sampling

© Graph reduction: Coarsening

O Topology change



Translation and
convolution

@® Translation and convolution



Spectral definitions

Filtering

In classical signal processing:
Translation and
convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]



Filtering

In classical signal processing:

Translation and

convolution fout (UJ) = fiﬂ (w)i:l‘(w)

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]



Filtering
T. Mauge
In classical signal processing:

Translation and

convolution fout (w) = fin(w)fz(w)
In graph signal processing:

fout ()\l) = fin()‘l)ﬁ(/\l)

which gives
N-1
four(n) = Y fu(A)h(A)ur(n)
it can also be written as -
h(Xo) 0
foue = A(L)fn, with h(L)=U u’
0 h(An_1)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]



Convolution
In classical signal processing:

Translation and
convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]



Convolution
T. Mauge In classical signal processing:

Translation and

csmelliter (fxh)(t) = f(D)h(t —T)dr

which can be written as

>

(w)eQi’n‘wtdw

(fn)(t) = | fw)

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]



Convolution
T. Mauge In classical signal processing:

Translation and

csmelliter (fxh)(t) = / f(D)h(t —T)dr
R

which can be written as

R
In graph signal processing:
N-1
(fxh)(n):= )  FON)u(n)
1=0

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]



Translation
In classical signal processing:

Translation and
convolution

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]



Translation
T. Mauge In classical signal processing:

Trersien el (T-Ht) = f(t—71)

convolution

which can be written as

(T f)(#) = (f * 67)(t)

In graph signal processing:

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]




Translation
In classical signal processing:

Trans|ati.on and (7;’.]“) (t) = f(t - T)

convolution

which can be written as

(T f)(#) = (f * 67)(t)

In graph signal processing:
(Tef)(n) = VN(F * 8)(n)

which becomes

(Tef)(n Z Fw(k)ui(n)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]




% Spectral definitions, a good solution?

T. Mau

Translation and
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% Spectral definitions, a good solution?

Translation and
convolution

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domainms," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]



% Spectral definitions, a good solution?

Translation and
convolution

The spectrum is the same, however, the spatial shape is different. It
can be a problem

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domainms," in
IEEE Signal Processing Magazine, vol. 30, mo. 3, pp. 83-98, May 2013.]



Graph reduction:
Sampling

® Graph reduction: Sampling



% Recall of Shannon-Nyquist theorem

Let us consider a signal f that contains no frequencies higher than B:

Graph reduction: VUJ, St ‘w| > B, then f(w) = 0.

Sampling
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% Recall of Shannon-Nyquist theorem

Let us consider a signal f that contains no frequencies higher than B:

Graph reduction: VUJ, St ‘w| > B, then f(w) = 0.

Sampling

f

B w
This signal can be sampled at a frequency of 2B and fully recovered.



Let us consider a signal f defined on a graph G that is bandlimited with a
bandwidth Amax:

VN> Amaxs,  f(A) =

g;fnp:“;?““‘°": The set of bandlimited signals Amax with bandwidth is called the
Paley-Wiener space PW)_. (G).
f

Amax A

A uniqueness set for PW, . (G) is a subset of vertices S C V for which

Vg€ PWia(9), f(S)=9(S)=f=y

The smallest uniqueness set for PW),(G) has a size of [




% Recovering the missing samples

Let f € PW,,, and S be a minumum uniqueness set.
Estimate the graph Fourier coefficients

£(1)
Graph reduction: £f— |: £(S) :l _ |: ui(S) ... un(S)
F(5%) w(S) o un(S) || gy
0
Thus .
(1)
| = @) )
f(n)
with U,, being the n first eigenvectors.
Finally,
£(1)
£(S)=0n(S) |

[Narang, S. K., Gadde, A., Sanou, E., and Ortega, A. (2013, December).  Localized iterative methods for
interpolation in graph structured data. In 2013 IEEE Global Conference on Signal and Information Processing
fmm  AQ4-404Y TEEE 1



In the equation : = (U,(S))"f(S), the matrix U,(S)
f(n)

should be invertible. ~

Sampling algorithms consist in finding the set S for which, U,,(S) is

invertible

Initialize: S < V; where i is the index of any nonzero element offirst
eigenvector
for m =2 — n do
Compute x = null(U,,(S))
Compute b = U,,,(8%)x
i < argmax;(|b(i)])
S+ SUS.(i)
end

4

[ D. E. Tzamarias, P. Akyazi, and P. Frossard, afA novel method for sampling bandlimited graph signals,aAl
in Proceedings of EUSIPCO, no. CONF, 2018. ]



Graph reduction:
Coarsening

© Graph reduction: Coarsening



Graph Coarsening

Coarsening: From an initial graph G = {V, £, L} with N nodes and
a signal x, build a new coarsened graph G. with N, nodes:

X, = Px

c _ pt
Graph reduction: X = P XC
Coarsening

where P € RNeXN are matrices with more columns than rows and
P~ the pseudo-inverse.

[A. Loukas and P. Vandergheynst, ’’Spectrally approximating large graphs with smaller graphs,’’ arXiv
preprint arXiv:1802.07510, 2018]



With the constraint that L. is a graph Laplacian, we have:

Graph reduction:
Coarsening

L if o, (r)
P = T o

0 otherwise

. 1 ifv, ey
+ _ (3
P(i,r) = { 0 otherwise (2)



Results of the recursive coarsening available in
https://github.com/loukasa/graph-coarsening

Graph reduction:
Coarsening




Topology change

O Topology change



For different graph structure Ly and L, the graph transform ® and
¥ may drastically vary

Topology change

V2 Y4

[Kovnatsky, A., Bronstein, M. M., Bromstein, A. M., Glashoff, K., and Kimmel, R. (2013, May). Coupled
quasiakRharmonic bases. In Computer Graphics Forum (Vol. 32, No. 2pt4, pp. 439-448). Oxford, UK:
Blackwell Publishing Ltd.]



Set correspondences

Topology change

And register them in matrices F and G



Solve the problem

Topology change min = of f(® Ly ®) + of (¥ Lo®) + p|[FT® - GT ||

st. @ d=Tand P & =1
Solved with

® Rotation and permutation of the original eigenvectors

® Gradient descent












Application for motion generation

Topology change \m



Topology change

[Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. (2017). Geometric deep
learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 5115-5124).]



% Focus of today: Deep Sphere

Abstract:

® What are the contributions ? Answering which challenge ?
® What are the state-of-the art methods 7

® What is the problem studied in the experiments ?

Topology change

® What's the structure of the paper ?

[N. Perraudin, M. Defferrard, T. Kacprzak, R. Sgier, DeepSphere: Efficient spherical convolutional neural
network with HEALPix sampling for cosmological applications, Astronomy and Computing, Volume 27, 2019, Pages
130-146, ISSN 2213-1337]



% Focus of today: Deep Sphere

Introduction (paragraph 2):
® What are the three characteristics of a good convolution ?

Introduction (paragraph 3):
® Explain how a standard 2D CNN would be developed for
spherical data analysis ?
® Why is it written that the obtained convolutions are not
equivariant/invariant to rotation ?

® What's the limitation to spherical Fourier transforms ?

Topology change

Introduction (paragraph 4):
® What are the main ideas of the proposed scheme ?



% Focus of today: Deep Sphere

Method (paragraph 1):

® Among all classical CNN operations, which ones need to be
adapted to the sphere ?

Method (paragraph 2):

® Why computing the convolution in the spectral domain is
computationally inefficient 7

Topology change

® What is author's proposition for that ?




cos(h)

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).
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Topology change

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

® Finer pixelization is achieved by dividing each region into 4
equal-area regions.

cos(6)

2=
s

025 050 075 100 125 150 175
of/m

cylindrical projection



HEALPix sampling

® The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

® Finer pixelization is achieved by dividing each region into 4
equal-area regions.

® Hierarchical partitioning is repeated to reach the desired
resolution.

T %% Ve %% %
SRR
KIS
RIS
ARAIAKRRARDS
RESSR S8 S2Na S

— e
cylindrical projection

]
’4

{0

All pixel centers are placed on rings of constant latitude.



% Focus of today: Deep Sphere

2.2 Graph construction:
® What should be retained from this section ?

® Comment this figure:

Topology change

Fig. 6. Some pixelizations of the sphere. Left: the equirectangular grid, using
equiangular spacing in a standard spherical-polar coordinate system. Middle: an
equiangular cubed-sphere grid, as described in Ronchi et al. (1996). Right: graph
built from a HEALPix pixelization of half the sphere (Nsi¢e = 4). By construction,
each vertex has eight neighbors, except the highlighted ones which have only
seven.*

Source: Left and middle figures are taken from Boomsma and Frellsen (2017)



% Focus of today: Deep Sphere

2.3 : Graph Fourier basis
® Retain that
L=UAU"
® The transformed of a signal f is given by
f=U'f

Topology change Mode Mode 3: {=1, |m|=0

Mode 7: £=2, |m|=0

Mode 13: /=3, [m|=2 Mode 14: /=3, |m|=1 Mode 15: /=3, |m|=1

T




% Focus of today: Deep Sphere

2.4 : Convolution on graphs
® Explain
(h(L)f); =< h(L)d;, f >
2.5 : Efficient convolutions
® (paragraph 1) What's the problem with (1) ?
Topology change

h(L)f = Uh(A)U'f

® (paragraph 2) Why is the proposed convolution less complex ?
K
ho(f) =Y O,L*f
k=0

e (paragraph 2) What is the role of L* ?

® (paragraph 2) In 2D convolution, it its 1 coefficient per pixel.
How is it for the proposed convolution ?
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