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COMPLEX VISUAL SCENES

(a) Prey vs Predator (b) King of the world?

(c) Salvador Dali (d) René Magritte
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Human Visual System

Natural visual scenes are cluttered and contain many different objects that cannot all
be processed simultaneously.

Amount of information coming down the optic nerve 108 − 109 bits per second

Far exceeds what the brain is capable of processing...
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Example of change blindness.....

YouTube link: www.youtube.com/watch?v=ubNF9QNEQLA

6

www.youtube.com/watch?v=ubNF9QNEQLA


Introduction
Visual attention

Computational models of Bottom-Up attention
Performances
Applications
Conclusion

Human Visual System

Fundamental questions

WE DO NOT SEE EVERYTHING AROUND US!!!

Two majors conclusions come from the change blindness experiments:

Observers never form a complete, detailed representation of their surroundings;

Attention is required to perceive change.

It raises fundamental questions:

How do we select information from the scene?

Can we control where and what we attend to?

Do people look always at the same areas?

They are all connected to VISUAL ATTENTION.
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William James, an early definition of attention...

Everyone knows what attention is. It is the taking possession by the mind in clear and
vivid form, of one out of what seem several simultaneously possible objects or trains of
thoughts... It implies withdrawal from some things in order to deal effectively with

others. William James, 1890[James, 1890]

William James (1842-1910)
A pioneering American psychologist and philosopher.

Selective Attention is the natural strategy for dealing with this bottleneck.
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Visual Attention definition

As Posner proposed [Posner, 1980], visual attention is used:

to select important areas of our visual field (alerting);

to search a target in cluttered scenes (searching).

There are two kinds of visual attention:

Overt visual attention: involving eye movements;

Often compared to a window on the brain...[Henderson et al., 2007]

Covert visual attention: without eye movements (Covert fixations are not
observable). Attention can be voluntarily focussed on a peripheral part of the
visual field (as when looking out of the corner of one’s eyes).

Covert attention is the act of mentally focusing on one of several possible sensory
stimuli.
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Overt attention - Eye Movements

There exists different kinds of eye movements:

Saccade: quick eye movements from one fixation location to another. The length
of the saccade is between 4 to 12 degrees of visual angle;

Fixation: phase during which eyes is almost stationnary. The typical duration is
about 200 / 300 ms [Findlay & Gilchrist, 2003]. But it depends on a number of
factors (depth of processing [Velichkovsky et al., 2002]; ease or difficulty to
perceive something [Mannan et al., 1995]);

Smooth pursuit: voluntary tracking of moving stimulus;

Vergence: coordinated movement of both eyes, converging for objects moving
towards and diverging for objects moving away from the eyes.

A scanpath is a sequence of eye movements (fixations - smooth pursuit - saccades...).
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Overt attention - Eye Movements

From [Le Meur & Chevet, 2010].
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Yarbus [Yarbus, 1967]

(1914-1986)

A. Yarbus [Yarbus, 1967] demonstrated how eye movements
changed depending on the question asked of the subject.

1 No question asked
2 Judge economic status
3 What were they doing before the

visitor arrived?
4 What clothes are they wearing?
5 Where are they?
6 How long is it since the visitor has

seen the family?
7 Estimate how long the unexpected

visitor had been away from the family.

Each recording lasted 3 minutes.
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Yarbus [Yarbus, 1967]

A. Yarbus showed that our attention depends on bottom-up features and on top-down
information:

Bottom-up attention (also called exogenous): some things
draw attention reflexively, in a task-independent way...
→ Involuntary;
→ Very quick;
→ Unconscious.

Top-down attention (also called endogenous): some things
draw volitional attention, in a task-dependent way...
→ Voluntary (for instance to perform a task, find the red

target);
→ Very slow;
→ Conscious.

In this talk, we are interested in bottom-up saliency which is a signal-based factor that
dictates where attention is to be focussed.
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Computational models: two schools of thought

One based on the assumption that there is an unique saliency map
[Koch et al., 1985, Li, 2002]:

Definition (saliency map)

A topographic representation that combines the information from the individual
feature maps into one global measure of conspicuity. This map can be modulated by a
higher-level feedback.

A comfortable view for the computational modelling...

Computer

Memory

Our different senses Saliency map

Eye Movements

There exist multiple saliency maps (distributed throughout the visual areas)
[Tsotsos et al., 1995].
Many candidate locations for a saliency map:
→ Primary visual cortex[Li, 2002]
→ Lateral IntraParietal area (LIP) [Kusunoki et al., 2000]
→ Medial Temporal cortex [Treue et al., 2006]

The brain is not a computer [Varela, 1998].
16
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Computational models

The following taxonomy classifies computational models into 3 classes:

Biologically inspired

[Itti et al., 1998]

[Le Meur et al., 2006,
Le Meur et al., 2007]

[Bur et al., 2007]

[Marat et al., 2009]

Probabilistic models

[Oliva et al., 2003]

[Bruce, 2004,
Bruce & Tsotsos, 2009]

[Mancas et al., 2006]

[Itti & Baldi, 2006]

[Zhang et al., 2008]

Beyond bottom-up models

Goal-directed models:
[Navalpakkam & Itti, 2005]

Machine learning-based
models:
[Judd et al., 2009]

A recent review presents a taxonomy of nearly 65 models [Borji & Itti, 2012].
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Biologically inspired models

Itti’s model [Itti et al., 1998], probably the most known...

Based on the Koch and Ullman’s
scheme;

Hierarchical decomposition
(Gaussian);

Early visual features extraction in a
massively parallel manner;

Center-surround operations;

Pooling of the feature maps to form
the saliency map.
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Biologically inspired models

Itti’s model [Itti et al., 1998], probably the most known...

Hierarchical decomposition
(Gaussian):
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Biologically inspired models

Itti’s model [Itti et al., 1998], probably the most known...

Center-surround operations:

From Wikipedia.
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Biologically inspired models

Itti’s model [Itti et al., 1998], probably the most known...

Normalization and combination:
→ Naive summation: all maps are

normalized to the same dynamic and
averaged;

→ Learning linear combination:
depending on the target, each
feature map is globally multiplied by
a weighting factor. A simple
summation is then performed.

→ Content-based global non-linear
amplification:

1 Normalize all the feature maps to
the same dynamic range;

2 For each map, find its global
maximum M and the average m of
all the other local maxima;

3 Globally multiply the map by
(M − m)2.
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Biologically inspired models

Itti’s model [Itti et al., 1998], probably the most known...

Winner-Take-All:

The maximum of the saliency map ⇒
the most salient stimulus ⇒ focus of

attention
Inhibitory feedback from WTA

[Koch et al., 1985]

From Itti’s Thesis.
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Biologically inspired models

Le Meur’s model [Le Meur et al., 2006], an extension of Itti’s model...

Based on the Koch and Ullman’s
scheme

Light adaptation and Contrast
Sensitivity Function

Hierarchical and oriented
decomposition (Fourier spectrum)

Early visual features extraction in a
massively parallel manner

Center-surround operations on each
oriented subband

Enhanced pooling
[Le Meur et al., 2007] of the feature
maps to form the saliency map

Other models in the same vein: [Marat et al., 2009], [Bur et al., 2007]...
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Probabilistic models

Such models are based on a probabilistic framework taken their origin in the
information theory.

Definition (Self-information)

Self-information is a measure of the amount information provided by an event.
For a discrete X r.v defined by A = {x1, ..., xN} and by a pdf, the amount of
information of the event X = xi is given by:

I (X = xi ) = −log2p(X = xi ), bit/symbol

Properties:

if p(X = xi ) < p(X = xj ) then I (X = xi ) > I (X = xj )

p(X = xi )→ 0, I (X = xi )→ +∞

The saliency of visual content could be deduced from the self-information measure.

Self-information ≡ rareness, surprise, contrast...
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Probabilistic models

First model resting on this approach has been proposed in 2003
[Oliva et al., 2003]: S(x) = 1

p(vl (x))
, where vl is a feature vector (48 dimensions),

the probability density function is computed over the whole image.

Bruce in 2004 [Bruce, 2004] and 2009
[Bruce & Tsotsos, 2009] modified the
previous approach by using the
self-information locally on independent
coefficients (projection on a given basis).

From [Bruce & Tsotsos, 2009]

Other models in the same vein: [Mancas et al., 2006], [Zhang et al., 2008].
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Probabilistic models

The support regions used to calculate the pdf are not the same:

Local spatial surround [Gao et al., 2008, Bruce & Tsotsos, 2009]. Note also that
Gao et al. [Gao et al., 2008] uses the mutual information to quantify the saliency;

Whole image [Oliva et al., 2003, Bruce & Tsotsos, 2006];

Natural image statistics [Zhang et al., 2008] (self-information);

Temporal history, theory of surprise [Itti & Baldi, 2006].
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Machine learning-based models

Judd’s model [Judd et al., 2009] combines bottom-up and top-down information:

Low-level features:
→ Local energy of the steerable pyramid filters (4 orientations, 3 scales);
→ Three additional channels (Intensity, orientation and color) coming from Itti’s model;

Mid-level features: Horizon line coming from the gist;

High-level features:
→ Viola and Jones face detector;
→ Felzenszwalb person and car detectors;
→ Center prior.

The liblinear support vector machine is used to train a model on the 9030 positive and
9030 negative training samples.
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Some examples

(a) Original (b) Itti (c) Le Meur (d) Bruce (e) Zhang (f) Judd
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From a fixation map to a saliency map

Discrete fixation map f i for the i th observer (M is the number of fixations):

f i (x) =
M∑

k=1

δ(x− xf (k) ) (1)

Continuous saliency map S (N is the number of observers):

S(x) =

(
1
N

N∑
i=1

f i (x)

)
∗ Gσ(x) (2)

(g) Original (h) Fixation map (i) Saliency map (j) Heat map
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Three principal methods

Three principal methods to compare two saliency maps:

Correlation-based measure;

Divergence of Kullback-Leibler;

ROC analysis.

O. Le Meur and T. Baccino, Methods for comparing scanpaths and saliency maps:
strengths and weaknesses, Behavior Research Method, 2012
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Three principal methods
ROC analysis (1/2)

Definition (ROC)

The Receiver Operating Characteristic (ROC) analysis provides a comprehensive and
visually attractive framework to summarize the accuracy of predictions.

The problem is here limited to a two-class prediction (binary classification).
Pixels of the ground truth as well as those of the prediction are labeled either as

fixated or not fixated.

Hit rate (TP)

ROC curve
AUC (Area Under Curve)
→ AUC=1 ⇔ perfect;

AUC=0.5 ⇔ random.
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Three principal methods
ROC analysis (2/2)

(a) Reference (b) Predicted (c) Classification

A ROC curve plotting the false positive rate as a function of the true positive rate is
usually used to present the classification result.

Advantages:

+ Invariant to monotonic
transformation

+ Well defined upper bound

Drawbacks:

− ...
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Hybrid methods

Four methods involving scanpaths and saliency maps :

Receiver Operating Analysis;

Normalized Scanpath Saliency [Parkhurst et al.,2002, Peters et al., 2005];

Percentile [Peters & Itti, 2008];

The Kullback-Leibler divergence [Itti & Baldi, 2006].
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Hybrid methods
Receiver Operating Analysis

ROC analysis is performed between a
continuous saliency map and a set of

fixations.

Hit rate is measured in function of
the threshold used to binarize the
saliency map [Torralba et al., 2006,
Judd et al., 2009]:

ROC curve goes from 0 to 1!
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Performances

Comparison of four state-of-the-art models (Hit Rate) by using two dataset of eye
movement:

N. Bruce’s database: O. Le Meur’s database:

The inter-observer dispersion can be used as to the define the upper bound of a
prediction
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Attention-based applications

Understanding how we perceive the world is fundamental for many applications.

Visual dispersion

Memorability

Quality assessment

Advertising and web
usability

Robot active vision

Non Photorealistic
rendering

Retargeting / image
cropping:

From [Le Meur & Le Callet, 2009]

Region-of-interest extraction:

From [Liu et al., 2012]

Image and video compression:

Distribution of the encoding cost for H.264 coding
without and with saliency map.
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Problematic and context

Definition (Inter-observer visual congruency)

Inter-observer visual congruency (IOVC) reflects the visual dispersion between
observers or the consistency of overt attention (eye movement) while observers watch
the same visual scene.

Do observers look at the scene similarly?

39



Introduction
Visual attention

Computational models of Bottom-Up attention
Performances
Applications
Conclusion

Attention-based applications
IOVC

Problematic and context

Two issues:

1 Measuring the IOVC by using eye data

LOW HIGH

2 Predicting this value with a computational model

O. Le Meur et al., Prediction of the Inter-Observer Visual Congruency (IOVC)
and application to image ranking, ACM Multimedia (long paper) 2011.
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Measuring the IOVC

To measure the visual dispersion, we use the method proposed by
[Torralba et al., 2006]:

one-against-all approach

IOVC = 1, strong congruency between observers.

IOVC = 0, lowest congruency between observers.
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Measuring the IOVC

Examples based on MIT eye tracking database

(a) 0.29 (b) 0.23 (c) 0.72 (d) 0.85

For the whole database:
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IOVC computational model

Global architecture of the proposed approach:
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Feature extraction

6 visual features are extracted from the visual scene:

Mixture between low and high-level
visual features

Color harmony [Cohen et al., 2006]

Scene complexity:
→ Entropy E

[Rosenholtz et al., 2007]
→ Number of regions (Color mean

shift)
→ Amount of contours (Sobel

detector)

Faces [Lienhart & Maydt, 2002]
(Open CV )

Depth of Field

E = 14.67dit/pel , NbReg = 103

E = 14.72dit/pel , NbReg = 72
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Feature extraction

Depth of Field computation inspired by [Luo et al., 2008]:
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Feature extraction

After the learning, we can now predict:

Predicted IOVC:
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Performance

Two tracking databases are used to evaluate the performance:

MIT’s dababase (1003 pictures, 15
observers)

Le Meur’s database (27 pictures, up to 40
observers)

We compute the Pearson correlation coefficient
between predicted IOVC and ’true’ IOVC:

MIT’s dababase:
r(2004) = 0.34, p < 0.001

Le Meur’s database:
r(54) = 0.24, p < 0.17

(a) 0.94,0.96

(b) 0.89,0.94 (c) 0.91,0.91
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Application to image ranking

Goal: to sort out a collection of pictures in function of IOVC scores.
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Goal: to sort out a collection of pictures in function of IOVC scores.
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Application to image ranking

Goal: to sort out a collection of pictures in function of IOVC scores.

Top five pictures:

Last five pictures:

can be combined with other factors to evaluate the interestingness or
attractivness of visual scenes.
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Conclusion

We do not perceive everything at once...

Visual attention:
Overt vs Covert

Bottom-up vs Top-Down

Computational models of visual attention:

Biologically plausible Probabilistic beyond Bottom-up

Performances:
between a set of fixations and a saliency map

between two saliency maps
Saliency-based applications.
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Conclusion

Thanks for your attention

A special session has been accepted to WIAMIS’2013 (Paris):
O. Le Meur and Z. Liu, Visual attention, a multidisciplinary topic: from

behavioral studies to computer vision applications
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