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Peterson’s mutual exclusion algorithm:

Algorithm from

Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

For process 𝑖 ∈ {0,1}:

while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things; 
flagi = false ; 

Correctness = the processes are not in their critical section simultaneously
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Peterson’s mutual exclusion algorithm: Automata-based model

𝑛0 𝑛1

𝑤0 𝑤1

𝑐0 𝑐1

flag0 ≔ true
turn ≔ 1

flag1 ≔ true
turn ≔ 0

flag1 == true
𝑜𝑟 turn == 0

flag0 == true
𝑜𝑟 turn == 1

flag0 ≔ false flag1 ≔ false

Algorithm from

Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

Correctness = the processes are not in their critical section simultaneously

= 𝑐0 and 𝑐1 cannot be covered simultaneously

For process 𝑖 ∈ {0,1}:

while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things; 
flagi = false ; 

𝑛𝑖

𝑤𝑖
𝑐𝑖
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Does satisfy

requirement

?

Many thanks to Nathalie Bertrand for this slide

distributed system
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Does satisfy

distributed system requirement

?

… ⊨ 𝐀𝐆(¬𝑐0 ∨ ¬𝑐1)

model
model-checking 

algorithm
property

?

Many thanks to Nathalie Bertrand for this slide
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“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand
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▪ Scalability issue when the size of the system is large 

▪ What if I don’t know the number of agents beforehand ?
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▪ Scalability issue when the size of the system is large 

▪ Often undecidable problems… 

▪ What if I don’t know the number of agents beforehand ?

“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand
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…

▪ Parameterized system = the number of participants is not fixed in advance 

▪ System must be correct for any number of participants 

→ New techniques than can be more efficient on large systems !
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▪ We could say that all processes are identical, or that there is one leader and all others are followers
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▪ We could say that all processes are identical, or that there is one leader and all others are followers

▪ How much computing power for a given process? Finite-state machines, pushdown machines, access 

to private variables…
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▪ We could say that all processes are identical, or that there is one leader and all others are followers

▪ How much computing power for a given process? Finite-state machines, pushdown machines, access 

to private variables…

▪ Means of communication:

Rendez-vous Broadcast Shared memory

two processes 

must synchronize 

a process sends a 

messages to its neighbors

a process reads from the 

shared memory or writes 

to the shared memory

Communication 

primitive

…
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From now on, all processes are identical and described by a simple finite-state machine (no stack, no 

private memory…) where transitions interact with the shared memory.

𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a)

…

a b a

1 2 3

Shared memory



Nicolas Waldburger16

𝑞𝑓

Coverability problem: Input: A protocol 𝑃 (= an automaton) with an error state 𝑞𝑓.  

Question: Does there exists a number of processes 𝑛 and an execution of the system with 𝑛
processes where one of them gets to 𝑞𝑓?
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Parameterized problem: if answer is no then the system is safe for every value of 𝑛

Coverability problem: Input: A protocol 𝑃 (= an automaton) with an error state 𝑞𝑓.  

Question: Does there exists a number of processes 𝑛 and an execution of the system with 𝑛
processes where one of them gets to 𝑞𝑓?

𝑞𝑓
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atomic read-write combination: a process can perform a read 

then a write and no one else can act in between

𝑟𝑒𝑎𝑑1(a)
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𝑟𝑒𝑎𝑑1(a)

atomic read-write combination: a process can perform a read 

then a write and no one else can act in between

𝑟𝑒𝑎𝑑 no ; 𝑤𝑟𝑖𝑡𝑒(yes)

Atomic combinations allow for leader election:  (too) powerful model

In fact, as expressive as Petri Nets: coverability is EXPSPACE-complete… → let’s forbid atomic combinations

𝑟𝑒𝑎𝑑 no
≠

𝑤𝑟𝑖𝑡𝑒(yes)

atomic non-atomic



Nicolas Waldburger

a

b

𝑑0

𝑟𝑒𝑎𝑑1(a)

No atomic read/write 

combinations

Initial value in the registers

1

2

3

Finite number of shared registers, 

each register has a value from 

finite set of symbols Σ

Model inspired by: Esparza, J., Ganty, P., Majumdar, R.: 

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 2016
20
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

A single 

register

𝑟𝑒𝑎𝑑(c)

21
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

Two 

processes

Initial 

value

𝑟𝑒𝑎𝑑(c)

22

𝑑0
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

23
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

c 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c)
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𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c) 𝑞𝑓 is covered  ✓

27
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A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
a

28

🐱
🐱
🐱
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A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

29

😺
🐱
🐱



Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

30

😺

😺😺
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A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

31

🐱

🐱
🐱

🐱
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A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

32

🐱

🐱
🐱

😺
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𝑟𝑒𝑎𝑑 a
a

33

A process may “copy” the behavior of another process on the same state.

🐱 😺

😺😺
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Copycat property: Where we can have one process, we can have many processes.

34

𝑞𝑓

write(ok)

read(ok)

A process may “copy” the behavior of another process on the same state.
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𝑞𝑓

write(ok)

read(ok)

Copycat property: Where we can have one process, we can have many processes.

A process may “copy” the behavior of another process on the same state.
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𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.
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𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓
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𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓
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𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

write(b)
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𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

write(b)
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𝑞𝑓

write(b)

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.
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𝑞𝑓
read(c)

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

write(b)
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𝑞𝑓
read(c)

✓

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

write(b)
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𝑟𝑒𝑎𝑑 d0

COVER is in PTIME in this case, by contrast it is:

• NP-complete if 𝑟𝑒𝑎𝑑(𝑑0) transitions are allowed,

• PSPACE-complete if 𝑛 is given as input.

Parameterized problem is much easier !

COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.
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In this model, many parameterized questions are between PTIME and NP. 
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In this model, many parameterized questions are between PTIME and NP. 

However, the model is limited; many shared-memory algorithms require more expressiveness !

One such example: round-based algorithms.

Our current model
Round-based 

algorithms
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We want to model round-based distributed algorithms234 that look like this:

Each round has its own set of shared registers

→ unbounded memory !

read and write to registers

of nearby rounds only

Asynchronous rounds

2. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

3. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007

4. Raynal, M., Stainer, J.: A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets. CISIS, 2012 
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

48

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓
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𝑤𝑟𝑖𝑡𝑒(a)

Write to register of current 

round of the process

Read from register one round below

𝑟𝑒𝑎𝑑−1(b)

49

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

Read from register of  current round

Send process to next round
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

50

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

Two processes,

both on round 0

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

0
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

51

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

0
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

52

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

1
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

53

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

1
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

54

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)
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𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

56

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 a

0

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

57

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 a

1

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

58

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 b

0 a

1

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

59

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 b

0 a

2

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

60

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

61

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

62

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

63

𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

✓𝑞𝑓 is coverable
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𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(a)
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𝑞0

Increment 

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment 

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

a is written to even 

rounds only

a must be read two 

rounds in a row

𝑞𝑓 is not coverable
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Theorem5: COVER is PSPACE-complete. 

5. Bertrand, N., Markey, N., Sankur, O., W.: 

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022 
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General aim : automated methods for verification of distributed systems using model checking.

Parameterized verification:

• Systems of arbitrary number of participants

• If algorithm says yes, then the system is correct regardless of the number of participants

• Efficient techniques thanks to copycat properties

In this talk:

• Simple model for shared-memory systems with finite memory

• More complex model for round-based systems



Nicolas Waldburger67

General aim : automated methods for verification of distributed systems using model checking.

Parameterized verification:
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• If algorithm says yes, then the system is correct regardless of the number of participants

• Efficient techniques thanks to copycat properties

In this talk:

• Simple model for shared-memory systems with finite memory

• More complex model for round-based systems

Thanks for your attention ! Any questions?


