
Nicolas Waldburger
Journée D4, 05/10/23

1

Nicolas Waldburger2

Peterson’s mutual exclusion algorithm:

Algorithm from

Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

For process 𝑖 ∈ {0,1}:

while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things;
flagi = false ;

Correctness = the processes are not in their critical section simultaneously

Nicolas Waldburger3

Peterson’s mutual exclusion algorithm: Automata-based model

𝑛0 𝑛1

𝑤0 𝑤1

𝑐0 𝑐1

flag0 ≔ true
turn ≔ 1

flag1 ≔ true
turn ≔ 0

flag1 == true
𝑜𝑟 turn == 0

flag0 == true
𝑜𝑟 turn == 1

flag0 ≔ false flag1 ≔ false

Algorithm from

Peterson, G.: Myths about the Mutuel Exclusion Problem. Information Processing Letters, 1981

Correctness = the processes are not in their critical section simultaneously

= 𝑐0 and 𝑐1 cannot be covered simultaneously

For process 𝑖 ∈ {0,1}:

while true:
do non-critical things ;
flag𝑖 = true ; turn ≔ 1 − 𝑖 ;
wait until (flag1−𝑖 == false 𝑜𝑟 turn == 𝑖)
do critical things;
flagi = false ;

𝑛𝑖

𝑤𝑖
𝑐𝑖

Nicolas Waldburger4

Does satisfy

requirement

?

Many thanks to Nathalie Bertrand for this slide

distributed system

Nicolas Waldburger5

Does satisfy

distributed system requirement

?

… ⊨ 𝐀𝐆(¬𝑐0 ∨ ¬𝑐1)

model
model-checking

algorithm
property

?

Many thanks to Nathalie Bertrand for this slide

Nicolas Waldburger6

“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand

Nicolas Waldburger7

▪ Scalability issue when the size of the system is large

“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand

Nicolas Waldburger8

▪ Scalability issue when the size of the system is large

▪ What if I don’t know the number of agents beforehand ?

“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand

Nicolas Waldburger9

▪ Scalability issue when the size of the system is large

▪ Often undecidable problems…

▪ What if I don’t know the number of agents beforehand ?

“Traditional” model checking: describe behavior of each process separately

⇒ fix number of processes beforehand

Nicolas Waldburger10

…

▪ Parameterized system = the number of participants is not fixed in advance

▪ System must be correct for any number of participants

→ New techniques than can be more efficient on large systems !

Nicolas Waldburger11

Nicolas Waldburger12

▪ We could say that all processes are identical, or that there is one leader and all others are followers

Nicolas Waldburger13

▪ We could say that all processes are identical, or that there is one leader and all others are followers

▪ How much computing power for a given process? Finite-state machines, pushdown machines, access

to private variables…

Nicolas Waldburger14

▪ We could say that all processes are identical, or that there is one leader and all others are followers

▪ How much computing power for a given process? Finite-state machines, pushdown machines, access

to private variables…

▪ Means of communication:

Rendez-vous Broadcast Shared memory

two processes

must synchronize

a process sends a

messages to its neighbors

a process reads from the

shared memory or writes

to the shared memory

Communication

primitive

…

Nicolas Waldburger15

From now on, all processes are identical and described by a simple finite-state machine (no stack, no

private memory…) where transitions interact with the shared memory.

𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a) 𝑟𝑒𝑎𝑑1(a)

…

a b a

1 2 3

Shared memory

Nicolas Waldburger16

𝑞𝑓

Coverability problem: Input: A protocol 𝑃 (= an automaton) with an error state 𝑞𝑓.

Question: Does there exists a number of processes 𝑛 and an execution of the system with 𝑛
processes where one of them gets to 𝑞𝑓?

Nicolas Waldburger17

Parameterized problem: if answer is no then the system is safe for every value of 𝑛

Coverability problem: Input: A protocol 𝑃 (= an automaton) with an error state 𝑞𝑓.

Question: Does there exists a number of processes 𝑛 and an execution of the system with 𝑛
processes where one of them gets to 𝑞𝑓?

𝑞𝑓

Nicolas Waldburger18

atomic read-write combination: a process can perform a read

then a write and no one else can act in between

𝑟𝑒𝑎𝑑1(a)

Nicolas Waldburger19

𝑟𝑒𝑎𝑑1(a)

atomic read-write combination: a process can perform a read

then a write and no one else can act in between

𝑟𝑒𝑎𝑑 no ; 𝑤𝑟𝑖𝑡𝑒(yes)

Atomic combinations allow for leader election: (too) powerful model

In fact, as expressive as Petri Nets: coverability is EXPSPACE-complete… → let’s forbid atomic combinations

𝑟𝑒𝑎𝑑 no
≠

𝑤𝑟𝑖𝑡𝑒(yes)

atomic non-atomic

Nicolas Waldburger

a

b

𝑑0

𝑟𝑒𝑎𝑑1(a)

No atomic read/write

combinations

Initial value in the registers

1

2

3

Finite number of shared registers,

each register has a value from

finite set of symbols Σ

Model inspired by: Esparza, J., Ganty, P., Majumdar, R.:

Parameterized verification of asynchronous shared-memory systems. Journal of the ACM, 2016
20

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

A single

register

𝑟𝑒𝑎𝑑(c)

21

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

Two

processes

Initial

value

𝑟𝑒𝑎𝑑(c)

22

𝑑0

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

23

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

𝑑0 𝑟𝑒𝑎𝑑(c)

24

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

c 𝑟𝑒𝑎𝑑(c)

25

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c)

26

Nicolas Waldburger

𝑞0

𝐵 𝐶

𝐴

𝑞𝑓

𝑤𝑟𝑖𝑡𝑒 c

𝑟𝑒𝑎𝑑 𝑑0

𝑟𝑒𝑎𝑑 𝑑0

𝑤𝑟𝑖𝑡𝑒(a)

a 𝑟𝑒𝑎𝑑(c) 𝑞𝑓 is covered ✓

27

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
a

28

🐱
🐱
🐱

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

29

😺
🐱
🐱

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑤𝑟𝑖𝑡𝑒 b
b

30

😺

😺😺

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

31

🐱

🐱
🐱

🐱

Nicolas Waldburger

A process may “copy” the behavior of another process on the same state.

𝑟𝑒𝑎𝑑 a
a

32

🐱

🐱
🐱

😺

Nicolas Waldburger

𝑟𝑒𝑎𝑑 a
a

33

A process may “copy” the behavior of another process on the same state.

🐱 😺

😺😺

Nicolas Waldburger

Copycat property: Where we can have one process, we can have many processes.

34

𝑞𝑓

write(ok)

read(ok)

A process may “copy” the behavior of another process on the same state.

Nicolas Waldburger35

𝑞𝑓

write(ok)

read(ok)

Copycat property: Where we can have one process, we can have many processes.

A process may “copy” the behavior of another process on the same state.

Nicolas Waldburger36

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

Nicolas Waldburger37

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

Nicolas Waldburger38

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

Nicolas Waldburger39

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

write(b)

Nicolas Waldburger40

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

𝑞𝑓

write(b)

Nicolas Waldburger41

𝑞𝑓

write(b)

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

Nicolas Waldburger42

𝑞𝑓
read(c)

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

write(b)

Nicolas Waldburger43

𝑞𝑓
read(c)

✓

𝑟𝑒𝑎𝑑 d0
COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

write(b)

Nicolas Waldburger44

𝑟𝑒𝑎𝑑 d0

COVER is in PTIME in this case, by contrast it is:

• NP-complete if 𝑟𝑒𝑎𝑑(𝑑0) transitions are allowed,

• PSPACE-complete if 𝑛 is given as input.

Parameterized problem is much easier !

COVER is decidable in polynomial time if 𝑑0 cannot be read (= no initialization)

using a simple saturation algorithm that computes all coverable states.

Nicolas Waldburger45

In this model, many parameterized questions are between PTIME and NP.

Nicolas Waldburger46

In this model, many parameterized questions are between PTIME and NP.

However, the model is limited; many shared-memory algorithms require more expressiveness !

One such example: round-based algorithms.

Our current model
Round-based

algorithms

Nicolas Waldburger47

We want to model round-based distributed algorithms234 that look like this:

Each round has its own set of shared registers

→ unbounded memory !

read and write to registers

of nearby rounds only

Asynchronous rounds

2. Aspnes, J.: Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002

3. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distrib. Comput., 2007

4. Raynal, M., Stainer, J.: A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets. CISIS, 2012

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

48

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

Write to register of current

round of the process

Read from register one round below

𝑟𝑒𝑎𝑑−1(b)

49

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

Read from register of current round

Send process to next round

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

50

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

Two processes,

both on round 0

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

0

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

51

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

0

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

52

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

1

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

53

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

1

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

54

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

55

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 𝑑0

0

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

56

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 a

0

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

57

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 𝑑0

0 a

1

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

58

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 b

0 a

1

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

59

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 𝑑0

1 b

0 a

2

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

60

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

61

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

62

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

⋮ ⋮

2 a

1 b

0 a

2

2

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(b)

63

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

✓𝑞𝑓 is coverable

Nicolas Waldburger

𝑤𝑟𝑖𝑡𝑒(a)

𝑟𝑒𝑎𝑑−1(a)

64

𝑞0

Increment

round

𝑤𝑟𝑖𝑡𝑒(b)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

Increment

round

𝑟𝑒𝑎𝑑 (𝑑0)

𝑟𝑒𝑎𝑑 (a)
𝑞𝑓

a is written to even

rounds only

a must be read two

rounds in a row

𝑞𝑓 is not coverable

Nicolas Waldburger

Theorem5: COVER is PSPACE-complete.

5. Bertrand, N., Markey, N., Sankur, O., W.:

Parameterized safety verification of round-based shared-memory systems. ICALP, 2022
65

Nicolas Waldburger66

General aim : automated methods for verification of distributed systems using model checking.

Parameterized verification:

• Systems of arbitrary number of participants

• If algorithm says yes, then the system is correct regardless of the number of participants

• Efficient techniques thanks to copycat properties

In this talk:

• Simple model for shared-memory systems with finite memory

• More complex model for round-based systems

Nicolas Waldburger67

General aim : automated methods for verification of distributed systems using model checking.

Parameterized verification:

• Systems of arbitrary number of participants

• If algorithm says yes, then the system is correct regardless of the number of participants

• Efficient techniques thanks to copycat properties

In this talk:

• Simple model for shared-memory systems with finite memory

• More complex model for round-based systems

Thanks for your attention ! Any questions?

