Ambient/focal visual fixations dichotomy in natural scene perception

Brice Follet
7 juin 2012

Sous la direction universitaire de Thierry Baccino et Olivier Le Meur
Sous l’encadrement industriel de Christel Chamaret
Plan

1. Introduction
 1. Perception
 2. Attention
 3. Problematic
2. Experiment 1: Spatial deployment of ambient and focal fixations
3. Experiment 2: Focal fixations and object processing
4. Experiment 3: Ambient fixations and global scene processing
5. Conclusion
1. Introduction
 1. Perception
 2. Attention
 3. Problematic
2. Experiment 1: Spatial deployment of ambient and focal fixations
3. Experiment 2: Focal fixations and object processing
4. Experiment 3: Ambient fixations and global scene processing
5. Conclusion
A dissociation in the visual system

Local
- Late
- Fine
- High Frequencies
- Foveal vision
- Recognition / Reading
- Semantic
- Conscious

Global (Navon & al. 77)
- Early
- Coarse (Parker & al. 92)
- Low Frequencies (Oliva & al. 94)
- Peripheral vision
- Localization / spatial
- Ecological / motor / action
- Unconscious

Posterior Parietal Cortex

Dorsal (where) pathway
- V1, V2
- & V3

Infero Temporal Cortex

Ventral (what) pathway
1. **Introduction**
 1. Perception
 2. Attention
 3. Problematic
2. **Experiment 1**: Spatial deployment of ambient and focal fixations
3. **Experiment 2**: Focal fixations and object processing
4. **Experiment 3**: Ambient fixations and global scene processing
5. Conclusion
Are there 2 kinds of overt attention?

The scanpath

- Fixation Duration (FD)
- Saccade Amplitude (SA) (next or previous)
- Time Viewing / fixation number

Time Viewing: A first index for global-to-local strategy

In different specific instruction tasks (Yarbus 67, Tatler & al. 08) and contexts (Buswell (35), Unema & al. (05), Pannasch & al. (08) and Over & al. (09))
Saccade Amplitude as a function of Fixation Duration

Ambient
Large and fast scanning to perceive the scene globally

Focal
Long and local scanning to process deeply specific regions of the scene

Velichkovsky & al. (05)

Unema & al. (05)

Tatler & al. (08)

Ho phuoc & al. (12)

→ EEG gamma bands (40-70 Hz) distinguish two visual processes *Fischer & al. (11)*
1. Introduction
 1. Perception
 2. Attention
 3. Problematic
2. Experiment 1: Spatial deployment of ambient and focal fixations
3. Experiment 2: Focal fixations and object processing
4. Experiment 3: Ambient fixations and global scene processing
5. Conclusion
Are there many kinds of fixations?

What is the impact on the understanding of attention?

Have they different functions?

What is the impact on modeling?
1. **Introduction**
 1. Perception
 2. Attention
 3. Problematic

2. **Experiment 1**: Spatial deployment of ambient and focal fixations

3. **Experiment 2**: Focal fixations and object processing

4. **Experiment 3**: Ambient fixations and global scene processing

5. **Conclusion**
Experiment 1: Ambient and focal fixations

- **Goal**
 - Can we systematically observe ambient/focal relationship?

- **Protocol**
 - Eye-tracking (4 sec. recording)
 - Free Viewing (36 subjects)
 - Stimuli: 4 natural scene categories (Torralba & Oliva 2001)

Coast

Open Country

Mountain

Street
Results

Fixation Duration (FD)

Saccade Amplitude (SA)

- Next SA
- Previous SA

Fixation Duration (ms)

Time Viewing (ms)
To identify ambient and focal fixations

- **Method**: How to separate a priori no distinct data?

Using **K–means algorithm**

- Centroid: Local optimum
- No parametric data clustering

- **Results**
 - *Saccade Amplitude* (SA) separates the fixations
 - *Fixation Duration* (FD) is useless

2 clusters

- **Small SA Focal fixations** 70% (2.5°)
- **Great SA Ambient fixations** 30% (10.5°)
Spatial deployment assessment

Goal
- To test relationship between ambient/focal and low/high level dissociations (Pannasch & al. 08)
 Comparison with bottom-up visual attention models

Method: Ambient/focal maps comparison (AUC)

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC Value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>0.76</td>
<td><0.01</td>
</tr>
<tr>
<td>Focal</td>
<td>0.84</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Focal Fixations are more:
- Sensitive to the saliency (Tatler & al. 2006)
- Centred
Time course of ambient and focal fixations

- **Focal** occurs earlier than ambient
- Around 1 second

Opposite to the *global-to-local* classical view (Pannasch & al. 2008)

Ambient/focal dichotomy is different to the *bottom-up/top-down* opposition
Summary experiment 1

- Focal and ambient fixations show different phases
- Focal and ambient fixations have different occurrence probability
- Focal and ambient fixations show different spatial deployment

Hypothesis

Investigation: The functional role of ambient and focal fixations

- Experiment 2: Focal and object processing relationship
- Experiment 3: Ambient fixations and global scene processing relationship
1. **Introduction**
 1. Perception
 2. Attention
 3. Problematic

2. **Experiment 1:** Spatial deployment of ambient and focal fixations

3. **Experiment 2:** Focal fixations and object processing

4. **Experiment 3:** Ambient fixations and global scene processing

5. **Conclusion**
Experiment 2: Focal & objects

Goal
- Investigation of the relationship between focal fixations and object processing

Protocole
- 120 images * 2 conditions (A & B)
- 4 categories: Street, Coast, Mountain & OpenCountry
- 47 subjects (mean age 38.5, STD = 9.5)

K-means stability

<table>
<thead>
<tr>
<th></th>
<th>SA</th>
<th>First Experiment</th>
<th>With object (A)</th>
<th>Without object (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal centroid</td>
<td>2.5°</td>
<td>3°</td>
<td>3.5°</td>
<td>SA are relatively stable</td>
</tr>
<tr>
<td>Ambient centroid</td>
<td>10.5°</td>
<td>15°</td>
<td>12.2°</td>
<td>***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FD</th>
<th>First Experiment</th>
<th>With object (A)</th>
<th>Without object (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal centroid</td>
<td>169 ms</td>
<td>ns</td>
<td>154 ms</td>
<td>FD are not stable</td>
</tr>
<tr>
<td>Ambient centroid</td>
<td>170 ms</td>
<td>195 ms</td>
<td>244 ms</td>
<td>***</td>
</tr>
</tbody>
</table>

Opposite to the classical definition of ambient and focal SA/FD definitions

Does SA stay relevant to denominate the clusters? Verifying on spatial deployment.
Focal Fixations are object-based

- **Saliency**
 - **With object**: Focal are more attracted by the saliency than ambient
 - **Without object**: No difference between ambient and focal
 - **Focal fixations**: are more attracted by the saliency with presence of objects
 - **Ambient fixations**: show same attractiveness with or without objects

 Focal saliency attractiveness is due to object saliency

- **Mapping In/out of objects**
 - 74% of **ambient fixations** are out of Object
 - 43% of **focal fixations** are on object AOI
 - 82% of **object fixations** are **focal**

- **Object phase**: 1 second

 Focal fixations

 SA remains a relevant index
1. Introduction
 1. Perception
 2. Attention
 3. Problematic
2. Experiment 1: *Spatial deployment of ambient and focal fixations*
3. Experiment 2: *Focal fixations and object processing*
4. Experiment 3: *Ambient fixations and global scene processing*
5. Conclusion
Experiment 3: Ambient fixations vs Global Scene processing

- **Focal fixations** are object and saliency-based
- There are less **ambient fixations**

Question: Does it mean that **ambient fixations** are noise or **functional fixations**?

Hypothesis: **Ambient fixations** deployment allows a **global scene processing**

- Should **fast scene categorization** be facilitated by the **ambient extraction**?
Protocol

- Rapid scene categorization task
- Go/no-go paradigm (28 subjects)
- **Stimuli**: Coast versus Street
 - Target = Street
- Prime insertion (50 ms)

Principle: To illuminate fixated regions

4 priming conditions

<table>
<thead>
<tr>
<th>Original</th>
<th>Ambient</th>
<th>Focal</th>
<th>Saliency</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 associations
 prime / target

Image congruence
No congruence
Categorical congruence
Results: Reaction Time

- **Image congruence**
 - Ambient extraction facilitates global scene categorization

- **Categorical congruence**
 - **Image** and **category** congruence conditions allow an equal facilitation
 - Supports that ambient fixations mediate a global category representation as a « *contextual frame* » (Bar, 03) or a « *scene gist* » (Oliva, 05)
1. Introduction
 1. Perception
 2. Attention
 3. Problematic
2. Experiment 1: Spatial deployment of ambient and focal fixations
3. Experiment 2: Focal fixations and object processing
4. Experiment 3: Ambient fixations and global scene processing
5. Conclusion
Conclusion

- Are there many kinds of fixations? Yes
- Have they different functions? Yes

- What is the impact on the understanding of attention? Saliency attractiveness is due to the focal object attractiveness and ambient deployment allows scene processing.

- What is the impact on computational modeling? It explains performances and limitations of saliency maps.
Conclusion

Contributions

Experiment 1
- **Automatic method** to classify fixations
- Importance of *saccade amplitude*
- **Focal nature** of saliency

Experiment 2
- Relationship between the *object processing* function and *focal fixations*
 - Across the saliency attractiveness
 - By the spatial deployment on object
 - By the time and functional correlation
- Object filtering **method**

Experiment 3
- Relationship between the *scene categorization* function and *ambient fixations*
 - Ambient extraction facilitates scene categorization
- Fixation-based priming **method**
Conclusion

Contributions

Computationnal approach
- Independence between centered bias and saliency
- Stronger gaze prediction of medium frequencies
- Object attraction is medium frequencies-based

Papers
Perspectives

- **Ambient** and **focal** fixations are preferentially distinct by SA
 - But indexes are not really stable
 - *Research about* **data separability**
 - Other features
 - Other algorithms
 - Number of clusters > 2
 - *Research about* **fixation duration**
 - Associated function ?
 - Relationship with saliency

- **Bottom-up SM** are **focal** models
 - How to model ambient SM ?
 - *Research about* **ambient prediction**
 - Global factors

technicolor applications
 - Reframing
 - Compression
Thank you for your attention