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Introduction of the model

Broadcast Networks

Definition1

(Reconfigurable) Broadcast Network = (Q,M,∆, q0) with
∆ ⊆ Q × {br(m), rec(m) | m ∈ M}× Q.

▶ Arbitrarily many agents at the start

▶ One step = an agent broadcasts a message m,
some (arbitrary subset of) other agents receive it.

Problems

Cover: Is there a run in which an agent reaches qf ?
Target: Is there a run in which all agents reach qf simultaneously?

Both problems are decidable in PTIME12.

1Delzanno, Sangnier, Zavattaro, CONCUR’10

2Fournier, PhD thesis, 2015
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Introduction of the model

Adding registers

Each agent now has local registers□1, . . . ,□r , containing values in N.
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Introduction of the model

Broadcast Networks of Register Automata (BNRA)3

Each agent now has local registers□1, . . . ,□r , containing values in N.

Initially, all registers of all agents contain distinct values.

A message is a pair (m, v) ∈ M× N. An agent can:

▶ Broadcast a message symbol along with a register value: br(m, ri )

▶ Receive a message of a given symbol m: rec(m, op), with op one of
the following:

store the value in register□i : ↓□i ,
test it for equality with register□i : =□i , ̸=□i

or discard the received value: ∗.
This model was first defined in 3, where the authors prove that this model
is undecidable if several values can be appended to the same message.
They also wrongly claimed that, with one value per message (our model),
coverability is decidable in Pspace.

3Delzanno, Sangnier, Traverso, RP’13
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Introduction of the model

Things we can do

We can check that messages received come from the same agent. Here a
word in a b a∗ c must be received with all messages having the same value:

rec(a,=□2)

rec(a, ↓□2) rec(b,=□2) rec(c,=□2)
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Introduction of the model

Things we can do

We can check that a sequence of messages we sent was received.
Here the top branch sends a b, the bottom branch receives a b and sends
an acknowledgement.

br(a,□1) br(b,□1) rec(ok ,=□1)

rec(b,=□1) br(ok,□1)
rec(a, ↓□1)
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Introduction of the model

Parameterized verification principles

Our parameterized problems

Cover: Is there a number of agents n, a run over n agents in which an
agent reaches qf ?
Target: Is there a number of agents n, a run over n agents in which all
agents reach qf simultaneously?

▶ Unlimited supply of agents.

▶ For Cover, we can add as many agents as we need at no cost.

Copycat principle

Given a run ρ, we can construct a run made of many copies of ρ running
in parallel.

Main theorem

Cover is decidable for BNRA.
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Decidability of Cover for signature BNRA

Signature BNRA

Signature BNRA

An agent never modifies its first register, and only broadcasts with the
value of its first signature.
Other registers are used to store and compare values received.

The first register acts as an identity with which agents sign their messages.
br

rec
↓,=, ̸=

· · ·

Messages received with the same value come from the same agent.
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Decidability of Cover for signature BNRA

Tree witnesses for Cover
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Decidability of Cover for signature BNRA

Tree witnesses for Cover

u0

u1, u2 u3

u5u4 u6

w1 w2 w3

w4 w5 w6

qf

local run

word of M∗

Lemma

There is a tree witness if and only if the instance of Cover is positive.

For decidability, we need to bound the size of well-chosen tree witnesses.
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Decidability of Cover for signature BNRA

Branch reduction

Lemma

If a node labelled w has a descendant labelled w ′ with w a subword of w ′

(written w ⪯ w ′) then the tree can be shortened.

u

u′

w1

w2

· · ·
u′

w1 ⪯ w2

After iterating this shortening procedure, we end up with a tree in which a
node labelled w has no descendant labelled w ′ ⪰ w .
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Decidability of Cover for signature BNRA

Well quasi-orders

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

× ×
×

×

×

×
×

×

×

You cannot pick a point higher on both

coordinates than one of the previous points.

(4, 3)→ (6, 3)→ (2, 4)→ (7, 1)→ (0, 5)→ (8, 0)→ (3, 1)→ (1, 2)→ (0, 0)
This order on N2 is a well quasi-order : every bad sequence is finite.

Higman’s lemma

For a finite alphabet Σ, the subword order ⪯ is a well quasi-order over Σ∗.
In other words, there is no infinite bad sequence w0,w1,w2, . . . in Σ∗, i.e.,
such that wi ⪯̸ wj for all i < j .
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Decidability of Cover for signature BNRA

Back to the trees

If qf can be covered, then there is a witness of the execution of the form:

u0

u1 u2 u3

u5u4 u6

w1 w2 w3

w4 w5 w6

qf

local run

word of M∗

w1 ⪯̸ w4 w3 ⪯̸ w5,w3 ⪯̸ w6

Every branch forms a bad sequence. Because ⪯ is a well quasi-order, we
know that every branch of the tree is finite...

Not useful !
We need a bound on the size of the tree, so that we can iterate over every
possible such tree in finite time.
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Decidability of Cover for signature BNRA

Bounds on the length of sequences

Obviously, there is no general bound on the length of a bad sequence: the
sequence mk ,mk−1, . . . ,m with m ∈ M is a bad sequence of length k .

However, there is a bound if we have some control on the size of the
elements of the sequence:

Length function theorem4

Given a finite alphabet Σ and a computable function F : N → N, there is a
computable bound B such that every sequence (wi )i∈N over Σ such that

▶ wi ⪯̸ wj for all i < j (bad sequence) and

▶ |wi | ≤ F (i) for all i

has length at most B.

4Schmitz, Schnoebelen, ICALP’11
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Decidability of Cover for signature BNRA

Applying the length function theorem

Consider a branch of a tree of minimal size:

u0

u1

u2

. . .

un

w1

w2

w3

wn

qf

|w1| ≤ |u0|

|w2| ≤ |u1|

|w3| ≤ |u2|

|wn| ≤ |un−1|

We need to bound the number of steps that an agent has to perform to
perform a task: we need a function f such that |ui | ≤ f (|wi |).
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Decidability of Cover for signature BNRA

Bounding local runs

By induction on the number of active registers.
Register□i is active when some storing action ↓□i is performed.

0 active registers1 active registersm active registers

Say we can reduce any local run with < m active registers of length ≥ K .

q

v1
v2
v3
v4

q′

v ′1
v ′2
v ′3
v ′4

q′′ q′′q′′ q′

v ′1
v ′2
v ′3
v ′4

> |Q|> |Q|

q′′ q′′ q′

v ′1
v ′2
v ′3
v ′4

q′′

> |Q|(|Q|+ 1)> |Q|(|Q|+ 1)

q′′ q′′ q′

v ′1
v ′2
v ′3
v ′4

q′′

K KK

> |∆|K
K

q′

v ′1
v ′2
v ′3
v ′4
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Decidability of Cover for signature BNRA

Bounding the tree

Lemma

There is a function φ such that if an agent has a local run between two
local configurations, then it has one such local run of length ≤ φ(|∆|, r).

∆: set of transitions r : number of registers.

Corollary

If an agent has a local run that broadcasts w , then it has one such local
run of length ≤ |w |φ(|∆|, r).
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Decidability of Cover for signature BNRA

Bounding the branches

u0, v0

u1, v1

u2, v2

. . .

un, vn

w1

w2

w3

wn

qf

|w1| ≤ |u0|

|w2| ≤ |u1|

|w3| ≤ |u2|

|wn| ≤ |un−1|

|u0| ≤ ϕ(|∆|, r)

|w1| ≤ ϕ(|∆|, r)

|u1| ≤ |w1|ϕ(|∆|, r) ≤ ϕ(|∆|, r)2

|w2| ≤ ϕ(|∆|, r)2

|u2| ≤ |w2|ϕ(|∆|, r) ≤ ϕ(|∆|, r)3

|w3| ≤ ϕ(|∆|, r)3

. . .

|wn| ≤ ϕ(|∆|, r)n

Length function theorem: we obtain a computable bound B(|∆|, r) such
that n ≤ B(|∆|, r): B bounds the height of a witness tree for Cover!
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. . .

un, vn

w1

w2

w3

wn

qf

|w1| ≤ |u0|

|w2| ≤ |u1|

|w3| ≤ |u2|

|wn| ≤ |un−1|

|u0| ≤ ϕ(|∆|, r)

|w1| ≤ ϕ(|∆|, r)

|u1| ≤ |w1|ϕ(|∆|, r) ≤ ϕ(|∆|, r)2

|w2| ≤ ϕ(|∆|, r)2

|u2| ≤ |w2|ϕ(|∆|, r) ≤ ϕ(|∆|, r)3

|w3| ≤ ϕ(|∆|, r)3

. . .

|wn| ≤ ϕ(|∆|, r)n

Length function theorem: we obtain a computable bound B(|∆|, r) such
that n ≤ B(|∆|, r): B bounds the height of a witness tree for Cover!
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Decidability of Cover for signature BNRA

Decidability and complexity

Bounds

We use the previous argument to bound (in well-chosen witness trees):

▶ the length of all branches,

▶ the size of every node,

▶ the maximal degree of the tree.

This bounds the total space needed to store such a tree.

We can enumerate all such trees in finite time, therefore

Theorem

The Cover problem for signature BNRA is decidable

and in Fωω .

The length function theorem in fact gives us a bound for the height of our
trees that is a function in hyper-Ackermannian class Fωω of |∆| and r .
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Decidability of Cover in the general case

General case

Agents can broadcast messages with values that they received before.

An agent a now receives two types of messages:

▶ Messages with values that belonged to other agents initially.

▶ Messages with values that a had initially, that it had broadcast and
that someone else stored and broadcasts.
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Decidability of Cover in the general case

Observation

An agent may do this:

br(a,□1)br(b,□1) rec(c ,=□1) rec(d ,=□1) rec(c ,=□1)

To witness that this is feasible, we must exhibit:

▶ A run that, after receiving (a, v)(b, v), broadcasts (c , v), and

▶ A run that, after receiving (a, v)(b, v)(c , v)∗, broadcasts (d , v).

We add contract nodes labelled w → m that witness a local run
that, if it receives word w with value v , can broadcast (m, v).
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Decidability of Cover in the general case

Our new tree witnesses

br(m0, v0) br(m1, v0)

rec(m2, v2)rec(m3, v0)rec(m3, v0)

br(m0, v0) br(m1, v0)

rec(m2, v2)rec(m3, v0)rec(m3, v0)

rec(m1, v0)rec(m0, v0) rec(m2, v2)

br(m3, v0) br(m1, v2)

rec(m1, v2)

br(m2, v2)

m0m1 → m3 m2

rec(m2, v2) rec(m1, v2)

br(m1, v2)
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Decidability of Cover in the general case

Branch reductions

u

u′

w1

w2

· · ·
u′

w1 ⪯ w2

u, v

u′, v ′

w1 → m

w2 → m
· · ·

u′, v ′

w1 ⪰ w2

...
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Decidability of Cover in the general case

Things are more complicated than before

u1

u2 u3 u4

u6u5 u7

w2

w7

w3 → m3
w4 → m4

w6w5

Problem: The number of messages that a node must broadcast now
depends on its w → m children, and not just on its father.
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Decidability of Cover in the general case

Rearranging our trees

u11

u1

u2 u3

u3

u4

u4

u6

u6

u5 u7

u7

w2

w7

w3 → m3
w4 → m4

w6w5

w7w3 → m3

w4 → m4

w6
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Decidability of Cover in the general case

Rearranging the tree

Definition

The altitude of a node is

▶ 0 if it is the root

▶ its father’s altitude +1 if it is labelled w → m

▶ its father’s altitude −1 if it is labelled w

Nicolas Waldburger Parameterized Verification of BNRA 29 / 42



Decidability of Cover in the general case

Bounding the altitude

Let A be the maximal altitude in the tree, we follow a branch reaching it.

0

1

A− 3

A− 2

A− 1

A

|w0| ≤ ψ(|∆|, r)

|w1| ≤ ψ(|∆|, r)2

|w2| ≤ ψ(|∆|, r)3

|w3| ≤ ψ(|∆|, r)4

|wA| ≤ ψ(|∆|, r)A+1

altitude

root

(wA,mA)

(w3,m3)

(w2,m2)

(w1,m1)
(w0,m0)
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Decidability of Cover in the general case

Bounding the altitude

We have bounds on the maximal altitude and the size of the root.
Let R be the size of the root, −B the minimal altitude.

0

−1

−B + 3

−B + 2

−B + 1

−B

|w0| ≤ R

|wB−1| ≤ Rψ(|∆|, r)B−1

|wB−2| ≤ Rψ(|∆|, r)B−2

|wB−3| ≤ Rψ(|∆|, r)B−3

|w1| ≤ Rψ(|∆|, r)

|wB | ≤ Rψ(|∆|, r)B

altitude

root

w0

w1

wB−3

wB−2

wB−1 wB
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Decidability of Cover in the general case

Decidability

We have obtained bounds of the height of our witness trees; from there,
we can easily bound the space needed to store such trees.

We can simply enumerate witness trees, thus

Theorem

Cover for BNRA is decidable (and in class Fωω).

By contrast,

Theorem

Target is undecidable for BNRA.
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Complexity lower bound

A matching lower bound

Theorem

Cover in BNRA is Fωω -hard, even in signature protocols with two
registers per agent.

We proceed by reduction from lossy channel systems:

Theorem5

Lossy channel system reachability is Fωω -hard.

5Schnoebelen, Information Processing Letters ’08
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Complexity lower bound

Lossy Channel Systems

Lossy Channel System = Transition system with FIFO memory +
unreliable writes.

Reachable states

w(a)

w(a)

r(b)

r(b)

w(c)

w(c)

r(a)

r(a)

r(a)

w(b)

w(b)w(b)

a

ab

Lossy channel system reachability asks if one can reach a given state. This
problem is decidable but has very high complexity: it is Fωω -complete.
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Complexity lower bound

Encoding Lossy Channel Systems in BNRA

We simulate a lossy channel system through a chain of agents that each
apply a transition.
Each agent stores:

▶ An identifier for itself

▶ Its predecessor’s identifier

· · ·q0, ϵ q1,w1 qn,wn
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Complexity lower bound

Encoding write transitions of Lossy Channel Systems

br(q0,□1)

rec(q, ↓□2)

br(q′,□1)

br(a,□1)

rec(x ,=□2) br(x ,□1)

Gadget for a transition q
write(a)−−−−→ q′ of the lossy channel system
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Complexity lower bound

Encoding read transitions of Lossy Channel Systems

br(q0,□1)

rec(q, ↓□2)

br(q′,□1)

rec(a,=□2)

rec(x ,=□2) br(x ,□1)

Gadget for a transition q
read(a)−−−−→ q′ of the lossy channel system
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Complexity lower bound

Summary of complexity results

Theorem

Cover in BNRA is Fωω -complete.

Theorem

Cover for BNRA with one register per agent is NP-complete.
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Complexity lower bound

Thank you for your attention!
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Turning the communication graph into a tree

X

Y

Z

a

1

a

1

b

2

c

3

d

4

qf

5

Tasks:
ϵ 7→ a

b, c 7→ ad

Tasks:
a 7→ c

ad 7→ qf
ad = receive a then d

with same value

Tasks:
a 7→ b
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Turning the communication graph into a tree

X

Y

Z

qf

a

1

a

1

b

2

c

3

d

4

5

Tasks:
ϵ 7→ a

b, c 7→ ad

Tasks:
a 7→ c

ad 7→ qf

Tasks:
a 7→ b

−→

X

Y

X Z X

Y

qf

a

c

a b

ad
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