Checking Presence Reachability Properties on Parameterized Shared-Memory Systems

Nicolas Waldburger

PhD supervisors: Nathalie Bertrand, Nicolas Markey, Ocan Sankur SynCoP23, 23/04/2023

Parameterized verification

- *Arbitrary* number of processes
- Processes are *identical* agents
- No identifiers: processes are anonymous
- Modelled by a single, common finite automaton

Shared-memory systems

Two models in this talk:

- Simple model: shared-memory systems with finite memory
- More complex model: round-based shared-memory systems

A model for shared-memory systems¹

Finite number of shared registers, each register has a value from finite set of symbols Σ

Registers are *initialized* to value d_0

Semantics

A configuration:

How many process are on each state

Content of the registers

Semantics

$$\boxed{ \left\langle q \right\rangle \times 2 \quad \left\langle p \right\rangle \times 1 \quad \text{a} \quad \text{b} \quad d_0 }$$

$$(q, write_3(a), r)$$

$$(p, read_1(a), r)$$

$$\boxed{q} \times 1 \quad \boxed{r} \times 2 \quad a \quad b \quad a$$

Semantics

Can be arbitrarily large

Registers are initialized to d_0

Initial configurations:

with $n \ge 0$ and q_0 the initial state

COVER:
$$\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \gamma(q_f) > 0$$
?

TARGET:
$$\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$$

All processes "synchronize" on q_f

```
\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \rightarrow^* \gamma, \gamma(q_f) > 0?
     COVER:
                                    \exists n, \ \exists \gamma_0, \ \exists \rho: \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?
   TARGET:
                                    \exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \gamma \vDash \phi ?
           PRP<sup>2</sup>:
                                         with \phi \in \mathcal{B}(\{\#q = 0, \#q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\})
          Presence
Reachability Problem
                                                             #q = number of
                                                              processes on q
```

```
\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \rightarrow^* \gamma, \ \gamma(q_f) > 0 ?
     COVER:
                                     \exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?
   TARGET:
                                     \exists n, \exists \gamma_0, \exists \rho : \gamma_0 \rightarrow^* \gamma, \quad \gamma \models \phi ?
           PRP<sup>2</sup>:
                                          with \phi \in \mathcal{B}(\{\#_q = 0, \#_q > 0\}, \{\text{reg}_i = d, \text{reg}_i \neq d\})
          Presence
                                             Examples: \phi = \text{``}\#q_f > 0'' \text{ (COVER)},
Reachability Problem
                                             \phi = `` \wedge_{q \neq q_f} \# q = 0'' \text{ (TARGET)}
                                             \phi = (\#q_1 > 0) \lor ([\#q_2 = 0] \land [\mathbf{reg}_1 = d_0])''
```


b

Abstraction: remember whether there is at least one process on a given state.

Sound and Complete for PRP because of monotonicity property

NP-completeness of COVER

COVER: $\exists n, \exists \gamma_0, \exists \rho: \gamma_0 \to^* \gamma, \gamma(q_f) > 0$?

NP-completeness of COVER

COVER: $\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \gamma(q_f) > 0$?

Reduction from 3-SAT:

$$\begin{array}{c|c} x & d_0 \\ \neg x & d_0 \end{array}$$

Check
$$\neg x$$
: $read_{\neg x}(\top)$ $read_{x}(d_{0})$

NP-completeness of COVER

COVER:
$$\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \gamma(q_f) > 0$$
?

Reduction from 3-SAT:

Directly relies on initialization of registers!

COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).

TARGET when registers are not initialized

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT:

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols⁴.

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall q \neq q_f, \ \gamma(q) = 0 ?$

TARGET is PTIME when only one register.

For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols⁴.

Compute *coverable states* (the state can be covered from initial configurations) and *backwards coverable states* (q_f may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).

DNF-PRP:
$$\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \gamma \vDash \phi,$$

$$\phi \text{ in DNF: } \phi = \bigvee_i \ (t_{i,1} \land t_{i,2} \land \cdots \land t_{i,m_i}),$$

$$t_{i,j} \in \{\#q = 0, \#q > 0\} \cup \{\mathbf{reg}_i = d, \mathbf{reg}_i \neq d\}$$

Summary of complexity results⁵

	COVER	TARGET	DNF-PRP	PRP
General case	NP-complete	NP-complete	NP-complete	NP-complete
Not initialized	PTIME-complete	NP-complete	NP-complete	NP-complete
One register	PTIME-complete	PTIME-complete	PTIME-complete	NP-complete

Round-based shared-memory systems

Round-based shared-memory systems

Model inspired by round-based algorithms from the literature⁶⁷⁸.

Process progress in asynchronous rounds, each round having its own finite set of registers.

6. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002 7. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007

The round-based model

- Read transitions now mention from which round they are reading, relatively to the current round of the process
- A new type of transitions: *round increments*, which send the process to the next round

Example with one register per round:

Semantics

 $(p, read^{-1}(b), r), 3$

here with one register per round

Semantics

(q, write(b), r), 1

here with one register per round

Semantics

Initial configurations:

Abstraction

Initial configurations:

 q_f cannot be covered!

Reachability problems in round-based setting

Round-based COVER: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \exists k \ \gamma(q_f, k) > 0 \ ?$

There exists a round k such that some process is at round k and on state q_f

Reachability problems in round-based setting

Round-based COVER: $\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \exists k \ \gamma(q_f, k) > 0$?

Round-based TARGET: $\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \forall k, \forall q \neq q_f, \gamma(q, k) = 0$?

Every process is on state q_f regardless of its round

Reachability problems in round-based setting

Round-based COVER: $\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \exists k \ \gamma(q_f, k) > 0$?

Round-based TARGET: $\exists n, \ \exists \gamma_0, \ \exists \rho \colon \gamma_0 \to^* \gamma, \ \forall k, \forall q \neq q_f, \ \gamma(q,k) = 0$?

Round-based PRP: $\exists n, \exists \gamma_0, \exists \rho : \gamma_0 \to^* \gamma, \quad \gamma \vDash \psi$?

with ψ a first-order formula on rounds with no nested quantifiers

Examples:
$$\psi = \exists k \ (\#(q_1, k+1) > 0 \land \mathbf{reg}_i[k] = d) \lor \forall k \ \#(q_0, k) = 0''$$

At some round, there is a process on state q_1 while register i of previous round has value d

no process is on q_0

Complexity results

*Theorem*⁹: Round-based COVER is PSPACE-hard.

Complexity results

*Theorem*⁹: Round-based COVER is PSPACE-hard.

*Theorem*⁹¹⁰: Round-based PRP is PSPACE-complete.

Complexity results

*Theorem*⁹: Round-based COVER is PSPACE-hard.

*Theorem*⁹¹⁰: Round-based PRP is PSPACE-complete.

Challenge: the number of rounds relevant at the same time may need to be exponential.

Witness execution: $\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi$

Witness execution:
$$\sigma_0 \xrightarrow{\theta_0} \sigma_1 \xrightarrow{\theta_1} \sigma_2 \xrightarrow{\theta_2} \sigma_3 \xrightarrow{\theta_3} \sigma_4 \xrightarrow{\theta_4} \sigma_5 \xrightarrow{\theta_5} \sigma_6 \xrightarrow{\theta_6} \sigma_7 \models \psi$$

Actions: $\theta_0 \mid \theta_1 \mid \theta_2 \mid \theta_3 \mid \theta_4 \mid \theta_5 \mid \theta_6$

Rounds:

sliding window on v + 1rounds where v is the highest i such that some $read^{-i}(x)$ appears in the protocol

v is assumed to be given in unary (here v = 1)

As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ .

As the execution is guessed, we progressively guess why the configuration reached will satisfy ψ .

From this algorithm, we obtain exponential upper bounds on the number of processes and rounds needed.

Conclusion

Summary

- Two models in this talk: *roundless* register protocols and *round-based* register protocols.
- Properties studied are *reachability properties* which do not "count" processes. Two classical such problems are COVER and TARGET; PRP is a general class which encompasses these two problems.
- In the first model, despite its simplicity, PRP is NP-complete, but some restrictions make it PTIME.
- In the second model, PRP is PSPACE-complete, and similar restrictions do not decreases the complexity.

Future work

- Introducting stochastic schedulers and study almost-sure reachability (work in progress, some weird behaviors occur that make it very different from the roundless case)
- Weak memory

A challenge: exponential lower bounds

A challenge: exponential lower bounds

Exponential lower bounds on the number *active* rounds:

A motivating example

Binary consensus problem:

Make all processes agree on a common value, each process starting an initial preference p. *Validity*: If a process decided value p, some process started with value p *Agreement*: Two processes that decide decide of the same value *Termination*: All processes eventually decide of a value

Aspnes' consensus algorithm³:

```
\begin{array}{l} \text{int } k := 0, \text{ bool } p \in \{0,1\}, \ (\operatorname{rg}_b[r])_{b \in \{0,1\}, r \in \mathbb{N}} \text{ all initialized to no;} \\ \textbf{while true do} \\ \\ \hline \begin{array}{l} \text{read from } \operatorname{rg}_0[k] \text{ and } \operatorname{rg}_1[k] \neq \\ \textbf{if } \operatorname{rg}_0[k] = \text{yes and } \operatorname{rg}_1[k] = \text{no } \textbf{then } p := 0; \\ \textbf{else if } \operatorname{rg}_0[k] = \text{no and } \operatorname{rg}_1[k] = \text{yes } \textbf{then } p := 1; \\ \text{write yes to } \operatorname{rg}_p[k] \neq \\ \textbf{if } k > 0 \textbf{ then} \\ \\ \hline \begin{array}{l} \text{read from } \operatorname{rg}_{1-p}[k-1] \neq \\ \\ \textbf{if } \operatorname{rg}_{1-p}[k-1] = \text{no } \textbf{then } \text{return } p; \\ \\ k := k+1; \end{array} \end{array} \quad \begin{array}{l} \text{read initialized to no;} \\ \text{read from } \operatorname{rg}_1[k] \neq \\ \\ \text{of rounds } k \text{ and } k-1 \end{array}
```


