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ABSTRACT

The modeling of the human visual attention into a computational
attention model leads to the split of visual features into several inde-
pendent channels. Then, a difficult problem arises to combine these
maps, having different dynamic ranges or distribution. When several
maps are considered, such process is mandatory in order to compute
a single measure of interest for each location, regardless of which
features contributed to the salience. Several strategies of cue combi-
nation are proposed in this paper for the spatial cues as well as the
temporal saliency. Finally, some user tests on still image and video
databases leads to highlight one operator.

Index Terms— Visual attention, computational model, map fu-
sion, user experiments, eye-tracker.

1. INTRODUCTION

A visual attention model yields an attention (or saliency) map, in-
dicating the visually important areas of a picture. In this paper,
a fundamental problem is addressed regarding the creation of final
saliency map. Indeed, one of the most difficult problem concerns the
fusion of the different saliency maps, which are created when mod-
eling several independent visual features. A biological model com-
prises a number of parallel channels for processing different visual
features such as the luminance, the orientation and the color. Each
visual feature is processed to provide a feature-dependent attention-
map. These maps are then combined to produce a single feature-
independent map. But, how can we mix together these maps to take
into account relevant information of each feature map? Different
visual dimensions with several dynamic ranges are competing with
each other.
R. Milanese [1] gave early the rationale of a fusion process. His ap-
proach intended to formalize the data fusion problems. He clearly
pointed out the most important issue of a fusion algorithm: compe-
tition that must exist between visual feature maps and within each
map. H. Nothdurft [2] shown that a stimulus that presents some
saliency in more than one visual dimension is generally more con-
spicuous than a stimulus having only some salience in one dimen-
sion. For example, the conjunction of several visual features (lumi-
nance contrast and orientation contrast for example) leads to a more
salient target. The different visual dimensions generally all inter-
act and contribute simultaneously to the representation of saliency.
However, H. Nothdurft [2] noticed the sum of the salience carried
by different dimensions is greater than the final observed salience.
L. Itti proposed in [3] several algorithms to mix together several
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saliency maps. Nevertheless, all the proposed algorithms only deal
with the intra map competitions. T. Jost [4] compares more specifi-
cally a one-cue gray-level model to a two-cues color model; the com-
petitions is inter-map, but only focusing on spatial saliency maps. [5,
6] have restricted their human vision tests to a still image database.
They validated only spatial cues of their saliency computation.
This paper proposes to assess the relevance of several fusion tech-
niques with two ground truth databases. This study rests on the bi-
ologically plausible model of bottom-up attention, proposed by Le
Meur et al. [7]. The first part of this paper describes the important
features of this bottom-up model. From this framework, different
techniques to mix together different maps are proposed and tested by
competition to two databases of still color pictures and videos. Re-
sults are expressed to know how the fusion process may influence the
attention-map relevance in case of spatial as well as spatio-temporal
saliency.

2. COMPUTATIONAL MODELISATION OF VISUAL
ATTENTION (VA)

Originally, Le Meur et al. have defined a computational salience
model bottom-up visual attention model based on a hierarchical ar-
chitecture, such as described in [7]. An input image is decomposed
in a number of feature channels (color, luminance, orientation) in a
parallel manner. A single saliency map is then formed by the com-
bination of the outputs of these channels.
The novelty introduced in [7] mainly concerns the extraction of the
different visual features. In the previous visual attention models, the
visual features (color, luminance, orientation) were extracted by ded-
icated mechanisms. For example, Itti’s model [3] computed 6 visual
features for the luminance channel, 12 for the color channel and 24
for the orientation channel. In term of dynamic range, these three
sets of maps are completely different. The consequence is that it is
required to normalize all the feature maps in the same dynamic range
before performing the fusion. To cope with this issue, Le Meur et al.
[7] propose to express all the data in term of visibility. Early vi-
sual features, luminance and color, are then first normalized to their
own visibility threshold, by using both Contrast Sensitivity Func-
tions (CSF) and visual masking.
Due to new considerations on the model, the original architecture has
been simplified, such as depicted in figure 1. A wavelet transform in-
stead of a Fourier transform is applied on luminance component due
to computational constraints. This hierarchical decomposition sim-
ulates the different populations of cortical cells. A center surround
filter for the Y component as well as the sum of absolute differences
for the U and V component removes redundant information between
the subbands. The fusion between the subbands is performed within
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the center surround filter, such as depicted in equation 1, 2.

ROnOff = β1×ROnOff (l+1)+β2×max(0, SC−βOnOff×SS)
(1)

ROffOn = β1×ROffOn(l+1)+β2×max(0, SS−βOffOn×SC)
(2)

where l represents the current level of wavelet decomposition. βx

are some gains determined by using CSF curves. SC and SS are the
summation of coefficients in the area of filters, that means for the
Center and for the Surround surface, respectively. Only the low
frequency subband is used per level and the total number of level L
is related to the original picture resolution.
Finally, the saliency map SMY is obtained by competing the two
previous responses: SMY = max(1.5 × ROffOn, ROnOff ). As
a consequence to this new implementation choice, the normalization
problem of saliency maps has to be solved again in addition to the
fusion issue.

3. FUSION STRATEGIES

The mentioned visual attention model creates three, purely spatial,
saliency maps related to the luminance and color components Y, U
and V. A first fusion step is performed for those three maps as de-
picted in figure 1. Afterwards, the fusion operators are applied be-
tween the spatial and temporal saliency maps. Before summarizing
the different operators of fusion, the notations used in the paper are
introduced.

Fig. 1. Flow chart of the fusion implementation regarding the in-
volved maps.

3.1. Notations

Different operators, more or less sophisticated, are proposed to
merge the feature-dependent attention-map into a final attention
map Out. The following notations are used to describe them:

• SMi: attention-map of the ith early visual feature,

• N : normalization operator. This operator uses the global
maximum of each map to obtain a dynamic range between
0 and 1,

• Nc: normalization operator driven by a priori knowledge. In-
stead of using the global maximum of each map, this operator
uses an empirical value. These empirical values are deduced
from adequate experiments. After, a quantization is done to
rescale the data on a specific range,

• WTA, short for Winner-Take-All. The basic WTA paradigm
selects the winning location based on its salience. The WTA

is used with a localized inhibitory spread. The WTA is an it-
erative approach repeating the following steps: first, find the
global maximum. Second, the spatial neighborhood of the
previous maximum is inhibited. Then, these two steps are
repeated until to reach the stop condition. In the proposed de-
sign, both number of maximum and ratio between two con-
secutive maximum are used to break the loop.

• NEAREST (SM): this function returns the maximum
value that is the nearest regarding the current position in the
map SM .

3.2. Operators and methods

3.2.1. NS: Normalized and Sum

The most simple method to solve the fusion problem is to normalize
all attention-maps to the same dynamic range (between 0 and 1) and
then to sum all maps into the final saliency map.

Out = N
(∑

i

N (SMi)

)
(3)

The relative importance between the different maps is lost, as they
are normalized to the same dynamic range. Moreover, irrelevant in-
formation, due to a noisy map, can be promoted leading to a wrong
result. Moreover, there is no spatial competition: not in the map
itself nor between the maps. The sole advantage refers to its sim-
plicity.

3.2.2. NM: Normalized and Maximum

Compared to NS method, the summation is replaced by the maxi-
mum operator.

Out = max
i
N (SMi) (4)

The drawbacks and advantages are the same than the previous
method.

3.2.3. CNS: Coherent Normalization and Sum

A normalization seems unavoidable in the process of saliency maps
fusion. For this approach, the maximum saliency value for each vi-
sual dimension is empirically determined. Particular pictures (pic-
tures with a high contrasted color, black picture with a white patch...)
are used.

Out =
∑
i

Nc (SMi) (5)

The most important advantage concerns the conservation of the
relative importance between maps. Obviously, if the empirical
maximum values are erroneous, the final result will be erroneous
too. This approach is not very biologically plausible because this
method tends to favor a unique location per map. For example, if
two saliency peaks are present in the map, the highest peak will be
promoted to the detriment of the second.

3.2.4. CNM: Coherent Normalization and Maximum

Comparatively to CNS method, the summation operator is replaced
by the maximum operator.

Out = max
i
Nc(SMi) (6)

The drawbacks and advantages are roughly the same as the previous
one.
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Fig. 2. A set of fusion results for all the proposed methods. Red rectangle is the manual annotated rectangle from gound truth.

3.2.5. CNSP: Coherent Normalization, Sum plus Product

The local inter-map redundancies and the local inter-map incoher-
ence are the heart of this new approach. A particular areas of a pic-
ture can generate some saliency in several visual dimensions (lumi-
nance, color), even if the feature maps are independently obtained.
To deal with the inter-map redundancies, the product operator is
used, while the summation product is used to consider the local inter-
map incoherence.

Out =
∑
i

Nc(SMi) +
∏
i

(1 +Nc(SMi)) (7)

The advantage is the competition between the different maps. All
the visual dimensions are used to promote a local part of the pic-
ture. An item that generates saliency in several dimensions will be
favor compared to another one. Although that this approach brings
something new, an intra-map competition is always lacking.

3.2.6. CNMC: Coherent Normalization, intra and inter Map Com-
petition

To solve the aforementioned drawbacks, the CNSP approach is up-
graded by using a WTA algorithm with localized inhibitory spread.
The local maxima are then detected and used to locally favor some
parts of the picture. The number of maximum peaks, their values
and the difference value between two consecutive maximum peaks
are required to keep only the most interesting areas.

Out =
∑
i

˜SM i +
∏
i

(1 + ˜SM i) (8)

where S̃i =
Nc(Si)

NEAREST (WTA(Nc(Si))

This approach is interesting because a sparse distribution of maxi-
mum is computed in order to favor and to promote certain locations
in the scene. This property is close to the biological behavior. Un-
fortunately, several thresholds are required to drive the algorithm.
The two most important difficulties are: first, a threshold α is used
to decide whether a local maximum is relevant or not. If this thresh-
old is too high, we can miss some regions of interest, while if this
threshold is too small, regions of non interest can be considered as
of interest. The value α is finally used to prevent the promoting of
an area having a weak saliency. Second, how many local maximum
β should be taken into account? The ratio between two consecutive
maximum is an important criterion. To test the relevance of this
ratio, a third threshold γ is used. In the preliminary design, α, β and
γ are respectively set to L−1

2
, 3 and 1.6. L is the maximum dynamic

obtained after the coherent normalization (typically, L = 8).

3.2.7. GNLNS: Global Non-Linear Normalization followed by Nor-
malization

This method implemented by L. Itti [3] consists in promoting the
maps having few saliency peaks and in removing the maps having
an uniform distribution and a lot of saliency peaks.

Out =
∑
i

[
(N (SMi)) (Mi −mi)

2]
(9)

with Mi: the maximum value of map i and mi: the average of all
the other maximum values of map i.
Due to the global normalization, this method is highly sensitive to
noise in the maps.

4. RESULTS

All the fusion operators have been evaluated in a first time for the
spatial maps fusion and in a second time for the spatio-temporal fu-
sion. The evaluation of performance is different depending on the
available database.

4.1. Spatial evaluation: MSRA data

Regarding the spatial fusion, the Microsoft MSRA1 database has
been used. 500 pictures have been manually annotated with a region-
of-interest area. The visual attention model provides a certain num-
ber of points of interest within a picture through the saliency map.
This percentage is computed by summation of all saliency values
per pixel within the rectangle-of-interest. This quantity is divided by
the global saliency within the entire picture. These percentages are
proposed in table 1.

mean st. dev. min. max.

NS 52.38 19.42 7.29 98.95
NM 50.28 18.78 8.34 98.36
CNS 52.52 19.07 8.64 98.26
CNM 51.18 19 9.06 97.61
CNSP 53.36 19.24 8.50 98.39
CNMC 71.05 25.07 0 100
GNLNS 52.79 19.29 7.49 98.62

Table 1. Percentage of visual significance (or computed saliency
points inside the rectangle-of-interest).

1
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient-object.htm
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Methods NS NM CNS CNM CNSP CNMC GNLNS

Metrics CC KL ROC CC KL ROC CC KL ROC CC KL ROC CC KL ROC CC KL ROC CC KL ROC

canoa 0.44 11.5 0.71 0.44 12.1 0.70 0.44 11.5 0.71 0.44 12 0.70 0.55 10.3 0.84 0.61 8.5 0.87 0.59 8.5 0.84
kayak 0.48 12.3 0.76 0.44 12.9 0.73 0.49 12.2 0.76 0.44 12.9 0.73 0.59 10.8 0.86 0.63 8.6 0.87 0.57 9.6 0.82

pat 0.59 8.8 0.83 0.55 9.7 0.82 0.59 8.9 0.83 0.54 9.9 0.81 0.61 8.2 0.87 0.63 6.6 0.88 0.55 8.5 0.83
patVit 0.65 7.6 0.85 0.61 9.3 0.83 0.65 7.8 0.85 0.57 10 0.81 0.61 8.6 0.83 0.6 8.5 0.83 0.52 10.4 0.77
stefan 0.53 9.9 0.8 0.48 11.1 0.79 0.52 9.8 0.8 0.5 10.6 0.8 0.53 9.7 0.81 0.54 9 0.82 0.49 10.1 0.8
table 0.54 9.3 0.8 0.52 9.9 0.79 0.54 9.3 0.8 0.52 9.9 0.79 0.55 9.0 0.8 0.57 8.4 0.8 0.53 9.9 0.8

titleist 0.62 8.5 0.85 0.6 9.4 0.84 0.62 8.8 0.85 0.57 10.1 0.83 0.6 9.0 0.84 0.61 8.1 0.85 0.55 10.2 0.81

mean 0.55 9.7 0.8 0.52 10.6 0.78 0.55 9.7 0.8 0.51 10.8 0.78 0.58 9.4 0.83 0.6 8.2 0.85 0.54 9.6 0.81
st. dev 0.07 1.5 0.04 0.06 1.3 0.04 0.06 1.4 0.04 0.04 1.1 0.04 0.03 0.8 0.02 0.03 0.7 0.02 0.02 0.7 0.02

Table 2. Results of spatio-temporal fusion for a set of sequences: three statistical metrics CC, KL and ROC.

One strategy outperforms the other one in terms of percentage.
The CNMC method reachs more than 70 % of predicted points
while the other methods stay around 50 %. One can notice that the
MSRA database induces a top-down behavior of users, although the
considered VA model is based on bottom-up concepts of attention.
Qualitative evaluation is also proposed in figure 2. As expected, the
CNMC minimizes the global quantity of saliency around the picture
due to the intra and inter-map competitions. The other methods tend
towards the enhancing of too many saliency peaks coming from sev-
eral components without inter-map correlation.

4.2. Spatio-temporal evaluation: eye-tracking data

The spatio-temporal fusion (proposed in figure 1) has been evalu-
ated by means of eye-tracking database. The fixations of unpaid
observers for seven sequences have been recorded by an Cambridge
Eye tracking apparatus. More details on the protocol are described
in [7].
Several statistical metrics have been used to quantitatively assess or
classify the different fusion methods. Results are summarized in the
table 2. CC stands for the linear correlation coefficient which has
been computed between the saliency map of the VA model and a
ground truth saliency map averaged for all observers. The Kullback-
Liebler divergence, noted KL, estimates the overall dissimilarity
between two probability density functions. These two metrics are
sensitive to saliency dynamic range and to the salience distribution.
ROC analysis is complementary to the two previous ones. The
ROC value of table 2 is the area under the ROC curve, also noted
AUC. An area of 1 means the VA model is fully conformed to the
ground truth. More details about these metrics may be found in [7].

One can notice the GNLNS performances. The mean results
are pretty similar to the simplest method NS, although this method
is more elaborated.

The three metrics point to the same conclusion. The CNMC
method is the most efficient one, because it is the closest one to the
users experiments. Indeed, the mean values over all sequences per
metric is in favor of this method. This conclusion is in line with
the one for spatial fusion and expected due to the considerations
mentioned in section 3.2.6.
Moreover, one can notice the low values of standard deviation for
the three metrics of this method as well. The simplest methods (NS,
NM , CNS, CNM ) are less stable when focusing on their standard
deviation values.

5. CONCLUSION

This paper proposed a number of fusion schemes for saliency maps.
Previous works have compared their fusion scheme in the frame-

work of spatial competition, but never considered the validation of
spatio-temporal maps.
The most effective operator of fusion has been identified coher-
ently as being the same for still images and video sequences. A
database with 500 pictures annotated by users with areas-of-interest
has been confronted to spatial operators of fusion. In a second time,
the spatio-temporal fusion has been tested with a ground truth of
saliency maps recorded from several users by means of an eye-
tracking. Both experiments lead to the same classification of fusion
methods.
The novelty of this paper rests on the assessment of temporal fusion
of saliency maps. Previous papers did not evaluate if the temporal
saliency may be merged in the same way as the spatial saliency com-
ponents. To go one step further, the computation of the similarity
degree between a ground truth and a prediction for video sequences
shoud be based on a given temporal horizon rather than on a unique
instant.
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