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Parameterized verification

= Arbitrary number of processes
» Processes are identical agents
= No identifiers: processes are anonymous

= Modelled by a single, common finite automaton

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.:
Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 2016



Shared-memory systems
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Two models in this talk: \1
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= Simple model: shared-memory systems with finite memory

= More complex model: round-based shared-memory systems <>>
Shared memory




A model for shared-memory systems*

Finite number of shared registers,
each register has a value from
finite set of symbols Z

1 a
2 b No atomic read/write
combinations
3 dy
/I\

Registers are initialized
to value d,

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.:
Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 2016



Semantics

A configuration:

>x2 $>xila b d
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are on each state registers




Semantics

>x2 $>xila b d

(CI; Writeg (a), 1")

><1 ><1 ><1

(D=1 Gy

(p,ready(a),r)

&




Semantics

>x2 $>xila b d
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(q, write;(a),r)
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(p, read; (a), )

Initial configurations:

a b a
Registers are
Can be arbitrarily large initialized to d,
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withn = 0 and g, the initial state




A small example

Asingle
register
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write(c)




A small example

Two
processes

Initial write(c)

value

v
d, read(d,)
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A small example

write(c)

qr is covered v




Reachability problems

An initial A least one process
configuration on qy: “error state”
COVER: dn, Jy,, Ap: Yo =" 7, y(qf) >07?

/ Execution

Parameterized:

arbitrarily many
processes




Reachability problems

COVER: adn, Jy,, Ap: Yo =" 7, y(qf) >07?

TARGET: An, Ay,, Ap: Vo 2"V, Yq*qs ¥(@) =07

T

All processes
“synchronize” on g




Reachability problems

COVER: adn, Jy,, Ap: Yo =" 7, y(qf) >07?
TARGET: An, Ay,, Ap: Vo 2"V, Yq*qs ¥(@) =07
PRP2; an, Iyp, AIp: Vo 2"V, YEP?
T with ¢ € B({#qg = 0,#q > 0}, {reg; = d,reg; + d})
Presence

Reachability Problem

#q = number of
processes on q

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:
On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 2012



Reachability problems

COVER: adn, Jy,, Ap: Yo =" 7, y(qf) >07?
TARGET: An, Ay,, Ap: Vo 2"V, Yq*qs ¥(@) =07
PRP2; an, Iyp, AIp: Vo 2"V, YEP?
T with ¢ € B({#qg = 0,#q > 0}, {reg; = d,reg; + d})
Presence

Reachability Problem ~ Examples: ¢ = “#qy > 0" (COVER),
¢ = Aguq, #a = 0" (TARGET)

$ ="(#q, > 0) VvV ([#g, = 0] A [reg,; = d,])"”

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:
On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 2012



Monotonicity

A process may “copy” the behavior of another process on the same state.

o write(b)
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Monotonicity

A process may “copy” the behavior of another process on the same state.
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Monotonicity

A process may “copy” the behavior of another process on the same state.

o read(a) O
(K J

A 4




Monotonicity

“At least one process here”

e \
‘ read(a) :‘ )

Abstraction: remember whether there is at least one process on a given state.

Sound and Complete for PRP because of monotonicity property




NP-completeness of COVER

COVER: dn, Jy,, Ap: Yo =" 7, y(qf) >07?




NP-completeness of COVER

COVER: dn, Jy,, Ap: Yo =" 7, y(qf) >07?

Reduction from 3-SAT: read. (T) /" read_,(d,)
Check x: ’u >
X dy

X dO
Check —x- @ read_,(T) :O read.. (d,) :O




NP-completeness of COVER

COVER: dn, Jy,, Ap: Yo =" 7, y(qf) >07?

Reduction from 3-SAT: read. (T) /" read_,(d,)
Check x: ’u >
X dy

X dO
Check —x- @ readﬁx(T):O read.. (d,) :O

Directly relies on initialization of registers!

COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).




TARGET when registers are not initialized

TARGET: an, Ayy, Ap: Yo 2"V, Yq £ qr y(@) =07

TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT:

Vx
write, (true)

)

Y

write, (false)
Vx

\4

Checkclause1 |—> -+« —>| Check clause m —>




TARGET with a single register

TARGET: an, Ayy, Ap: Yo 2"V, Yq £ qr y(@) =07

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols*.

4. Fournier, P.:
Parameterized verification of networks of many identical processes. PhD thesis, 2015
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TARGET with a single register

TARGET: an, Ayy, Ap: Yo 2"V, Yq £ qr y(@) =07

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols*.

Compute coverable states (the state can be covered from initial configurations)
and backwards coverable states (g, may be reached from some configuration containing the state).

O = coverable

‘ = backwards coverable

i

4. Fournier, P.:
Parameterized verification of networks of many identical processes. PhD thesis, 2015




TARGET with a single register

TARGET: an, Ayy, Ap: Yo 2"V, Yq £ qr y(@) =07

TARGET is PTIME when only one register.
For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols®.

Compute coverable states (the state can be covered from initial configurations)
and backwards coverable states (g may be reached from some configuration containing the state).

O = coverable

‘ = backwards coverable

Iteratively remove all states that are not ‘

‘i

4. Fournier, P.:
Parameterized verification of networks of many identical processes. PhD thesis, 2015
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TARGET with a single register

TARGET: an, Ayy, Ap: Yo 2"V, Yq £ qr y(@) =07

TARGET is PTIME when only one register.
For simplicity: the register is not initialized. Algorithm inspired from broadcast protocols®.

Compute coverable states (the state can be covered from initial configurations)
and backwards coverable states (g may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).

DNF-PRP: an, Jyy, Ip: Vo2V, Y E
¢ INDNF: ¢ =V; (t;1 Atiz A Atim,),
tij E{#q =0,#q > 0} U {reg; = d,reg; + d}

4. Fournier, P.:
Parameterized verification of networks of many identical processes. PhD thesis, 2015



Summary of complexity results?

COVER TARGET DNF-PRP PRP
General case NP-complete NP-complete NP-complete NP-complete
Not initialized PTIME-complete NP-complete NP-complete NP-complete
One register PTIME-complete | PTIME-complete | PTIME-complete NP-complete

5. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted




Round-based shared-memory systems



Round-based shared-memory systems

Model inspired by round-based algorithms from the literature®7s.

Process progress in asynchronous rounds, each round having its own finite set of registers.

3 ><3 a dy dy d,
2 OO e e e

reg[k| reg,|lk| regs|k] regs|k]

6. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

7. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007
8. Raynal, M., Stainer, J.:

A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets. CISIS, 2012



The round-based model

= Read transitions now mention from which round they are reading, relatively to the current round of the process
= A new type of transitions: round increments, which send the process to the next round

Example with one register per round:

Write to register of the current

round of the process

v
write(b)

Read from register of
current round of the process

/ 0\

reado(d0)=/_\ read®(b)_
\_/

Aread‘1 (a) /-\read_l (dO)mA write(a)

N /

Read from register one round Increment
below the round of the round
process



o P N W

here with one
register per round

Semantics

»

(p,read™1(b),7),3

o B N W

&

X 1

X 3
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here with one
register per round

Semantics

»

(q,write(b),r),1

o B N W
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Initial configurations:

Semantics

»

(q,write(b),r),1

o B N W

02
{opxz Gyx




Abstraction

2 X
(q,write(b),r),1 2 b
1 9{ % b
0 do
2 do
do
do




An example of round-based register protocol

write(b)

Increment
round

‘ =round 0
Q =round 1
O = round 2



An example of round-based register protocol

write(b)

Increment

round
2 do
1 d,
do

‘ =round 0
Q =round 1
O = round 2
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An example of round-based register protocol

write(b)

write(a)

Increment

round ‘ =round 0

O =round 1
2 d,
O = round 2

&
&
&




An example of round-based register protocol

write(b)

write(a)

Increment

round ‘ .

; . O =romi1
XOXOROXOIE Q) =rome
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write(b)

Increment
round

‘ =round 0
Q =round 1
O = round 2



An example of round-based register protocol

write(b)

Increment

round | ‘ o
‘ do Q fround 1
XOXOROXIN Q) =rome
:




An example of round-based register protocol

write(b)

Increment

round ‘ o

; . Q
10@§©b Q) =rome




An example of round-based register protocol

. Incfement =~ _ )
R round e
To write b to reg[k], one To cover g at round k, one must
must write to reg[k] while have written b to reg[k — 1]
reg[k — 1] still has value d, while reg[k] still has value d,

qs cannot be covered !




Reachability problems in round-based setting

Round-based COVER: dn, Jy,, p: Yo ="y, Ik y(qf, k) >07?

!

There exists a round k
such that some
process is at round k
and on state g

&



Reachability problems in round-based setting

Round-based COVER: An, Ay, Ap: Yo ="y, Ik y(qf, k) >07?

Round-based TARGET: An, Ay,, Ap: v 2"V, Yk, Vq #qf v(q, k) =07

I

Every process is on
state g regardless of its

round




Reachability problems in round-based setting

Round-based COVER: An, Ay, Ap: Yo ="y, Ik y(qf, k) > 07
Round-based TARGET: An, Ay,, Ap: ¥vo 2"V, Yk, Vq #qs v(q, k) =07
Round-based PRP: an, Iye, Ap: Vo2 Y, YEY?

with s a first-order formula on rounds with no nested quantifiers

Examples: ¥ = "3k (#(q;, k+1) > 0Areg;[k] =d) vV Vk #(qy, k) =0"

At some round, there is a process on NO Process is on q,
state g; while register i of previous
round has value d




Complexity results

Theorem?®: Round-based COVER is PSPACE-hard.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:
Parameterized safety verification of round-based shared-memory systems. ICALP, 2022
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Theorem¥%: Round-based PRP is PSPACE-complete.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:
Parameterized safety verification of round-based shared-memory systems. ICALP, 2022
10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted




Complexity results

Theorem?®: Round-based COVER is PSPACE-hard.

Theorem¥%: Round-based PRP is PSPACE-complete.

Challenge: the number of rounds relevant at the same time may need to be exponential.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:
Parameterized safety verification of round-based shared-memory systems. ICALP, 2022
10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted




A non-deterministic polynomial-space algorithm

: P 6 0 6 6 6 0 )
Witness execution: og—> 01— 02— 03 —304 —305 —306 —>07 E P

&



A non-deterministic polynomial-space algorithm

. . . e 0 a 2] o 0 0
Witness execution: o¢—> 01— 02 —503 —304 —305 —306 —>07 E P

Actions: 6o 01 0 03 04 Os Os

Rounds: 1 4 3 2 0 1 4

&



A non-deterministic polynomial-space algorithm

. . . e 0 a 2] o 0 0
Witness execution: o¢—> 01— 02 —503 —304 —305 —306 —>07 E P

Actions: 6o 01 0 03 04 Os Os

Rounds: 1 4 3 2 0 1 4

roundsA

Oe

Os

steps




A non-deterministic polynomial-space algorithm

rounds
A

4 01 O

1 0o Os

0 04

I steps




A non-deterministic polynomial-space algorithm

rounds  ______
A 1 \
1

4 01 i E Os

. number of relevant
5 gy |l rounds may be large...

0 i]\iﬁh

. steps
storable in
polynomial space?




A non-deterministic polynomial-space algorithm

rounds

4 01 Oe

3 6>

2 05

e R R R . sliding windowon v + 1

1 1] 6y s ‘: rounds where v is the highest
i such that some read~(x)
appears in the protocol

0 04 |

T > v is assumed to be given in

storable in polynomial steps unary (here v = 1)
space using abstract
representation




A non-deterministic polynomial-space algorithm

rounds
4 01 Y
3 0>
O = . insert actions
. 6, — taking place at
. ' round 2
1 0o Os
-------------------------------------------- forget about
0 0, round 0

steps




A non-deterministic polynomial-space algorithm

rounds
A

4 01 O

__________________________________________________

__________________________________________________

0 04

steps




A non-deterministic polynomial-space algorithm

rounds
4 91 96
As the execution is
guessed, we 3 0
progressively guess | T /"
why the configuration 2 03
reached will satisfy 1.
1 0o Os
0 04

steps




A non-deterministic polynomial-space algorithm

rounds
4 01 Os i
As the execution is | . i From this algorithm, we
guessed, we 3 2 ] obtain exponential
progressively guess | T T —— T T upper bounds on the
why the configuration 2 03 number of processes
reached will satisfy 1. and rounds needed.
1 0o Os
0 04

steps




Conclusion

Summary

« Two models in this talk: roundless register protocols and round-based register protocols.

« Properties studied are reachability properties which do not “count’ processes. Two classical such problems
are COVER and TARGET; PRP is a general class which encompasses these two problems.

 In the first model, despite its simplicity, PRP is NP-complete, but some restrictions make it PTIME.

 In the second model, PRP is PSPACE-complete, and similar restrictions do not decreases the complexity.

Future work

 Introducting stochastic schedulers and study almost-sure reachability (work in progress, some weird
behaviors occur that make it very different from the roundless case)

« \Weak memory







A challenge: exponential lower bounds

: read(move
Exponential lower bounds on the number of rounds: Writé (Wait;))

Inc

read(move)
write(movez)
Inc

read(wait;) read(wait;)
write(wait;; 1) read(move:) rite(wait; )
write (Waiti_|_1 )

Inc Inc Inc
Inc
Grick read(move; )
t < )
N write (moveH_l)

Inc

T

read(wait,, )
Inc




A challenge: exponential lower bounds

Exponential lower bounds on the number active rounds:

Binary counter




A motivating example

Binary consensus problem:
Make all processes agree on a common value, each process starting an initial preference p.

Validity: If a process decided value p, some process started with value p
Agreement: Two processes that decide decide of the same value
Termination: All processes eventually decide of a value

Aspnes’ consensus algorithm?:

int k := 0, bool p € {0,1}, (rg,[r])seo,1},ren all initialized to no;
while true do

read from rg,[k] and rg; [k]
if rgy[k] = yes and rg; [K] :M\
els_e if rgo[k] = Zo .and rg;[k] = yes then p~=I; read from registers
write yes to rg, [k] < of rounds k and k —1
if kK > 0 then _ _

read from rglfp[k—l] , write to registers

if rg; ,[k—1] = no then return p; of round k
k = k+1;




Example of execution of the algorithm

A
]
4 no no
§ 3 E no no
S |
2 i no no
1 ! no no
]
]

0 ! no no
]

H A B C rego[k] reg, k|



Example of execution of the algorithm

A
|

rounds

]
2 | writes no no
] -




Example of execution of the algorithm

A
|

]
4 i no no

3 i no no
|

)
©
-
>
o
=

writes

no

no

yes

reg, k]



Example of execution of the algorithm

rounds

A
|

no no
no no
no no
no no
yes yes

reg, k]



Example of execution of the algorithm

A
]
4 no no
§ 3 i no no
S |
o |
2 i no no
1 i @ no no
]
]

0 i yes yes
]

u A B C rego[k] reg,[k]



Example of execution of the algorithm

rounds

— ——
—

no no
no no
~ o no
\
v
no no
yes yes




Example of execution of the algorithm




Example of execution of the algorithm

A
]
]
]
]
4 i no no
]
ﬁ 3 ! reads no no
> ' e -
9 | /// \\\
2 | e N Nno no
0 / \
! / \
: v
L no no
i
o ! yes yes
]
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Example of execution of the algorithm

A
]
]
]
]
4 i no no
(2] ] .
S 3 | writes no no
= v DS
e | //// \\\\
2 | e ~.ho no
: / \
LA v
i
o ! yes yes
]

reg, k]
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Example of execution of the algorithm

A
|
4
(72)
I 3
-
o
2

no
no
no
yes

yes

rego k]

no
no
no
yes

yes

reg, k]



Example of execution of the algorithm

A
]
]
]
4 reads no no
wn ' /////—_——N\\\\\
g 3 i 7 \(10 no
S : ’ y
2 i no no
]
]
1 i yes yes
]
]
0 ! yes yes
]

reg, k]




Example of execution of the algorithm

A
]
]
]
4 writes NO no
) /////” \\\\\\
© 3 - no ~. ho
S 4 \
o Y
2 no yes
yes
yes

reg, k]




Example of execution of the algorithm
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Example of execution of the algorithm

A
|
)
reads
4 7 o no
| / \
! v
g 3 E no no
S :
2 i no yes
|
|
1 i yes yes
|
|
0 ! yes yes
|

reg, k]




Example of execution of the algorithm

A
|
)
reads
4 7 o no
| / \
! v
g 3 E no no
S :
2 i no yes
|
|
1 i yes yes
|
|
0 ! yes yes
|

reg, k]




Example of execution of the algorithm

—_—— T —
—~ ~
~

yes

rounds
w
O
-
o
-

2 i no yes

1 Jes Jes
0 yes yes
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Example of execution of the algorithm

A
!
!
!
! reads
e
4 - ~~._ ho no
! ~
n ) N
T 3 | ho yes
> ! \
= : y
2 i no yes
yes
yes

reg, k]




Example of execution of the algorithm

A

]

]

]

]
4 i no no

]

]
K v 0 yes

S |

o :
2 i no yes
yes yes
yes yes

rego k] reg, k]




