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…

▪ Arbitrary number of processes

▪ Processes are identical agents

▪ No identifiers: processes are anonymous

▪ Modelled by a single, common finite automaton

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.: 

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 20162
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…
Shared memory

Two models in this talk:

▪ Simple model: shared-memory systems with finite memory

▪ More complex model: round-based shared-memory systems
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a

b

𝑑0

𝑟𝑒𝑎𝑑1(a)

No atomic read/write 

combinations

Registers are initialized

to value 𝑑0

1

2

3

Finite number of shared registers, 

each register has a value from 

finite set of symbols Σ

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.: 

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 20164
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𝑞 × 2 𝑝 × 1 a b

A configuration:

How many process 

are on each state

Content of the 

registers

𝑑0
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𝑞 × 1 𝑝 × 1 a b a
(𝑞, 𝑤𝑟𝑖𝑡𝑒3 a , 𝑟)

𝑟 × 1

(𝑝, 𝑟𝑒𝑎𝑑1 a , 𝑟)
𝑞 × 1 𝑟 × 2 a b a

𝑞 × 2 𝑝 × 1 a b 𝑑0
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Initial configurations:

with 𝑛 ≥ 1 and  𝑞0 the initial state

𝑞0 × 𝑛 𝑑0𝑑0 𝑑0

𝑞 × 1 𝑝 × 1 a b a
(𝑞, 𝑤𝑟𝑖𝑡𝑒3 a , 𝑟)

𝑟 × 1

(𝑝, 𝑟𝑒𝑎𝑑1 a , 𝑟)
𝑞 × 1 𝑟 × 2 a b a

𝑞 × 2 𝑝 × 1 a b 𝑑0

Registers are 

initialized to 𝑑0Can be arbitrarily large
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

A single 

register

𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0

Two 

processes

Initial 

value

𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

c 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c) 𝑞𝑓 is covered  ✓
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Parameterized: 

arbitrarily many 

processes

An initial 

configuration

Execution

A least one process 

on 𝑞𝑓: “error state”

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?COVER:
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∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

All processes 

“synchronize” on 𝑞𝑓

COVER:

TARGET:
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COVER:

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

PRP2: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ? 

Presence 

Reachability Problem

#𝑞 = number of 

processes on 𝑞

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:  

On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 2012

with 𝜙 ∈ ℬ({#𝑞 = 0, #𝑞 > 0}, {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑})
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COVER:

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ?  

Presence 

Reachability Problem

with 𝜙 ∈ ℬ({#𝑞 = 0, #𝑞 > 0}, {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑})

Examples: 𝜙 = ``#𝑞𝑓 > 0′′ (COVER), 

𝜙 = `` 𝑞≠𝑞𝑓ٿ #𝑞 = 0′′ (TARGET)

𝜙 = `` #𝑞1 > 0 ∨ ( #𝑞2 = 0 ∧ 𝐫𝐞𝐠1 = 𝑑0 )′′

PRP2:

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:  

On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 201218
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A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
a
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A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b
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A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b
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A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a
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A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a
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A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a
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𝑟𝑒𝑎𝑑 a
a

Abstraction: remember whether there is at least one process on a given state.

Sound and Complete for PRP because of monotonicity property

“At least one process here”
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𝑟𝑒𝑎𝑑2 𝑑0

1

2
𝑟𝑒𝑎𝑑1 𝑑0

𝑑0

𝑑0

A

B

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?
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𝑟𝑒𝑎𝑑¬𝑥 𝑑0

𝒙

¬𝒙

𝑑0

𝑑0

Reduction from 3-SAT:

𝑟𝑒𝑎𝑑𝑥 𝑑0
Check ¬𝑥:

Check 𝑥:

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

𝑟𝑒𝑎𝑑𝑥 ⊤

𝑟𝑒𝑎𝑑¬𝑥(⊤)
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Directly relies on initialization of registers!

COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

𝑟𝑒𝑎𝑑¬𝑥 𝑑0

𝒙

¬𝒙

𝑑0

𝑑0

Reduction from 3-SAT:

𝑟𝑒𝑎𝑑𝑥 𝑑0
Check ¬𝑥:

Check 𝑥:
𝑟𝑒𝑎𝑑𝑥 ⊤

𝑟𝑒𝑎𝑑¬𝑥(⊤)
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TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT: 

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑤𝑟𝑖𝑡𝑒𝑥 𝑓𝑎𝑙𝑠𝑒
∀𝑥

∀𝑥
𝑤𝑟𝑖𝑡𝑒𝑥 𝑡𝑟𝑢𝑒

… 𝑞𝑓Check clause 1 Check clause 𝑚
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable 

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable 

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not 

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 201533
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable 

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not 

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 201534
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TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable 

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not 

✓

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 201535



Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized. 

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations) 

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF). 

DNF-PRP: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙,  

𝜙 in DNF: 𝜙 = 𝑖ڀ 𝑡𝑖,1 ∧ 𝑡𝑖,2 ∧ ⋯∧ 𝑡𝑖,𝑚𝑖
,

𝑡𝑖,𝑗 ∈ #𝑞 = 0, #𝑞 > 0 ∪ {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑}

4. Fournier, P.: 

Parameterized verification of networks of many identical processes. PhD thesis, 201536
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COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete

Not initialized PTIME-complete NP-complete NP-complete NP-complete

One register PTIME-complete PTIME-complete PTIME-complete NP-complete

5. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, MFCS2337



38



Nicolas Waldburger

Binary consensus problem: 

Make all processes agree on a common value, each process starting an initial preference 𝑝.

Validity: If a process decided value 𝑝, some process started with value 𝑝
Agreement: Two processes that decide decide of the same value

Termination: All processes eventually decide of a value

Aspnes’ consensus algorithm:
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ro
u

n
d

s

0 1

…

4

3

2

1

0

… …

no no

no no

no no

no no

no no

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]

1

A B C
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ro
u

n
d

s
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1
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no no

no no

no no

no no

no yes1

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

writes

0
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s

1

…

4

3

2

1

0

… …

no no

no no

no no

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

writes

0
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

0
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

reads

0

1
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

0

reads

1
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

writes

0

1
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

reads

0

1
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ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

0

✓
A process getting 

to this round will 

convert to 

preference 1

1

60



Nicolas Waldburger

Model inspired by round-based algorithms from the literature678.

Process progress in asynchronous rounds, each round having its own finite set of registers.

ro
u

n
d

s

𝑝

𝑞

𝑞

…

3

2

1

0

… … … …

a 𝑑0 𝑑0 𝑑0

b c a b

a a c b

a a b 𝑑0

𝐫𝐞𝐠1[𝑘] 𝐫𝐞𝐠2[𝑘] 𝐫𝐞𝐠3[𝑘] 𝐫𝐞𝐠4[𝑘]

𝑝

× 3

Initial value

6. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

7. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007

8. Raynal, M., Stainer, J.: 

A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets. CISIS, 2012 61
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▪ Read transitions now mention from which round they are reading, relatively to the current round of the process

▪ A new type of transitions: round increments, which send the process to the next round

Example with one register per round:

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)
Read from register of 

current round of the process

Write to register of the current 

round of the process

Read from register one round 

below the round of the 

process

𝑟𝑒𝑎𝑑−1(a)
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𝑝, 𝑟𝑒𝑎𝑑−1 b , 𝑟 , 3

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑟 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

here with one 

register per round

𝑞 × 3
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𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

here with one 

register per round
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Initial configurations:

𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0𝑞0 × 𝑛
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Initial configurations:

𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0…𝑞0 × 𝑛
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𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0𝑞0

𝑟𝑒𝑎𝑑−1(a)
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⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0

𝑞0

𝑟𝑒𝑎𝑑−1(a)
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𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

⋮ ⋮

2 𝑑0

1 a

0 𝑑0

𝑞0

𝑞0

𝑟𝑒𝑎𝑑−1(a)
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⋮ ⋮

2 𝑑0

1 a

0 𝑑0

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0

𝑟𝑒𝑎𝑑−1(a)
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⋮ ⋮

2 𝑑0

1 a

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A
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⋮ ⋮

2 𝑑0

1 a

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C
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⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C
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⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0
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⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0 D
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⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0 D E
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𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment 

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

ABC D E 𝑞𝑓

𝑞𝑓 cannot be covered !

To write b to 𝐫𝐞𝐠[𝑘], one 

must write to 𝐫𝐞𝐠[𝑘] while 

𝐫𝐞𝐠[𝑘 − 1] still has value 𝑑0

To cover 𝑞𝑓 at round 𝑘, one must 

have written b to 𝐫𝐞𝐠[𝑘 − 1]
while 𝐫𝐞𝐠[𝑘] still has value 𝑑0
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There exists a round 𝑘
such that some 

process is at round 𝑘
and on state 𝑞𝑓

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?
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Every process is on 

state 𝑞𝑓 regardless of its 

round 

Round-based TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑘, ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞, 𝑘 = 0 ?

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?
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Round-based TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑘, ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞, 𝑘 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ ψ ?  

with ψ a first-order formula on rounds with no nested quantifiers

Examples: 𝜓 = ``∃𝑘 # 𝑞1, 𝑘 + 1 > 0 ∧ 𝐫𝐞𝐠𝑖 𝑘 = 𝑑 ∨ ∀𝑘 # 𝑞0, 𝑘 = 0′′

Round-based PRP:

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?

At some round, there is a process on 

state 𝑞1 while register 𝑖 of previous 

round has value 𝑑

no process is on 𝑞0

80



Nicolas Waldburger

Exponential lower bounds on the number of rounds:
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Similar lower bounds for the number of processes and of active rounds

Exponential lower bounds on the number of rounds:
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9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.: 

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022 

Theorem9: Round-based COVER is PSPACE-hard. 
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Theorem910: Round-based PRP is PSPACE-complete.

Theorem9: Round-based COVER is PSPACE-hard. 

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.: 

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022 

10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted 84
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Theorem910: Round-based PRP is PSPACE-complete.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.: 

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022 

10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted 

Theorem9: Round-based COVER is PSPACE-hard. 

Challenge: the number of rounds relevant at the same time may need to be exponential.
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⊨ 𝜓Witness execution:
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Witness execution: ⊨ 𝜓

Actions:

Rounds:
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Witness execution: ⊨ 𝜓

Actions:

Rounds:
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storable in 

polynomial space?

number of relevant 

rounds may be large…
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sliding window on 𝑣 + 1
rounds where 𝑣 is the highest 

𝑖 such that some 𝑟𝑒𝑎𝑑−𝑖(𝑥)
appears in the protocol

𝑣 is assumed to be given in 

unary (here 𝑣 = 1)storable in polynomial 

space using abstract 

representation
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forget about 

round 0

insert actions 

taking place at 

round 2
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As the execution is 

guessed, we 

progressively guess 

why the configuration 

reached will satisfy 𝜓.
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From this algorithm, we 

obtain exponential 

upper bounds on the 

number of processes 

and rounds needed.

As the execution is 

guessed, we 

progressively guess 

why the configuration 

reached will satisfy 𝜓.

95
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Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.
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Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

A

Increment 

round

𝑞𝑓
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Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

𝑟𝑒𝑎𝑑0(a) 𝑟𝑒𝑎𝑑−1(a)
A 𝑞𝑓

Increment 

round

𝑤𝑟𝑖𝑡𝑒(a)

B
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Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race !

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.
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Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race !

Definition 4: For every 𝑚, every process eventually performs 𝑚 steps in a row. 

For Aspnes’ algorithm, a process that is far behind could perform many steps in a row and not decide…

→ We need stochastic schedulers !

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.
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At every step:

- the next process to move is picked uniformly at random among all processes,

- its action is picked uniformly at random among all its available actions. 

Almost-sure coverability: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑠𝑜𝑚𝑒𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

Almost-sure target: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑒𝑣𝑒𝑟𝑦𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?  
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At every step:

- the next process to move is picked uniformly at random among all processes,

- its action is picked uniformly at random among all its available actions. 

In the roundless case, almost-sure coverability can be stated as a deterministic property:

𝑞𝑓 is covered with probability 1 iff, from every reachable configuration, some process can cover 𝑞𝑓.

Not true for round-based systems…

Almost-sure coverability: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑠𝑜𝑚𝑒𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

Almost-sure target: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑒𝑣𝑒𝑟𝑦𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?  
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An example where, from any reachable configuration, 𝑞𝑓 can still be covered, but 𝑞𝑓 is not covered with probability 1.

𝑟𝑒𝑎𝑑(a)
U

D

(gadget to ensure that at 

least one process goes 

on U and one goes on D)

𝑤𝑟𝑖𝑡𝑒(a)

𝑞𝑓

Increment 

round

Increment 

round
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𝑟𝑒𝑎𝑑(a)
U

D

(gadget to ensure that at 

least one process goes 

on U and one goes on D)

𝑤𝑟𝑖𝑡𝑒(a)

𝑞𝑓

0

1

2

p

1-p

p>
1

2

Increment 

round

Increment 

round

An example where, from any reachable configuration, 𝑞𝑓 can still be covered, but 𝑞𝑓 is not covered with probability 1.
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Increment

Increment

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.
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Not enough!

« 𝑚 processes synchronize on some round » ∼ return to zero of a balanced (𝑚 − 1) - dimensional random walk

If 𝑚 is large, non-zero probability of never occurring after some point  (proven for 𝑚 ≥ 6, conjectured for 𝑚 ≥ 4)

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.
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0

1

2

3
We can build a protocol where:

- the balanced condition is met

- 𝑞𝑓 can be reached from all reachable configurations (for 𝑛 large enough)

- ℙ(𝑞𝑓 covered) < 1 for every 𝑛
good event

Not enough!

« 𝑚 processes synchronize on some round » ∼ return to zero of a balanced (𝑚 − 1) - dimensional random walk

If 𝑚 is large, non-zero probability of never occurring after some point  (proved for 𝑚 ≥ 6, conjectured for 𝑚 ≥ 4)

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.
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Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation 

(all other processes are left idle) reaches 𝑞𝑓 with probability 1. 
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Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation 

(all other processes are left idle) reaches 𝑞𝑓 with probability 1. 

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.
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Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation 

(all other processes are left idle) reaches 𝑞𝑓 with probability 1. 

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem. 

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.
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Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation 

(all other processes are left idle) reaches 𝑞𝑓 with probability 1. 

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem. 

Proposition: If a protocol is ASOF, then for every 𝑛, all agents end up in 𝑞𝑓 with probability 1 (almost-sure TARGET).

𝑞𝑓 is a deadlocked state

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.
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Exponential lower bounds on the number of active rounds:

Binary counter
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𝑷𝒐𝒔𝒕∗ included in 𝑷𝒓𝒆∗

There exists N s.t., for all 𝑛 ≥ 𝑁, 

one can cover 𝑞𝑓 from every 

reachable configuration of size 𝑛

LIMIT-SURE
ℙ𝑛(covering 𝑞𝑓) →𝑛→∞ 1

ALMOST-SURE

There exists N s.t., for all 𝑛 ≥ 𝑁,

ℙ𝑛(covering 𝑞𝑓) = 1

COVER

There exists N s.t., for all 𝑛 ≥ 𝑁, 

one can cover 𝑞𝑓

Conjecture

But the implication 

holds if no initialization 

of registers!

every other property implies COVER

implication holds

implication does not hold
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Conjecture: In the following example, ℙ𝑛 covering 𝑞𝑓 →𝑛→∞ 1.

U

D

gadget

𝑟𝑒𝑎𝑑1(d0)

0

1

2

p

1-p

p>
1

2

𝑤𝑟𝑖𝑡𝑒2(b)

Increment
round

𝑟𝑒𝑎𝑑2(b)
𝑞𝑓

Asymptotic probability that a process in the D region catches 

up with the highest process in the U region?

𝑤𝑟𝑖𝑡𝑒1(a)
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