
SELECTIVE H.264 VIDEO CODING

BASED ON A SALIENCY MAP

O. Le Meur a,b P. Le Callet b D. Barba b

aTHOMSON R&D France, 1 Avenue Belle Fontaine,
35511 Cesson-Sevigne, France

bIRCCyN UMR n6597 CNRS Ecole Polytechnique de l’Universite de Nantes
rue Christian Pauc, La Chantrerie, 44306 Nantes, France

Abstract

The demand in modern multimedia data transmission is continually increasing.
New compression standard, such as the recent H.264/MPEG-4 AVC video coding
standard, drastically improves the compression ratio. This higher compression ratio
is required because the amount of multimedia data to transmit increases and that
the perceived quality expected by the end user is not lessened. A complementary
solution to maintain or to improve the perceived video quality is to selectively
compress the information: perceptually non-important areas are subjected to higher
compression than more relevant parts of the data. Therefore, the perceived quality
can be heighten without increasing the bit rate. In this paper, we propose a new
two-pass based coding framework driven by a saliency map. A saliency map is
a 2D topographic map encoding the capacity of each pixel to attract the visual
attention. This map stems from a computational model simulating the human visual
attention. A selective compression is achieved by an a-priori knowledge of the spatial
locations of the visually important areas. First, the proposed algorithm determines
a quantization step for each macroblock according to a given bit rate (inferior to
the global transmission rate). The second pass allocates the remaining bit budget
by using the saliency map. Experiments based on the H.264 coding scheme were
conducted leading to an undeniably objective quality improvement of the most
interesting areas.

Key words: Selective compression, H.264, visual attention, saliency map
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1 Introduction

Encoding a video sequence at low bit-rate with good quality remains a ma-
jor challenge in video coding research. Classical encoding methods seeking to
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uniformly distribute the coding resources make this problem even more dif-
ficult to solve. However, it is commonly accepted that each frame of a video
sequence has only a few limited regions, which are perfectly examined by the
gaze of observers. Therefore, it may not be necessary to encode the totality
of a video frame with uniform quality. In others words, the rationale is that
a high fidelity reconstruction is only desirable on areas having the capacity
to attract the visual attention. This type of encoding scheme is called selec-
tive compression or compression with Region of Interest (RoI). An interesting
study conducted by A. Bradley [1] has shown that the perceived quality could
be significantly enhanced if the size of the RoI is small and if the target bit
rate is low enough to produce visible compression artifacts on the RoI. Never-
theless, these non conventional compression methods are not widely used. The
major problem concerns the detection of the spatial locations of the regions
of interest.
Currently, most of the proposed selective compression methods make the as-
sumption that an a-priori knowledge about the spatial locations of the RoI
is available. For example, Leontaris et al. [10] proposed a solution to allocate
more bit rate to the visually relevant areas. In the same spirit of the work by
Yang [18], the bit budget allocated to the RoI is increased by relaxing the bit
rate constraint in a rate-distortion optimization. The relaxation is generally
obtained by including a relaxation factor in the rate-distortion function. This
factor ranges from 0 to 1 (0 for macroblocks belonging to the RoI).
Others methods are dedicated to particular applications (medical imaging,
video conferencing) in which the numerous constraints allow to quite easily
detect the RoI. In the context of TV broadcasting, there is currently no usable
selective compression scheme based on an automatically extraction method of
the RoI, useful for the TV broadcasters.
Recently, key advances have been achieved in computer vision algorithm, and
more especially in the visual attention modeling. Algorithmic methods have
been proposed to automatically select regions that are of interest. Compu-
tational models simulating the properties of Human Visual System (HVS)
provide the best results. They aim at building a saliency map that is a 2D
topographic map encoding the capability of each pixel to attract the visual at-
tention. The most famous model was developed by L. Itti [7]. This first model
raised a lot of interest, leading to several studies [19,16,2].
This paper describes a selective H.264 compression scheme driven by a spatio-
temporal saliency map. As the design of the model is not the main topic of
this contribution, the key points of the computational model of the selective
visual attention are only briefly described in the section II. Readers could find
more details both on the design of the model and its performances in ref-
erences [14,15]. The selective compression scheme is described in the section
III. The aim is to heighten the quality over the areas that have the highest
saliency values. Section IV presents and examines the performances of the se-
lective coding compared to a conventional coding. Finally, some conclusions
are drawn in section V.
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2 Computational model of selective visual attention

The process allowing to build the saliency maps are detailed in the following
sections. The major step are just reminded because several papers have already
described the model used in this study [14,15]. Figure 1 gives the flow chart
of the proposed model.

2.1 Spatial saliency map

According to an important psychovisual backing, the spatial model consists
of three sequential steps: visibility, perception and finally perceptual grouping
step.

The visibility step simulates the limited sensitivity of the HVS. Despite the
seemingly complex mechanisms underlying the human vision, the visual sys-
tem is not able to perceive all information present in the visual field with the
same accuracy. To take into account these intrinsic limitations, the visibil-
ity step includes the following set of basic mechanisms entirely identified and
validated from psychophysic experiments:

(1) a transformation of the RGB component into the Krauskopf color space
composed of the cardinal direction A (achromatic), Cr1 (red and green
opponent component) and Cr2 (the blue and yellow opponent compo-
nent) is achieved.

(2) the early visual features extraction achieved by a perceptual channel de-
composition consists in splitting the 2D spatial frequency domain both in
spatial radial frequency and in orientation. This decomposition is applied
on each of the three perceptual components. From psychophysic exper-
iments, A. Senane [17] shows that psychovisual spatial frequency parti-
tioning for the achromatic component leads to 17 psychovisual channels
in standard TV viewing conditions while only 5 channels are obtained
for chromatic components. Each resulting subband or channel may be re-
garded as the neural image corresponding to a population of visual cells
tuned to a range of spatial frequency and to a particular orientation.

(3) Contrast Sensitivity Functions (CSF) have been widely used to measure
the visibility of natural images components. In fact, these components
can be described by a set of sinusoidal Fourier and their amplitude. The
visibility of a specific component can be assessed by applying a CSF in
the frequency domain. When the amplitude of a frequency component is
greater than a threshold, the frequency component is perceptible. This
threshold is called the visibility threshold, and its inverse defines the value
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of the CSF at this spatial frequency. In the approach presented here,
CSFs are applied to each components (A,Cr1,Cr2). A 2D anisotropic
CSF designed by S. Daly is applied on the achromatic component [3].
The CSFs of the two color visual components Cr1 and Cr2 are modeled
using sinusoidal color gratings [9]. These two last CSFs show that the
human eye is more sensitive to chromatic components with frequencies
up to 4-5 cpd. Sensitivity rolls off at both higher and lower frequencies.

(4) masking effect refers to the modification of the Differential Visibility
Threshold (DVT) CT0 of a stimulus due to the influences of the context,
called the masking signal [13]. The value CT0 of the DVT is modified
into a value called CT by the masking effect. This modification is sim-
ply given by the relation CT = CT0 × T . When T ≥ 1, the threshold
increases meaning that there is a masking effect. When 0 ≤ T ≤ 1, the
threshold decrease corresponding to a pedestal effect. The visibility of the
stimulus is increased. Most of the time, psychophysics experiments based
on the detection of simple signals (such as sinusoidal patterns) are used
to determine an analytic expression for the visual masking. It is obvious
that this is a strong simplification with regard to the intrinsic complexity
of natural pictures. Nevertheless, numerous applications (watermarking,
video quality assessment) are built around such principles with inter-
esting results. A psychovisual subband decomposition performed on each
component is mandatory in order to tackle the three types of visual mask-
ing: intra-channel masking, inter-channel masking and inter-component
masking. These types of masking and the analytic model we use are fully
defined in [12].

These first steps built a spatial psychovisual space in which all the spatial
information of the image are coherently normalized regarding the DVT.

The second part of the spatial model deals with perception. It aims at deter-
mining from the psychovisual space a description useful to the viewers and
not cluttered with irrelevant information. To deal with a large amount of vi-
sual information, the visual system has attentional mechanisms for selecting
relevant areas and for reducing the redundancy of the incoming visual infor-
mation. In order to form an economical representation of the visual world,
the particular oriented center/surround organization of the cortical cells is
really important. For instance, center/surround organizations imply that vi-
sual cells are insensitive to uniform illumination. The responses of such cells
are efficiently simulated by a difference-of-Gaussian function. Two relevant
structural descriptions (one for the achromatic component and one for the
chromatic components) are then built.

Perceptual grouping refers to the human visual ability to group and bind visual
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features to organize a meaningful higher-level structure. There are numerous
mechanisms involved in the perceptual grouping. One of the most common
is the facilitative interactions that has been reported in numerous studies. In
most cases, these interactions appear outside the Classical Receptive Field
(CRF) along the preferred orientation axis and are maximal when center and
surround stimuli are iso-oriented and co-aligned [8] (due to the long-range hor-
izontal connections). In other words, the activity of cells is enhanced when the
stimuli within the CRF and a stimuli within the surrounding area are bound
to form a contour. This facilitative interaction is usually termed contour en-
hancement or contour grouping. Most of the recent computational models are
based on the Gestalt principles of colinearity and proximity [5].
A achromatic (respectively chromatic) saliency map is then obtained by lin-
early combining the achromatic (respectively chromatic) subbands. The com-
bination of different saliency maps into an unique map is really difficult. When
several visual dimensions are considered, such process is mandatory in order
to compute a single measure of interest for each location. The major problem
concerns the merger of features stemming from different visual dimensions and
having different dynamic ranges. A basic fusion algorithm is currently used.

In [14], we have shown that the spatial model provides a linear correlation
coefficient close to 0.72 between the output of the model and the one stem-
ming from eye-tracking experiments. This model can predict locations that
are fixated by human observers better than three others models (an uniform,
a gaussian and the model of L. Itti) on still images.

2.2 Temporal saliency map

Figure 1 gives the synoptic of the proposed algorithm used to build the tem-
poral saliency map. The temporal saliency map is based on the fact the visual
attention is attracted by motion contrast. Such contrast is deduced from the
local and the global motion.
Motion estimation plays a very important role in the construction of the
saliency map. Apparent motion is first computed between two successive
frames using a hierarchical block matching method. In general, the hierar-
chical decomposition is performed by a dyadic Gaussian pyramid: the input
image is first filtered by a 2D separable filter and then subsampled (horizon-
tally and vertically by a factor of two). This process is iteratively applied to
build up each level of the Gaussian pyramid. Here, we take advantage of the
perceptual channel decomposition performed during the first steps of the spa-
tial saliency map creation.

Two neighboring pictures are used to form two pyramids.
−→
V

i

n denotes the
motion field for the nth frame, at the ith level of the pyramid. At the lowest
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Fig. 1. Architecture of the proposed model: CSF (Contrast Sensitivity Function),
PCD (Perceptual Channel Decomposition).

resolution, the motion vector providing the smallest sum of absolute difference
is kept, up sampled and transmitted to the next higher resolution. Refinement
algorithm and decision are used to form the final motion field

−→
V local.

In order to detect the temporal conspicuous areas of a video sequence, the
motion inherent to the camera is first canceled. Assuming that the dominant
motion is due to the camera, the global transformation between successive im-
ages based on a previous motion fields is estimated. The displacement

−→
V Θ(s),

at a pixel site s related to a motion model parametrized by Θ is given by a 2D
affine motion model. The six affine parameters are computed with a popular
robust technique based on the M-estimators.
Finally, the relative motion is computed from the knowledge of the apparent
dominant displacement

−→
V Θ and of the local displacement

−→
V local for each pixel

s. The relative motion
−→
V relative is given by the relatio (1):

−→
V relative(s) =

−→
V Θ(s) −

−→
V local(s) (1)

As the perception of a moving object heavily depends on whether or not the
object is tracked by the eyes, the maximal pursuit displacement capability of
the eyes ha sto considered. The relative displacement greater than the max-
imal pursuit displacement is discarded. For video, this value belongs to the
range 8 to 10 deg/s.
The relevance degree of a relative motion also depends on the average amount
of the relative displacement computed across the picture. For example, a high
relative motion is very conspicuous when there is only few relative displace-
ment. It is intuitively clear that it will be easy to find a moving stimulus
among stationary distractors [4]. To model such property, a linear quantifica-

tion of ‖
−→
V relative‖ is achieved in order to build a histogram. The median value

of the histogram, called Γmedian, is a reliable estimator of the relative motion
amount. ‖

−→
V relative‖ is then weighted by Γmedian. The closer Γmedian to 0, the
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Fig. 2. Saliency maps stemming from the original pictures of the sequence Kayak
(a); the pixel-based saliency maps (b); the macroblock-based saliency maps (c).

more the relative motion is perceptually important. Finally, the normalized
temporal saliency map ST is computed by:

ST (s) =

−→
V relative(s)

Γmedian × λ
, λ = max

s
(

−→
V relative(s)

Γmedian

) (2)

A combining process is then used [15] in order to built the final saliency map
S from the spatial and the temporal map.

3 Selective H.264 video coding

3.1 Definition

In the classical approaches of video compression, no a-priori information is
given on the content of the scene to be coded. At the opposite, a selective
compression scheme uses information regarding localization and saliency of
the interesting parts of the scene. From these information, known prior to the
onset of the coding process, the coding resources, and more especially the bit
budget, are distributed non-uniformly across the picture.
In this study, we use a computational model of visual selective attention to
predict where viewers are likely to fixate. Such model provides a pixel-based
saliency map. A simple transformation is used to transform a pixel-based
saliency map into a macroblock-based saliency map. The transformation con-
sists in averaging the saliency values located in a macroblock. Figure 2 shows
examples of pixel-based and macroblock-based saliency maps.
As the global transmission rate is fixed, the encoding strategy consists in cod-
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ing at coarser rate the non-relevant areas of the pictures whereas the relevant
areas are encoded to a higher quality. The next section presents the proposed
selective compression algorithm.

3.2 Algorithm

The proposed algorithm is a two-pass based coding framework driven by a
saliency map. Before delving into the details of the algorithm, several hypoth-
esis have to be done.
First, we assume that the bit budget B to encode a particular picture is
given by a rate-control algorithm and that the quantization parameter, de-
noted as QP , is also known. QP is used to quantize all the macroblock of the
considered picture. Second, the rate-distortion curve is supposed to be avail-
able for all macroblocks. Consequently, the encoding cost and the distortion,
cj(i) and dj(i), respectively, are known for each macroblock i and for each
quantization parameter j. In practice, there are several possibilities to obtain
the rate-distortion curves for each macroblock [11] (empirical, statistical ap-
proaches...).
The aim is to determine for each macroblock i the best quantization parameter
j around the QP value bearing in mind two key points:

(1) the first point concerns the global perceived video quality. For a given
transmission rate, the global perceived video quality will be maximal if
and only if the local perceived quality is the same everywhere. Therefore,
the first step of the algorithm has to establish an homogeneous perceived
quality across the whole picture. In others words, severe coding artifacts
that stand out against its direct neighborhoods have to be avoided;

(2) the second point refers to the distribution of the remaining bit budget
over the conspicuous or interesting locations in the visual scene.

A two-pass based coding framework is proposed to tackle these two important
points. Each pass is described hereafter.

3.2.1 First pass: toward an uniform quality

We have previously assumed that the transmission rate is known, leading to
the bit budget B. Let B1 the total number of bits allocated for encoding the
current picture during the first pass. The value B1, strictly inferior of the bit
budget B is calculated as follow: B1 = B × γ. The quantization parameter,
denoted as QP 1, is used to reach the bit budget B1 (QP 1 > QP ).
The value γ depends on the target application. For example, in the case of
video conference application, γ should have a low value since a strong degra-
dation of the scene background can be tolerated. In a context of video broad-
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casting, the problem is quite different because a trade-off has to be considered.
It consists both in avoiding the apparition of severe artifacts over the whole
picture and in having an substantial bit budget difference B −B1 to increase
the quality of the RoI during the second pass. As this study concerns the video
broadcasting applications, γ is arbitrary set to 0.8.
What we are mainly concerned with here is to adjust locally the quantization
parameters QP 1

i associated to each macroblock i in order to obtain a maxi-
mal global perceived video quality. After the adjustment, the encoding cost of
the whole picture is recalculated. The modulation of the initial quantization
parameters QP 1 is based on an iterative approach consisting of three steps.
Before describing in details these steps, we have to point out that the quality
is measured by the mean squared errors (MSE). The MSE and the deduced
peak signal-to-noise ratio (PSNR) are the most popular difference metrics in
image and video processing. The MSE is the mean of the squared differences
between the original and the degraded pictures. This metric is fast and easy
to use. Obviously, this metric presents numerous drawbacks [6]. Nevertheless,
there is currently no relevant alternative.
The first pass of the proposed algorithm is composed by the following steps:

(1) the variance or the dispersion σ2

MSE of the quality values is computed
over the picture;

(2) the aim is to reduce the dispersion of the objective quality in order to tend
toward an uniform quality. The iterative algorithm consists in decreasing
(respectively increasing) the quantization step of the M macroblocks pre-
senting the highest distortion (respectively the lowest distortion). The bit
budget B1 is modified to account for the modification of the macroblocks
encoding costs;

(3) the new dispersion σ2

MSE is computed. If the difference between this value
and the previous dispersion is below a threshold ε, the iterative process
is ended, else the algorithm returns to the step 2.

In practice, M represents 10% of the total number of macroblocks. The num-
ber of iterations required to find the best adjustement depends on the ε value.
Nevertheless, the average iteration number is close to 4.

3.2.2 Second pass: allocating the remaining bit-rate in function of the saliency

map

In the literature, most of the approaches rely on a rate-distortion optimiza-
tion to favor the quality of the relevant perceptual areas. A relaxation factor
is included in the Lagrangian optimization, relaxing the bit rate constraint on
the RoI. The Lagrangian method only finds the convex approximation, while a
direct exhaustive search of constrained problem results in an optimal solution.
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The exhaustive search is time consuming and it is unreasonable to use this
method over the whole picture.
Nevertheless, as the size and the number of the RoI is relatively small, it is
possible to conduct a direct search only on the visually important area. The
process to distribute the quantity B−B1 consists in seeking the macroblock for
which the distortion is significantly decreased when the quantization parame-
ter is decreased of one unit. In others words, we compute for each macroblock
i, the slope of the rate-distortion curve:

λj→j−1(i) =
dj−1(i) − dj(i)

cj(i) − cj−1(i)
× S(i) (3)

where, cx(i) and dx(i) represent respectively the encoding cost and the dis-
tortion for a macroblock i and a quantization parameter x. S(i) represents
the saliency value of the macroblock i. In order to accelerate the process, the
saliency map has been thresholded. All the saliency values below a predefined
threshold are set to zero. In practice, if the saliency map ranges from 0 to 255,
the threshold is set to 100.
The most interesting macroblock in terms of rate-distortion is the macroblock
having the highest λj→j−1 value:

λmax = max
i,j

λj→j−1(i) (4)

It is noticeable that a macroblock having a saliency value equal to zero will
never be selected. The quantization parameter of the macroblock having the
highest λj→j−1 is decreased. The remaining bit budget (B − B1) is then up-
dated. While the value B − B1 is positive, this algorithm is repeated. It is
interesting to note that a macroblock of interest can be chosen several times.

4 Performance assessment and discussion

4.1 Performance assessment

The goal of the performance assessment is to examine that the proposed ap-
proach meets the two aforementioned requirements. The first analysis concerns
the quality improvement of the RoI whereas the second refers to the global
perceived quality of the video sequence.
First and foremost, we have to check that the proposed selective compres-

sion scheme has the capacity to heighten the objective quality on the RoI.
Table 1 shows the results in term of PSNR on three sequences (sequences
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Fig. 3. Examples of selective compression on the sequence Kayak (CIF): (a) the
macroblock-level saliency maps; (b) pictures encoded by a classical H.264 coder;
(c) MSE stemming from the difference between the original and the degraded pic-
ture; (d) pictures encoded by the proposed selective compression scheme; (e) MSE
stemming from the difference between the original and the degraded picture (RoI).

Kayak and Stefan are in CIF format whereas the last sequence has a reso-
lution of 640 × 352 pixels). These results are given for several bit rates. As
expected, the average PSNR computed over the whole picture coming from
the classical coding is better than the average PSNR obtained by the proposed
approach. However, a significant improvement of the RoI quality is achieved
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Table 1
Average PSNR for three sequences for different bit rates. The goal is to compare
the average PSNR computed over the whole image and over the regions of interest
for a classical compression scheme and the proposed approach.

Sequence Parameters PSNRimage PSNRRoI

Classical coding RoI coding Classical coding RoI coding

Kayak 1Mb/s, CIF 30.95 28.1 30.46 32.72

550 Kb/s, CIF 28.87 27.59 28.66 30.13

Stefan 1Mb/s, CIF 35.71 33.43 34.52 37.45

550 Kb/s, CIF 32.02 30.41 30.65 31.63

Raid 1.4Mb/s, 640 × 352 34.99 34.46 34.4 35.23

Fig. 4. Temporal evolution of the PSNR. Classical and proposed approaches are
compared in term of PSNR when the whole picture and the RoI are considered.

by the proposed bit allocation strategy, regardless of the bit rate. The average
improvement is about 2 dB for the CIF sequences. Concerning the sequence
Raid, the improvement is of 0.77 dB.
Figure 4 presents the temporal evolution of the average PSNR values (PSNR
computed on the whole image, on the RoI and for the classical and the pro-
posed approach) on the sequence Raid. This figure shows that the difference
in terms of PSNR values between the two coding schemes remains constant.
Figure 3 shows four frames of the sequence Kayak. The macroblock-level
saliency maps are illustrated on the first row (a). Pictures encoded by the
classical coding are shown on the second row (b). The MSE (figure 3 (c)), is
the difference between the source and the picture encoding by the classical
approach. It is noticeable that the distribution of the coding errors is uniform.
The distribution of the MSE coming from the proposed approach (figure 3 (e))
is quite different. The proposed approach has drastically reduced the coding
errors on the visually important areas.
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Fig. 5. Examples of selective compression on the sequence Stefan (CIF): (a) on
the left hand side, the coded picture is obtained by a classical H.264 video coding
whereas, on the right hand side, the picture is obtained by the proposed approach;
(b) MSE respectively associated to the classical and proposed video coding.

Another example is given on the figure 5. The quality improvement is notice-
able on the face and legs of the tennis player whereas the degradation of the
background is not noticeable. The sequence Stefan is typically the sequence
on which the perceived video quality can be drastically improved by a video
compression scheme driven by a saliency map: this sequence consists of a small
RoI and a high textured background. Numerous bit are wasted to encode the
background to the detriment of the tennis player. Figure 6 illustrates for sev-
eral pictures the distribution and the evolution of the encoding cost when a
classical and the proposed compression scheme are considered. It turns out
that a significant part of the bit budget is wasted on visually irrelevant areas
in a classical scheme (figure 6 (b)). Once again, the picture Stefan is a typical
case where the lack of intelligence of the classical approach is obvious. Indeed,
the most important part of the bit budget is used to encode the textured
background, despite the fact that these areas have the capability to mask the
quantization noise. The proposed approach allows to concentrate the major
part of the bit budget on the visually important areas, as depicted by the
figure 6 (c).
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Fig. 6. Distribution of the encoding cost for a conventional H.264 coding (b) and
for the proposed approach (c).

4.2 Discussion

The next future generation of coding schemes will likely use an a-priori knowl-
edge automatically extracted from the original picture. The goal of such coding
is to obtain a high fidelity reconstruction over the visually important areas in
order to improve the overall perceived video quality. As Bradley mentioned
in [1], the selective compression is very relevant when the size of the RoI are
small and if the target bit rate is low enough to produce visible compression
artifacts on the RoI. Indeed, it is clear that coding artifacts are more annoying
on the RoI than in any others areas.
It is true that the aforementioned parameters act upon the relevance of the
selective compression. But, there is an other parameter which is more impor-
tant than the previous. It concerns the computation of the distortion caused
by the coding. In the proposed approach, the simplest distortion metric (MSE)
is used. This metric presents numerous drawbacks and is not convenient to
control a coding strategy. A suitable metric should take into account several
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important points: first and foremost, the visual masking has to be considered.
Masking effect refers to the modification of the visibility of a stimulus (coding
artifact, for example) due to the influences of the context, called the masking
signal. Indeed, it is well known that coding artifact is more annoying on the
uniform areas than on highly textured areas. Second, the distortion metric
has to include the temporal dimension in order to detect flickering. Flickering
annoys the viewers and can potentially attracts the visual attention, creating
a new fixation points. Finally, the metric has to be dedicated to a particular
compression scheme. For example, concerning the H.264 compression scheme,
the metric should detect the block effect.
As a selective compression scheme using a basic distortion metric can improve
the perceived quality (figure 5), the performances can further increased by the
used of a reliable metric.
The assessment of the final quality is also a problem. In this study, the PSNR
is used to assess the quality. This metric is widely criticized because the cor-
relation with perceived quality measurement is small. Nevertheless, the trend
obtained by the PSNR is informative and provides some insights on the inter-
est of a selective compression scheme. A more coherent validation involving
subjective quality tests will be required in order to definitively prove the in-
terest of selective compression.

5 Conclusion

The recent breakthrough in the visual attention modeling, initiated by L. Itti
[7] and pursued by [19,16,2] and by the works [14,15], allows to serenely tackle
the compression scheme driven by an automatic detection of the visually im-
portant areas. The goal is to encode the region of interest at higher bit rate
in order to improve the perceived visual quality. In this paper, we proposed
a selective coding framework based on the recent H.264/MPEG-4 AVC video
coding standard. The results are very promising. A significant improvement
of the RoI, in term of PSNR, is achieved.
Besides these preliminary results, two major problems have been raised in
this paper. First, in order to avoid the introduction of artifact on the back-
ground, a reliable distortion metric has to be defined taking into account
both the properties of the HVS and the compression technology used to per-
form the encoding. The second point refers to the performance assessment of
the results coming from a selective compression scheme. Classical assessment
methods, based on the MSE, are not suitable anymore: a selective compres-
sion introduces more degradation in the background, increasing the average
MSE. Therefore, the way to qualitatively assess the image quality has to be
modified and should depend on the spatial localization of the RoI. Future de-
velopment will consist in designing a new perceptual image quality assessment
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method. This metric will be used to evaluate the overall perceived quality and
to optimize the performances of the bit budget allocation.
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