
Nicolas Waldburger
PhD supervisors: Nathalie Bertrand, Nicolas Markey, Ocan Sankur

Séminaire MOVE, 29/07/2023
1

Nicolas Waldburger

…

▪ Arbitrary number of processes

▪ Processes are identical agents

▪ No identifiers: processes are anonymous

▪ Modelled by a single, common finite automaton

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.:

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 20162

Nicolas Waldburger

…
Shared memory

Two models in this talk:

▪ Simple model: shared-memory systems with finite memory

▪ More complex model: round-based shared-memory systems

3

Nicolas Waldburger

a

b

𝑑0

𝑟𝑒𝑎𝑑1(a)

No atomic read/write

combinations

Registers are initialized

to value 𝑑0

1

2

3

Finite number of shared registers,

each register has a value from

finite set of symbols Σ

1. Model inspired from: Esparza, J., Ganty, P., Majumdar, R.:

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 20164

Nicolas Waldburger

𝑞 × 2 𝑝 × 1 a b

A configuration:

How many process

are on each state

Content of the

registers

𝑑0

5

Nicolas Waldburger

𝑞 × 1 𝑝 × 1 a b a
(𝑞, 𝑤𝑟𝑖𝑡𝑒3 a , 𝑟)

𝑟 × 1

(𝑝, 𝑟𝑒𝑎𝑑1 a , 𝑟)
𝑞 × 1 𝑟 × 2 a b a

𝑞 × 2 𝑝 × 1 a b 𝑑0

6

Nicolas Waldburger

Initial configurations:

with 𝑛 ≥ 1 and 𝑞0 the initial state

𝑞0 × 𝑛 𝑑0𝑑0 𝑑0

𝑞 × 1 𝑝 × 1 a b a
(𝑞, 𝑤𝑟𝑖𝑡𝑒3 a , 𝑟)

𝑟 × 1

(𝑝, 𝑟𝑒𝑎𝑑1 a , 𝑟)
𝑞 × 1 𝑟 × 2 a b a

𝑞 × 2 𝑝 × 1 a b 𝑑0

Registers are

initialized to 𝑑0Can be arbitrarily large

7

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

A single

register

𝑟𝑒𝑎𝑑(c)

8

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0

Two

processes

Initial

value

𝑟𝑒𝑎𝑑(c)

9

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

10

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

11

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

c 𝑟𝑒𝑎𝑑(c)

12

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c)

13

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c) 𝑞𝑓 is covered ✓

14

Nicolas Waldburger

Parameterized:

arbitrarily many

processes

An initial

configuration

Execution

A least one process

on 𝑞𝑓: “error state”

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?COVER:

15

Nicolas Waldburger

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

All processes

“synchronize” on 𝑞𝑓

COVER:

TARGET:

16

Nicolas Waldburger

COVER:

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

PRP2: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ?

Presence

Reachability Problem

#𝑞 = number of

processes on 𝑞

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:

On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 2012

with 𝜙 ∈ ℬ({#𝑞 = 0, #𝑞 > 0}, {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑})

17

Nicolas Waldburger

COVER:

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙 ?

Presence

Reachability Problem

with 𝜙 ∈ ℬ({#𝑞 = 0, #𝑞 > 0}, {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑})

Examples: 𝜙 = ``#𝑞𝑓 > 0′′ (COVER),

𝜙 = `` 𝑞≠𝑞𝑓ٿ #𝑞 = 0′′ (TARGET)

𝜙 = `` #𝑞1 > 0 ∨ (#𝑞2 = 0 ∧ 𝐫𝐞𝐠1 = 𝑑0)′′

PRP2:

2. Inspired from CRP in: Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.:

On the Complexity of Parameterized Reachability in Reconfigurable Broadcast Networks, Tech. Rep., 201218

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
a

19

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

20

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

21

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

22

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

23

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

24

Nicolas Waldburger

𝑟𝑒𝑎𝑑 a
a

Abstraction: remember whether there is at least one process on a given state.

Sound and Complete for PRP because of monotonicity property

“At least one process here”

25

Nicolas Waldburger

𝑟𝑒𝑎𝑑2 𝑑0

1

2
𝑟𝑒𝑎𝑑1 𝑑0

𝑑0

𝑑0

A

B

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

26

Nicolas Waldburger

𝑟𝑒𝑎𝑑¬𝑥 𝑑0

𝒙

¬𝒙

𝑑0

𝑑0

Reduction from 3-SAT:

𝑟𝑒𝑎𝑑𝑥 𝑑0
Check ¬𝑥:

Check 𝑥:

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

𝑟𝑒𝑎𝑑𝑥 ⊤

𝑟𝑒𝑎𝑑¬𝑥(⊤)

27

Nicolas Waldburger

Directly relies on initialization of registers!

COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).

COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 𝑞𝑓 > 0 ?

𝑟𝑒𝑎𝑑¬𝑥 𝑑0

𝒙

¬𝒙

𝑑0

𝑑0

Reduction from 3-SAT:

𝑟𝑒𝑎𝑑𝑥 𝑑0
Check ¬𝑥:

Check 𝑥:
𝑟𝑒𝑎𝑑𝑥 ⊤

𝑟𝑒𝑎𝑑¬𝑥(⊤)

28

Nicolas Waldburger

TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT:

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑤𝑟𝑖𝑡𝑒𝑥 𝑓𝑎𝑙𝑠𝑒
∀𝑥

∀𝑥
𝑤𝑟𝑖𝑡𝑒𝑥 𝑡𝑟𝑢𝑒

… 𝑞𝑓Check clause 1 Check clause 𝑚

29

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

30

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

31

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 2015

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

32

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 201533

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 201534

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

𝑞𝑓

= coverable

= backwards coverable

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

Iteratively remove all states that are not

✓

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 201535

Nicolas Waldburger

TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞 = 0 ?

TARGET is PTIME when only one register.

One can reduce the problem to the case when the register is not initialized.

Algorithm inspired from broadcast protocols4.

Compute coverable states (the state can be covered from initial configurations)

and backwards coverable states (𝑞𝑓 may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).

DNF-PRP: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ 𝜙,

𝜙 in DNF: 𝜙 = 𝑖ڀ 𝑡𝑖,1 ∧ 𝑡𝑖,2 ∧ ⋯∧ 𝑡𝑖,𝑚𝑖
,

𝑡𝑖,𝑗 ∈ #𝑞 = 0, #𝑞 > 0 ∪ {𝐫𝐞𝐠𝑖 = 𝑑, 𝐫𝐞𝐠𝑖 ≠ 𝑑}

4. Fournier, P.:

Parameterized verification of networks of many identical processes. PhD thesis, 201536

Nicolas Waldburger

COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete

Not initialized PTIME-complete NP-complete NP-complete NP-complete

One register PTIME-complete PTIME-complete PTIME-complete NP-complete

5. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, MFCS2337

38

Nicolas Waldburger

Binary consensus problem:

Make all processes agree on a common value, each process starting an initial preference 𝑝.

Validity: If a process decided value 𝑝, some process started with value 𝑝
Agreement: Two processes that decide decide of the same value

Termination: All processes eventually decide of a value

Aspnes’ consensus algorithm:

39

Nicolas Waldburger

ro
u

n
d

s

0 1

…

4

3

2

1

0

… …

no no

no no

no no

no no

no no

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]

1

A B C

40

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

no yes1

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

writes

0

41

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes1

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

writes

0

42

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

0

43

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

10

44

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0

45

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

readsIs ready to write

its preference

0

46

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0

47

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

no no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

readsIs ready to write

its preference

0

48

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

yes no

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

writes

0

49

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

writes

No winner on this

round
0

50

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

0

51

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no no

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0

52

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

writes

0

53

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

reads

0

54

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

1

0

55

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

reads

0

1

56

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no no

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

0

reads

1

57

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

writes

0

1

58

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

reads

0

1

59

Nicolas Waldburger

ro
u

n
d

s

1

…

4

3

2

1

0

… …

no no

no yes

no yes

yes yes

yes yes

𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]𝐫𝐞𝐠0[𝑘] 𝐫𝐞𝐠1[𝑘]A B C

0

✓
A process getting

to this round will

convert to

preference 1

1

60

Nicolas Waldburger

Model inspired by round-based algorithms from the literature678.

Process progress in asynchronous rounds, each round having its own finite set of registers.

ro
u

n
d

s

𝑝

𝑞

𝑞

…

3

2

1

0

… … … …

a 𝑑0 𝑑0 𝑑0

b c a b

a a c b

a a b 𝑑0

𝐫𝐞𝐠1[𝑘] 𝐫𝐞𝐠2[𝑘] 𝐫𝐞𝐠3[𝑘] 𝐫𝐞𝐠4[𝑘]

𝑝

× 3

Initial value

6. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

7. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007

8. Raynal, M., Stainer, J.:

A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets. CISIS, 2012 61

Nicolas Waldburger

▪ Read transitions now mention from which round they are reading, relatively to the current round of the process

▪ A new type of transitions: round increments, which send the process to the next round

Example with one register per round:

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)
Read from register of

current round of the process

Write to register of the current

round of the process

Read from register one round

below the round of the

process

𝑟𝑒𝑎𝑑−1(a)

62

Nicolas Waldburger

𝑝, 𝑟𝑒𝑎𝑑−1 b , 𝑟 , 3

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑟 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

here with one

register per round

𝑞 × 3

63

Nicolas Waldburger

𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

here with one

register per round

64

Nicolas Waldburger

Initial configurations:

𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0𝑞0 × 𝑛

65

Nicolas Waldburger

Initial configurations:

𝑞, 𝑤𝑟𝑖𝑡𝑒 b , 𝑟 , 1

𝑞 × 3

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 a

0 𝑑0

𝑞 × 2

𝑝 × 1

⋮ ⋮

3 𝑑0

2 b

1 b

0 𝑑0

𝑟 × 1

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0…𝑞0 × 𝑛

66

Nicolas Waldburger

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0𝑞0

𝑟𝑒𝑎𝑑−1(a)

67

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0

𝑞0

𝑟𝑒𝑎𝑑−1(a)

68

Nicolas Waldburger

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

⋮ ⋮

2 𝑑0

1 a

0 𝑑0

𝑞0

𝑞0

𝑟𝑒𝑎𝑑−1(a)

69

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 a

0 𝑑0

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0

𝑟𝑒𝑎𝑑−1(a)

70

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 a

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

71

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 a

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

72

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

73

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0

74

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0 D

75

Nicolas Waldburger

⋮ ⋮

2 𝑑0

1 b

0 a

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

A

= round 0

= round 1

= round 2

ABC D E 𝑞𝑓

𝑞0 B

𝑞0 A

C

𝑞0 D E

76

Nicolas Waldburger

𝑞0
𝑤𝑟𝑖𝑡𝑒(a)

Increment

round

𝑟𝑒𝑎𝑑−1(b) 𝑟𝑒𝑎𝑑0(𝑑0) 𝑟𝑒𝑎𝑑0(b)𝑟𝑒𝑎𝑑−1(a) 𝑟𝑒𝑎𝑑−1(𝑑0)

𝑤𝑟𝑖𝑡𝑒(b)

ABC D E 𝑞𝑓

𝑞𝑓 cannot be covered !

To write b to 𝐫𝐞𝐠[𝑘], one

must write to 𝐫𝐞𝐠[𝑘] while

𝐫𝐞𝐠[𝑘 − 1] still has value 𝑑0

To cover 𝑞𝑓 at round 𝑘, one must

have written b to 𝐫𝐞𝐠[𝑘 − 1]
while 𝐫𝐞𝐠[𝑘] still has value 𝑑0

77

Nicolas Waldburger

There exists a round 𝑘
such that some

process is at round 𝑘
and on state 𝑞𝑓

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?

78

Nicolas Waldburger

Every process is on

state 𝑞𝑓 regardless of its

round

Round-based TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑘, ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞, 𝑘 = 0 ?

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?

79

Nicolas Waldburger

Round-based TARGET: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∀𝑘, ∀𝑞 ≠ 𝑞𝑓, 𝛾 𝑞, 𝑘 = 0 ?

∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , 𝛾 ⊨ ψ ?

with ψ a first-order formula on rounds with no nested quantifiers

Examples: 𝜓 = ``∃𝑘 # 𝑞1, 𝑘 + 1 > 0 ∧ 𝐫𝐞𝐠𝑖 𝑘 = 𝑑 ∨ ∀𝑘 # 𝑞0, 𝑘 = 0′′

Round-based PRP:

Round-based COVER: ∃𝑛, ∃𝛾0, ∃𝜌: 𝛾0 →
∗ 𝛾 , ∃𝑘 𝛾 𝑞𝑓, 𝑘 > 0 ?

At some round, there is a process on

state 𝑞1 while register 𝑖 of previous

round has value 𝑑

no process is on 𝑞0

80

Nicolas Waldburger

Exponential lower bounds on the number of rounds:

81

Nicolas Waldburger

Similar lower bounds for the number of processes and of active rounds

Exponential lower bounds on the number of rounds:

82

Nicolas Waldburger

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022

Theorem9: Round-based COVER is PSPACE-hard.

83

Nicolas Waldburger

Theorem910: Round-based PRP is PSPACE-complete.

Theorem9: Round-based COVER is PSPACE-hard.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022

10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted 84

Nicolas Waldburger

Theorem910: Round-based PRP is PSPACE-complete.

9. Bertrand, N., Markey, N., Sankur, O., Waldburger, N.:

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022

10. W: Checking Presence Reachability Properties on Parameterized Shared-Memory Systems, submitted

Theorem9: Round-based COVER is PSPACE-hard.

Challenge: the number of rounds relevant at the same time may need to be exponential.

85

Nicolas Waldburger

⊨ 𝜓Witness execution:

86

Nicolas Waldburger

Witness execution: ⊨ 𝜓

Actions:

Rounds:

87

Nicolas Waldburger

Witness execution: ⊨ 𝜓

Actions:

Rounds:

88

Nicolas Waldburger89

Nicolas Waldburger

storable in

polynomial space?

number of relevant

rounds may be large…

90

Nicolas Waldburger

sliding window on 𝑣 + 1
rounds where 𝑣 is the highest

𝑖 such that some 𝑟𝑒𝑎𝑑−𝑖(𝑥)
appears in the protocol

𝑣 is assumed to be given in

unary (here 𝑣 = 1)storable in polynomial

space using abstract

representation
91

Nicolas Waldburger

forget about

round 0

insert actions

taking place at

round 2

92

Nicolas Waldburger93

Nicolas Waldburger

As the execution is

guessed, we

progressively guess

why the configuration

reached will satisfy 𝜓.

94

Nicolas Waldburger

From this algorithm, we

obtain exponential

upper bounds on the

number of processes

and rounds needed.

As the execution is

guessed, we

progressively guess

why the configuration

reached will satisfy 𝜓.

95

96

Nicolas Waldburger

Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

97

Nicolas Waldburger

Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

A

Increment

round

𝑞𝑓

98

Nicolas Waldburger

Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

𝑟𝑒𝑎𝑑0(a) 𝑟𝑒𝑎𝑑−1(a)
A 𝑞𝑓

Increment

round

𝑤𝑟𝑖𝑡𝑒(a)

B

99

Nicolas Waldburger

Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race !

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

100

Nicolas Waldburger

Many consensus algorithms rely on good luck for termination.

First idea: considering fair executions.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.

For Aspnes’ algorithm, a process must win the race !

Definition 4: For every 𝑚, every process eventually performs 𝑚 steps in a row.

For Aspnes’ algorithm, a process that is far behind could perform many steps in a row and not decide…

→ We need stochastic schedulers !

Definition 1: For a given 𝑘, any transition that is available infinitely often at round 𝑘 is taken infinitely often.

101

Nicolas Waldburger

At every step:

- the next process to move is picked uniformly at random among all processes,

- its action is picked uniformly at random among all its available actions.

Almost-sure coverability: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑠𝑜𝑚𝑒𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

Almost-sure target: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑒𝑣𝑒𝑟𝑦𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

102

Nicolas Waldburger

At every step:

- the next process to move is picked uniformly at random among all processes,

- its action is picked uniformly at random among all its available actions.

In the roundless case, almost-sure coverability can be stated as a deterministic property:

𝑞𝑓 is covered with probability 1 iff, from every reachable configuration, some process can cover 𝑞𝑓.

Not true for round-based systems…

Almost-sure coverability: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑠𝑜𝑚𝑒𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

Almost-sure target: Is it the case that, for n large enough, ℙ𝑛 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑒𝑣𝑒𝑟𝑦𝑏𝑜𝑑𝑦 𝑜𝑛 𝑞𝑓 = 1 ?

103

Nicolas Waldburger

An example where, from any reachable configuration, 𝑞𝑓 can still be covered, but 𝑞𝑓 is not covered with probability 1.

𝑟𝑒𝑎𝑑(a)
U

D

(gadget to ensure that at

least one process goes

on U and one goes on D)

𝑤𝑟𝑖𝑡𝑒(a)

𝑞𝑓

Increment

round

Increment

round

104

Nicolas Waldburger

𝑟𝑒𝑎𝑑(a)
U

D

(gadget to ensure that at

least one process goes

on U and one goes on D)

𝑤𝑟𝑖𝑡𝑒(a)

𝑞𝑓

0

1

2

p

1-p

p>
1

2

Increment

round

Increment

round

An example where, from any reachable configuration, 𝑞𝑓 can still be covered, but 𝑞𝑓 is not covered with probability 1.

105

Nicolas Waldburger

Increment

Increment

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.

106

Nicolas Waldburger

Not enough!

« 𝑚 processes synchronize on some round » ∼ return to zero of a balanced (𝑚 − 1) - dimensional random walk

If 𝑚 is large, non-zero probability of never occurring after some point (proven for 𝑚 ≥ 6, conjectured for 𝑚 ≥ 4)

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.

107

Nicolas Waldburger

0

1

2

3
We can build a protocol where:

- the balanced condition is met

- 𝑞𝑓 can be reached from all reachable configurations (for 𝑛 large enough)

- ℙ(𝑞𝑓 covered) < 1 for every 𝑛
good event

Not enough!

« 𝑚 processes synchronize on some round » ∼ return to zero of a balanced (𝑚 − 1) - dimensional random walk

If 𝑚 is large, non-zero probability of never occurring after some point (proved for 𝑚 ≥ 6, conjectured for 𝑚 ≥ 4)

First idea: Forbid processes to move up at different rates.

Balanced condition: there exists 𝑚 s.t., on every path of length 𝑚 of the automaton, there is exactly one increment.

108

Nicolas Waldburger

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation

(all other processes are left idle) reaches 𝑞𝑓 with probability 1.

109

Nicolas Waldburger

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation

(all other processes are left idle) reaches 𝑞𝑓 with probability 1.

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.

110

Nicolas Waldburger

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation

(all other processes are left idle) reaches 𝑞𝑓 with probability 1.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.

111

Nicolas Waldburger

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation

(all other processes are left idle) reaches 𝑞𝑓 with probability 1.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.

Proposition: If a protocol is ASOF, then for every 𝑛, all agents end up in 𝑞𝑓 with probability 1 (almost-sure TARGET).

𝑞𝑓 is a deadlocked state

For example, it is the case in Aspnes’ algorithm: any process acting in isolation will reach blank rounds.

112

Nicolas Waldburger113

Nicolas Waldburger114

Nicolas Waldburger

Exponential lower bounds on the number of active rounds:

Binary counter

115

Nicolas Waldburger

𝑷𝒐𝒔𝒕∗ included in 𝑷𝒓𝒆∗

There exists N s.t., for all 𝑛 ≥ 𝑁,

one can cover 𝑞𝑓 from every

reachable configuration of size 𝑛

LIMIT-SURE
ℙ𝑛(covering 𝑞𝑓) →𝑛→∞ 1

ALMOST-SURE

There exists N s.t., for all 𝑛 ≥ 𝑁,

ℙ𝑛(covering 𝑞𝑓) = 1

COVER

There exists N s.t., for all 𝑛 ≥ 𝑁,

one can cover 𝑞𝑓

Conjecture

But the implication

holds if no initialization

of registers!

every other property implies COVER

implication holds

implication does not hold

116

Nicolas Waldburger

Conjecture: In the following example, ℙ𝑛 covering 𝑞𝑓 →𝑛→∞ 1.

U

D

gadget

𝑟𝑒𝑎𝑑1(d0)

0

1

2

p

1-p

p>
1

2

𝑤𝑟𝑖𝑡𝑒2(b)

Increment
round

𝑟𝑒𝑎𝑑2(b)
𝑞𝑓

Asymptotic probability that a process in the D region catches

up with the highest process in the U region?

𝑤𝑟𝑖𝑡𝑒1(a)

117

Nicolas Waldburger

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000 12000

Evolution de la probabilité (limite = 1 000 000, sample size = 1 000, p= 0,55)

Probabilité

d’atteindre

𝑞𝑓

𝑛

118

