Checking Presence Reachability Properties on

Parameterized Shared-Memory Systems
Ćnría

(9) IRISA

Nicolas Waldburger
PhD supervisors: Nathalie Bertrand, Nicolas Markey, Ocan Sankur
Séminaire MOVE, 29/07/2023

Parameterized verification

- Arbitrary number of processes
- Processes are identical agents
- No identifiers: processes are anonymous
- Modelled by a single, common finite automaton

Shared-memory systems

Two models in this talk:

- Simple model: shared-memory systems with finite memory
- More complex model: round-based shared-memory systems

A model for shared-memory systems ${ }^{1}$

Finite number of shared registers, each register has a value from finite set of symbols Σ

No atomic read/write combinations

Registers are initialized
to value d_{0}

Semantics

A configuration:

$\underbrace{$| Content of the |
| :---: |
| registers |}$_{$| How many process |
| :---: |
| are on each state |$}$

Semantics

Semantics

Can be arbitrarily large
Registers are
initialized to d_{0}

Initial configurations:

with $n \geq 1$ and q_{0} the initial state

A small example

Reachability problems

Reachability problems

COVER:

$$
\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma\left(q_{f}\right)>0 ?
$$

TARGET:

$$
\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0 ?
$$

All processes
"synchronize" on q_{f}

Reachability problems

COVER: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma\left(q_{f}\right)>0$?

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?

Reachability problems

COVER: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma\left(q_{f}\right)>0$?

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
$\operatorname{PRP}^{2}: \quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma \vDash \phi$?
with $\phi \in \mathcal{B}\left(\{\# q=0, \# q>0\},\left\{\mathbf{r e g}_{i}=d, \mathbf{r e g}_{i} \neq d\right\}\right)$

Presence
Reachability Problem

Examples: $\phi={ }^{\prime} \# q_{f}>0^{\prime \prime}$ (COVER),

$$
\phi=` \wedge_{q \neq q_{f}} \# q=0^{\prime \prime}(\text { TARGET })
$$

$$
\phi="\left(\# q_{1}>0\right) \vee\left(\left[\# q_{2}=0\right] \wedge\left[\mathbf{r e g}_{1}=d_{0}\right]\right)^{\prime \prime}
$$

Monotonicity

A process may "copy" the behavior of another process on the same state.

Monotonicity

A process may "copy" the behavior of another process on the same state.

Monotonicity

A process may "copy" the behavior of another process on the same state.

Monotonicity

A process may "copy" the behavior of another process on the same state.

Monotonicity

A process may "copy" the behavior of another process on the same state.

23 Nicolas Waldburger

Monotonicity

A process may "copy" the behavior of another process on the same state.

24 Nicolas Waldburger

Monotonicity

Abstraction: remember whether there is at least one process on a given state.
Sound and Complete for PRP because of monotonicity property

25 Nicolas Waldburger

NP-completeness of COVER

COVER:

$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma\left(q_{f}\right)>0$?

1	d_{0}
	d_{0}

NP-completeness of COVER

COVER:

$$
\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \quad \gamma\left(q_{f}\right)>0 ?
$$

Reduction from 3-SAT:

	x
	d_{0}
	d_{0}

Check x :

NP-completeness of COVER

COVER: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \gamma\left(q_{f}\right)>0$?

Reduction from 3-SAT:

Check x :

Directly relies on initialization of registers!
COVER drops down to PTIME when the registers are not initialized (applying a simple saturation technique).

TARGET when registers are not initialized

TARGET: $\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0 ?$

TARGET is still NP-complete when registers are not initialized. Reduction from 3-SAT:

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

Iteratively remove all states that are not

TARGET with a single register

TARGET: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall q \neq q_{f}, \gamma(q)=0$?
TARGET is PTIME when only one register.
One can reduce the problem to the case when the register is not initialized.
Algorithm inspired from broadcast protocols ${ }^{4}$.
Compute coverable states (the state can be covered from initial configurations) and backwards coverable states (q_{f} may be reached from some configuration containing the state).

The algorithm is generalizable to PRP when the formula is in Disjunctive Normal Form (DNF).
DNF-PRP: $\quad \exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \quad \gamma \vDash \phi$,

$$
\begin{aligned}
& \phi \text { in DNF: } \phi=\vee_{i}\left(t_{i, 1} \wedge t_{i, 2} \wedge \cdots \wedge t_{i, m_{i}}\right) \\
& t_{i, j} \in\{\# q=0, \# q>0\} \cup\left\{\mathbf{r e g}_{i}=d, \mathbf{r e g}_{i} \neq d\right\}
\end{aligned}
$$

Summary of complexity results ${ }^{5}$

	COVER	TARGET	DNF-PRP	PRP
General case	NP-complete	NP-complete	NP-complete	NP-complete
Not initialized	PTIME-complete	NP-complete	NP-complete	NP-complete
One register	PTIME-complete	PTIME-complete	PTIME-complete	NP-complete

Round-based shared-memory systems

A motivating example

Binary consensus problem:

Make all processes agree on a common value, each process starting an initial preference p.
Validity: If a process decided value p, some process started with value p
Agreement: Two processes that decide decide of the same value
Termination: All processes eventually decide of a value
Aspnes' consensus algorithm:
int $k:=0$, bool $p \in\{0,1\},\left(\operatorname{rg}_{b}[r]\right)_{b \in\{0,1\}, r \in \mathbb{N}}$ all initialized to no;
while true do

$$
\begin{aligned}
& \begin{array}{l}
\text { read from } \mathrm{rg}_{0}[k] \text { and } \mathrm{rg}_{1}[k] ; \\
\text { if } \mathrm{rg}_{0}[k]=\text { yes and } \mathrm{rg}_{1}[k]=\text { no them } p:=0 ; \\
\text { else if } \mathrm{rg}_{0}[k]=\text { no and } \mathrm{rg}_{1}[k]=\text { yes then } p: 1 ;
\end{array} \\
& \text { write yes to } \mathrm{rg}_{p}[k] \text { read from registers } \\
& \text { if } k>0 \text { then } \\
& \begin{array}{ll}
\text { read from } \mathrm{rg}_{1-p}[k-1] & \text { write to registers }
\end{array} \\
& \begin{array}{ll}
\text { of } r g_{1-p}[k-1]=\text { no then return } p ; & \text { of round } k
\end{array} \\
& k:=k+1 ;
\end{aligned} \quad .
$$

Example of execution of the algorithm

[^0]
Round-based shared-memory systems

Model inspired by round-based algorithms from the literature ${ }^{678}$.
Process progress in asynchronous rounds, each round having its own finite set of registers.

6. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

The round-based model

- Read transitions now mention from which round they are reading, relatively to the current round of the process
- A new type of transitions: round increments, which send the process to the next round

Example with one register per round:

[^1]
Semantics

here with one
register per round

Semantics

!		!
3	p> $\times 1$	d_{0}
2		b
1	q> $\times 3$	a
0		${ }_{\lambda} d_{0}$

here with one
register per round

Semantics

Abstraction

An example of round-based register protocol

An example of round-based register protocol

[^2]
An example of round-based register protocol

[^3]
An example of round-based register protocol

An example of round-based register protocol

An example of round-based register protocol

[^4]
An example of round-based register protocol

[^5]
An example of round-based register protocol

An example of round-based register protocol

An example of round-based register protocol

[^6]
An example of round-based register protocol

q_{f} cannot be covered !

Reachability problems in round-based setting

Round-based COVER:
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \exists k \gamma\left(q_{f}, k\right)>0$?

There exists a round k such that some process is at round k and on state q_{f}

[^7]
Reachability problems in round-based setting

Round-based COVER:
Round-based TARGET:
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \exists k \gamma\left(q_{f}, k\right)>0$?
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \forall k, \forall q \neq q_{f}, \gamma(q, k)=0 ?$
Every process is on state q_{f} regardless of its
round

Reachability problems in round-based setting

Round-based COVER:
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \exists k \gamma\left(q_{f}, k\right)>0$?
Round-based TARGET:
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \quad \forall k, \forall q \neq q_{f}, \gamma(q, k)=0 ?$
Round-based PRP:
$\exists n, \exists \gamma_{0}, \exists \rho: \gamma_{0} \rightarrow^{*} \gamma, \quad \gamma \vDash \psi ?$
with ψ a first-order formula on rounds with no nested quantifiers

$$
\text { Examples: } \psi=" \exists k\left(\#\left(q_{1}, k+1\right)>0 \wedge \operatorname{reg}_{i}[k]=d\right) \vee \forall k \#\left(q_{0}, k\right)=0^{\prime \prime}
$$

At some round, there is a process on no process is on q_{0}

A challenge: exponential lower bounds

Exponential lower bounds on the number of rounds:
(move ${ }_{1}$)
write $\left(\right.$ wait $\left._{2}\right)$

A challenge: exponential lower bounds

Exponential lower bounds on the number of rounds:
writ(move $_{1}$)

Similar lower bounds for the number of processes and of active rounds

Complexity results

Theorem ${ }^{9}$: Round-based COVER is PSPACE-hard.

Complexity results

Theorem ${ }^{9}$: Round-based COVER is PSPACE-hard.

Theorem ${ }^{910}$: Round-based PRP is PSPACE-complete.

Complexity results

Theorem ${ }^{9}$: Round-based COVER is PSPACE-hard.

Theorem ${ }^{910}$: Round-based PRP is PSPACE-complete.

Challenge: the number of rounds relevant at the same time may need to be exponential.

A non-deterministic polynomial-space algorithm

Witness execution: $\sigma_{0} \xrightarrow{\theta_{0}} \sigma_{1} \xrightarrow{\theta_{1}} \sigma_{2} \xrightarrow{\theta_{2}} \sigma_{3} \xrightarrow{\theta_{3}} \sigma_{4} \xrightarrow{\theta_{4}} \sigma_{5} \xrightarrow{\theta_{5}} \sigma_{6} \xrightarrow{\theta_{6}} \sigma_{7} \vDash \psi$

A non-deterministic polynomial-space algorithm

Witness execution: $\sigma_{0} \xrightarrow{\theta_{0}} \sigma_{1} \xrightarrow{\theta_{1}} \sigma_{2} \xrightarrow{\theta_{2}} \sigma_{3} \xrightarrow{\Downarrow} \sigma_{4} \xrightarrow{\theta_{4}} \sigma_{5} \xrightarrow{\theta_{5}} \sigma_{6} \xrightarrow{\theta_{6}} \sigma_{7} \vDash \psi$

Actions:	θ_{0}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{6}
Rounds:	1	4	3	2	0	1	4

A non-deterministic polynomial-space algorithm

Witness execution: $\sigma_{0} \xrightarrow{\theta_{0}} \sigma_{1} \xrightarrow{\theta_{1}} \sigma_{2} \xrightarrow{\theta_{2}} \sigma_{3} \xrightarrow[\downarrow]{\theta_{3}} \sigma_{4} \xrightarrow{\theta_{4}} \sigma_{5} \xrightarrow{\theta_{5}} \sigma_{6} \xrightarrow{\theta_{5}} \sigma_{7} \vDash \psi$

A non-deterministic polynomial-space algorithm

A non-deterministic polynomial-space algorithm

As the execution is
guessed, we
progressively guess
why the configuration
reached will satisfy ψ.

94 Nicolas Waldburger

A non-deterministic polynomial-space algorithm

As the execution is
guessed, we
progressively guess
why the configuration reached will satisfy ψ.

From this algorithm, we obtain exponential upper bounds on the number of processes and rounds needed.

95 Nicolas Waldburger

Round-based shared-memory systems with stochastic schedulers

Fairness for round-based systems

Many consensus algorithms rely on good luck for termination.
First idea: considering fair executions.

Fairness for round-based systems

Many consensus algorithms rely on good luck for termination.
First idea: considering fair executions.
Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

[^8]
Fairness for round-based systems

Many consensus algorithms rely on good luck for termination.
First idea: considering fair executions.
Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

[^9]
Fairness for round-based systems

Many consensus algorithms rely on good luck for termination.
First idea: considering fair executions.
Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.
For Aspnes'algorithm, a process must win the race!

Fairness for round-based systems

Many consensus algorithms rely on good luck for termination.
First idea: considering fair executions.
Definition 1: For a given k, any transition that is available infinitely often at round k is taken infinitely often.

Definition 2: Any transition that is available infinitely often overall is taken infinitely often.

Definition 3: Processes tend to perform similar number of steps.
For Aspnes'algorithm, a process must win the race!
Definition 4: For every m, every process eventually performs m steps in a row.
For Aspnes'algorithm, a process that is far behind could perform many steps in a row and not decide...
\rightarrow We need stochastic schedulers!

Stochastic schedulers

At every step:

- the next process to move is picked uniformly at random among all processes,
- its action is picked uniformly at random among all its available actions.

Almost-sure coverability: Is it the case that, for n large enough, $\mathbb{P}_{n}\left(\right.$ eventually somebody on $\left.q_{f}\right)=1$?
Almost-sure target: Is it the case that, for n large enough, $\mathbb{P}_{n}\left(\right.$ eventually everybody on $\left.q_{f}\right)=1$?

Stochastic schedulers

At every step:

- the next process to move is picked uniformly at random among all processes,
- its action is picked uniformly at random among all its available actions.

Almost-sure coverability: Is it the case that, for n large enough, $\mathbb{P}_{n}\left(\right.$ eventually somebody on $\left.q_{f}\right)=1$?
Almost-sure target: Is it the case that, for n large enough, $\mathbb{P}_{n}\left(\right.$ eventually everybody on $\left.q_{f}\right)=1$?

In the roundless case, almost-sure coverability can be stated as a deterministic property:
q_{f} is covered with probability 1 iff, from every reachable configuration, some process can cover q_{f}.
Not true for round-based systems...

103 Nicolas Waldburger

An annoying example

An example where, from any reachable configuration, q_{f} can still be covered, but q_{f} is not covered with probability 1 .

[^10]
An annoying example

An example where, from any reachable configuration, q_{f} can still be covered, but q_{f} is not covered with probability 1 .

105 Nicolas Waldburger

Preventing random walk behaviors

First idea: Forbid processes to move up at different rates.
Balanced condition: there exists m s.t., on every path of length m of the automaton, there is exactly one increment.

Preventing random walk behaviors

First idea: Forbid processes to move up at different rates.
Balanced condition: there exists m s.t., on every path of length m of the automaton, there is exactly one increment.

Not enough!

« m processes synchronize on some round» \sim return to zero of a balanced $(m-1)$ - dimensional random walk If m is large, non-zero probability of never occurring after some point (proven for $m \geq 6$, conjectured for $m \geq 4$)

107 Nicolas Waldburger

Preventing random walk behaviors

First idea: Forbid processes to move up at different rates.
Balanced condition: there exists m s.t., on every path of length m of the automaton, there is exactly one increment.

Not enough!

« m processes synchronize on some round» \sim return to zero of a balanced $(m-1)$ - dimensional random walk If m is large, non-zero probability of never occurring after some point (proved for $m \geq 6$, conjectured for $m \geq 4$)

We can build a protocol where:

- the balanced condition is met
- q_{f} can be reached from all reachable configurations (for n large enough)

A stronger restriction

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_{f} with probability 1 .

A stronger restriction

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_{f} with probability 1 .

For example, it is the case in Aspnes' algorithm: any process acting in isolation will reach blank rounds.

110 Nicolas Waldburger

A stronger restriction

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_{f} with probability 1 .

For example, it is the case in Aspnes' algorithm: any process acting in isolation will reach blank rounds.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.

111 Nicolas Waldburger

A stronger restriction

Almost-sure obstruction freedom (ASOF): from any reachable configuration, any process left to play in isolation (all other processes are left idle) reaches q_{f} with probability 1 .

For example, it is the case in Aspnes' algorithm: any process acting in isolation will reach blank rounds.

Proposition: Deciding whether a given protocol is ASOF is a PSPACE-complete problem.

Proposition: If a protocol is ASOF, then for every n, all agents end up in q_{f} with probability 1 (almost-sure TARGET).

112 Nicolas Waldburger

Thanks for your attention! Any questions?

113 Nicolas Waldburger

A challenge: exponential lower bounds

Exponential lower bounds on the number of active rounds:

Several negative results

[^11]
The conjecture

Conjecture: In the following example, $\mathbb{P}_{n}\left(\right.$ covering $\left.q_{f}\right) \boldsymbol{\not}_{n \rightarrow \infty} 1$.

gadget

Asymptotic probability that a process in the D region catches up with the highest process in the U region?

Simulations

Evolution de la probabilité (limite $=1000000$, sample size $=1000, p=0,55)$

[^12]
[^0]: 60 Nicolas Waldburger

[^1]: 62 Nicolas Waldburger

[^2]: 68 Nicolas Waldburger

[^3]: 69 Nicolas Waldburger

[^4]: 72 Nicolas Waldburger

[^5]: 73 Nicolas Waldburger

[^6]: 76 Nicolas Waldburger

[^7]: 78 Nicolas Waldburger

[^8]: 98 Nicolas Waldburger

[^9]: 99 Nicolas Waldburger

[^10]: 104 Nicolas Waldburger

[^11]: 116 Nicolas Waldburger

[^12]: 118 Nicolas Waldburger

