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CNN on graphs, what’s the problem ?

CNN →

Fixed grid

From left to right: a signal, frequency-domain edge detection, same detection applied when the topology slightly changes

[Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.]
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Spectral definitions

Filtering

In classical signal processing:

f̂out(ω) = f̂in(ω)ĥ(ω)

In graph signal processing:

f̂out(λl) = f̂in(λl)ĥ(λl)
which gives

fout(n) =
N−1∑
l=0

f̂in(λl)ĥ(λl)ul(n)

it can also be written as

fout = ĥ(L)fin, with ĥ(L) = U

 ĥ(λ0) 0
. . .

0 ĥ(λN−1)

U>

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in

IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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0 ĥ(λN−1)

U>

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in

IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]

9 / 37



Advanced DIP

T. Maugey

Translation and
convolution

Graph reduction:
Sampling

Graph reduction:
Coarsening

Topology change

Spectral definitions

Convolution
In classical signal processing:

(f ∗ h)(t) =
∫
R
f(τ)h(t− τ)dτ

which can be written as

(f ∗ h)(t) =
∫
R
f̂(ω)ĥ(ω)e2iπωtdω

In graph signal processing:

(f ∗ h)(n) :=
N−1∑
l=0

f̂(λl)ĥ(λl)ul(n)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in
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Spectral definitions

Translation
In classical signal processing:

(Tτf)(t) = f(t− τ)

which can be written as

(Tτf)(t) = (f ∗ δτ )(t)

In graph signal processing:

(Tkf)(n) =
√
N(f ∗ δk)(n)

which becomes

(Tkf)(n) =
√
N

N−1∑
l=0

f̂(λl)ul(k)ul(n)

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in

IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Spectral definitions, a good solution?
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The spectrum is the same, however, the spatial shape is different. It
can be a problem

[D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst, "The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," in

IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.]
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Recall of Shannon-Nyquist theorem

Let us consider a signal f that contains no frequencies higher than B:

∀ω, s.t. |ω| > B, then f̂(ω) = 0.

This signal can be sampled at a frequency of 2B and fully recovered.
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Extension to graphs

Let us consider a signal f defined on a graph G that is bandlimited with a
bandwidth λmax:

∀ λl > λmax, f̂(λl) = 0
The set of bandlimited signals λmax with bandwidth is called the
Paley-Wiener space PWλmax (G).

A uniqueness set for PWλmax (G) is a subset of vertices S ⊂ V for which

∀f, g ∈ PWλmax (G), f(S) = g(S)⇒ f = g

The smallest uniqueness set for PWλl (G) has a size of l
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Recovering the missing samples

Let f ∈ PWλn , and S be a minumum uniqueness set.
Estimate the graph Fourier coefficients

f =
[

f(S)
f(Sc)

]
=
[

u1(S) . . . uN (S)
u1(Sc) . . . uN (Sc)

]
f̂(1)

...
ˆf(n)
0


Thus  f̂(1)

...
f̂(n)

 = (Ũn(S))−1f(S)

with Ũn being the n first eigenvectors.
Finally,

f(Sc) = Ũn(Sc)

 f̂(1)
...

f̂(n)


[Narang, S. K., Gadde, A., Sanou, E., and Ortega, A. (2013, December). Localized iterative methods for

interpolation in graph structured data. In 2013 IEEE Global Conference on Signal and Information Processing
(pp. 491-494). IEEE.]
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Graph sampling

In the equation

 f̂(1)
...

f̂(n)

 = (Ũn(S))−1f(S), the matrix Ũn(S)

should be invertible.
Sampling algorithms consist in finding the set S for which, Ũn(S) is
invertible

Initialize: S ← Vi where i is the index of any nonzero element offirst
eigenvector
for m = 2→ n do

Compute x = null(Ũm(S))
Compute b = Ũm(Sc)x
i← argmaxi(|b(i)|)
S ← S ∪ Sc(i)

end

[ D. E. Tzamarias, P. Akyazi, and P. Frossard, âĂA novel method for sampling bandlimited graph signals,âĂİ
in Proceedings of EUSIPCO, no. CONF, 2018. ]
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Graph Coarsening

Coarsening: From an initial graph G = {V, E ,L} with N nodes and
a signal x, build a new coarsened graph Gc with Nc nodes:

xc = Px
x̃ = P+xc

where P ∈ RNc×N are matrices with more columns than rows and
P+ the pseudo-inverse.

. . . .

[A. Loukas and P. Vandergheynst, ’’Spectrally approximating large graphs with smaller graphs,’’ arXiv
preprint arXiv:1802.07510, 2018]
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Graph Coarsening

With the constraint that Lc is a graph Laplacian, we have:

P(r, i) =
{ 1
‖V(r)‖ if vi ∈ V(r)

0 otherwise
(1)

P+(i, r) =
{

1 if vi ∈ V(r)

0 otherwise (2)

20 / 37
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Graph Coarsening

Results of the recursive coarsening available in
https://github.com/loukasa/graph-coarsening
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Motivations

For different graph structure L1 and L2, the graph transform Φ and
Ψ may drastically vary

[Kovnatsky, A., Bronstein, M. M., Bronstein, A. M., Glashoff, K., and Kimmel, R. (2013, May). Coupled
quasiâĂŘharmonic bases. In Computer Graphics Forum (Vol. 32, No. 2pt4, pp. 439-448). Oxford, UK:

Blackwell Publishing Ltd.]
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A priori step

Set correspondences

And register them in matrices F and G
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Joint Laplacian diagonalization

Solve the problem

min
Φ̂,Ψ̂

= off(Φ̂>L1Φ̂) + off(Ψ̂>L2Ψ̂) + µ||F>Φ̂−G>Ψ̂||

s.t. Φ̂>Φ̂ = I and Ψ̂>Ψ̂ = I

Solved with
• Rotation and permutation of the original eigenvectors
• Gradient descent

25 / 37
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Results
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Moving object
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Results

Two similar shapes
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Results

Application for motion generation
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Results

Texture transfer

[Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. (2017). Geometric deep
learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 5115-5124).]
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Focus of today: Deep Sphere

Abstract:
• What are the contributions ? Answering which challenge ?
• What are the state-of-the art methods ?
• What is the problem studied in the experiments ?
• What’s the structure of the paper ?
[N. Perraudin, M. Defferrard, T. Kacprzak, R. Sgier, DeepSphere: Efficient spherical convolutional neural

network with HEALPix sampling for cosmological applications, Astronomy and Computing, Volume 27, 2019, Pages
130-146, ISSN 2213-1337]
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Focus of today: Deep Sphere

Introduction (paragraph 2):
• What are the three characteristics of a good convolution ?

Introduction (paragraph 3):
• Explain how a standard 2D CNN would be developed for

spherical data analysis ?
• Why is it written that the obtained convolutions are not

equivariant/invariant to rotation ?
• What’s the limitation to spherical Fourier transforms ?

Introduction (paragraph 4):
• What are the main ideas of the proposed scheme ?
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Focus of today: Deep Sphere

Method (paragraph 1):
• Among all classical CNN operations, which ones need to be

adapted to the sphere ?
Method (paragraph 2):
• Why computing the convolution in the spectral domain is

computationally inefficient ?
• What is author’s proposition for that ?
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HEALPix sampling

• The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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z
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co
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θ)

cylindrical projection
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HEALPix sampling

• The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).
• Finer pixelization is achieved by dividing each region into 4

equal-area regions.
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HEALPix sampling

• The pixelization starts with partitioning the sphere into 12
equal-area regions (base resolution).
• Finer pixelization is achieved by dividing each region into 4

equal-area regions.
• Hierarchical partitioning is repeated to reach the desired

resolution.
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All pixel centers are placed on rings of constant latitude.
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2.2 Graph construction:
• What should be retained from this section ?
• Comment this figure:
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2.3 : Graph Fourier basis
• Retain that

L = UΛU>

• The transformed of a signal f is given by

f̂ = U>f
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2.4 : Convolution on graphs
• Explain

(h(L)f)i =< h(L)δi, f >

2.5 : Efficient convolutions
• (paragraph 1) What’s the problem with (1) ?

h(L)f = Uh(Λ)U>f

• (paragraph 2) Why is the proposed convolution less complex ?

hθ(f) =
K∑
k=0

θkLkf

• (paragraph 2) What is the role of Lk ?
• (paragraph 2) In 2D convolution, it its 1 coefficient per pixel.

How is it for the proposed convolution ?
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