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Introduction

Automated verification and model checking

Computerised and electronic systems are now part of our every day life: administration,
commerce, communication, education, energy, health, media or transportation. The ever
increasing number of electronic devices goes in pair with an ever increasing number of
challenges. Among the most famous ones we find cryptography, privacy, bugs and design
flaws. Errors in critical systems (such as in aeronautic, banking, energy, health and
weaponry) have a heavy human or economic cost and every new one has made software
verification more and more essential. Among hundreds of faulty softwares we highlight
four:

• The Therac-25 accident was among the first failures to gain public attention. Therac-
25 was a radiation therapy machine used in the 1980’s to treat cancer in Canada
and the USA. Between 1985 and 1987, a programming error caused multiple pa-
tients to receive massive overdose of radiation. These overdoses resulted in multiple
deaths and a degradation of some patients’ condition. Leveson and Turner detail
their finding about the incident in [32].

• Ariane 5 was a rocket launcher developed by the ESA (European Space Agency).
During its first test flight in 1996, the rocket was prematurely terminated due to an
integer-overflow error. The CNES commission charged to investigate the accident
made their conclusion available [34], we quote its conclusion.

The failure of the Ariane 501 was caused by the complete loss of guidance
and altitude information 37 seconds after start of the main engine ignition
sequence (30 seconds after lift-off). This loss of information was due to
specification and design errors in the software of the inertial reference
system.
The extensive reviews and tests carried out during the Ariane 5 Devel-
opment Program did not include adequate analysis and testing of the
inertial reference system or of the complete flight control system, which
could have detected the potential failure.

They also suggest to:
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Organise, for each item of equipment incorporating software, a specific
software qualification review. The Industrial Architect shall take part in
these reviews and report on complete system testing performed with the
equipment.
. . .

Review all flight software (including embedded software), and in partic-
ular : Identify all implicit assumptions made by the code and its justifi-
cation documents on the values of quantities provided by the equipment.
Check these assumptions against the restrictions on use of the equipment.
Verify the range of values taken by any internal or communication vari-
ables in the software. Solutions to potential problems in the on-board
computer software, paying particular attention to on-board computer
switch over, shall be proposed by the project team and reviewed by a
group of external experts, who shall report to the on-board computer
Qualification Board.
. . .

Set up a team that will prepare the procedure for qualifying software,
propose stringent rules for confirming such qualification, and ascertain
that specification, verification and testing of software are of a consistently
high quality in the Ariane 5 program. Including external RAMS [editor’s
note: Reliability, Availability, Maintainability and Safety] experts is to
be considered.

• In 2004 a blackout occurs on north-east regions of the north american sub-continent.
A simple blackout cascaded into a massive and generalised power outage due to a
software bug in the alarm system. The USA-Canada power system outage task
force in its official report [22] draws the following technical recommendations.

Develop and deploy IT management procedures: CAs’ and RCs’ IT and
EMS support personnel should develop procedures for the development,
testing, configuration, and implementation of technology related to EMS
automation systems and also define and communicate information secu-
rity and performance requirements to vendors on a continuing basis
. . .

Implement controls to manage system health, network monitoring, and
incident management: IT and EMS support personnel should implement
technical controls to detect, respond to, and recover from system and
network problems. Grid operators, dispatchers, and IT and EMS support
personnel should be provided the tools and training to ensure that the
health of IT systems is monitored and maintained.

The wish for better reliability can also be found in one of their institutional recom-
mendations:

DOE [editor’s note: U.S.A Department of Energy] should expand its
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research agenda, and consult frequently with Congress, FERC, NERC,
state regulators, Canadian authorities, universities, and the industry in
planning and executing this agenda.
. . .

More investment in research is needed to improve grid reliability, with par-
ticular attention to improving the capabilities and tools for system mon-
itoring and management. Research on reliability issues and reliability-
related technologies has a large public-interest component, and govern-
ment support is crucial.
. . . .
Study of air traffic control, the airline industry, and other relevant in-
dustries for practices and ideas that could reduce the vulnerability of the
electricity industry and its reliability managers to human error.

The mention of the air traffic control and airline industry is not without importance.
Aeronautics and space related industries have been the leading force in research on
software verification for many years. The joint task force believes results devel-
oped for aeronautics may transfer to the energy sector, an opinion shared by most
people in the verification community that lead to the development of quantitative
verification at the turn of the new millennium.

• We finish on a more recent case: the ExoMars Schiaparelli. Schiaparelli EDM
lander was a sonde in the ExoMars mission of the ESA (European Space Agency)
and ROSCOSMOS (Russian Space Programm). The sonde was supposed to land
in a plain of Mars on 19 October 2016. Schiaparelli however crashed on the surface
of Mars due to a software malfunction. The full investigation will be conducted
early 2017 but a preliminary report indicates that the Inertial Measurement Unit
(IMU) worked a second longer than expected. When merged into the system, the
additional informations made Schiaparelli believe its altitude was negative which
then caused an early release of the parachute.

Checking for bugs and unwanted behaviour is usually done in one of three ways:
testing for error (by generating an adequate battery of tests to run on the software),
checking for proof of correctness (finding a formal/mathematical proof that there cannot
be errors within the software’s code) and exploring all the potential executions of the
system. In this thesis, we will exclusively focus on the latter technique.

Checking for a proof of correct behaviour through the exploration of all potential
executions can usually be decomposed in two questions: “How do I want my system to
behave ?” (specification) and “Does my system behave as expected?” (model checking).
This two-step method evidently requires a common framework able to handle multiple
problems at once and resulted in the development of formal verification: methods work-
ing for classes of systems and set of properties respecting a predetermined formalism.
Checking for a given property to hold on a given system can then be done by:

1. Specifying the system in a model (a formal representation of the system).
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System Property

a

b
c

d

e
Model

F (a ∧G b) ∨ cU a

Formula

Result

Model abstraction Logical abstraction

Checking procedure

Figure 1: Model checking

2. Specifying the property in a known formalism (a condition to validate or disapprove
an execution of the system).

3. Checking the property expressed adequately in the chosen formalism onto the
model. We find here the usual questions of time and space efficient algorithms.

4. Transposing the answer from the formal method of the previous step to our system
and property.

Figure 1 illustrates the idea. The model abstraction on the left part of the figure represents
the first step, the logical abstraction on the right part mirrors the second point and the
checking procedure at the bottom represents the last two steps.

Specifications for closed systems

A closed system is either an electronic component or a software that does not receive
nor alter its environment past the initial conditions. Simple examples can be found in
programs calculating standard mathematical functions: the program looks at the entry,
does some calculations and returns the result. By opposition, an open system interacts
and is influenced by its environment. Any electronic device modifying its behaviour based
on the surrounding atmospheric conditions is, de facto, an open system.
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The verification of closed systems has been extensively developed in the last fifty years.
Numerous models have been proposed to represent closed system in a formal way: graphs,
transition systems, Petri-nets. . . ; similarly, multiple formalisms have been associated with
each of these models. To express complex properties, researchers often rely on logics :
a set of properties that can all be built by following some common rules. Temporal
logics extend propositional logics with modalities in order to specify some properties of
executions of the programs. With temporal logics, one can express properties like the
one of Figure 2 (with an adapted syntax to make the formula readable).

E
1

( F p
2
∧
3
G p′

4
)



There exists an execution
1

that will eventually satisfy p
2

and
3

that, at every step, satisfies p′
4

Figure 2: A temporal formula for closed systems.

Formulas for closed systems are to be interpreted on transition systems, i.e. directed
graphs labelled with atomic propositions. Temporal logics can be decomposed in three
non-disjoint families: branching time logics (see CTL [16]), linear time logics (like LTL
[44]) and fixed-point modal logics (such as the µ-calculus Lµ, see [57]). The linear time
logics target a single execution of the system while the branching time logics focus on
multiple executions with, usually, simpler objectives. It is possible to combine both
aspects (as in CTL∗ [16]). The fixed-point modal logics are, as the name suggest, based
on fixed-point operator.

Specification for open systems

Open systems are software or electronic devices that receive informations and interact
with their environment. In closed systems, formulas express properties of paths or sets
of paths (for instance, one can say that all executions of the system are safe) . With
multiple agents, each agent has a specific behaviour (or strategy) and the execution is
determined by the mash-up of all strategies. We can represent the environment by an
agent of the system, whose behaviour can be erratic. Logics have then to integrate these
agents in their syntax. We give in Figure 3 an adaptation to open systems of the formula
given in the closed-system section, C represents a coalition, i.e. a set of agents.

Almost none of the models for closed systems can be used to model open systems;
several formalisms have therefore been developed. The usual models for open systems
are turn-based and concurrent game structures, both adapted from transition systems to
integrate the possible existence of multiple agents. Similarly, many logic formalisms used
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〈〈C〉〉
1

( F p
2
∧
3
G p′

4
)



There exist strategies for the agents of C such that
1

no matter the strategies of the other agents,
1

the resulting path will eventually satisfy p
2

and
3

at every step, satisfy p′
4

Figure 3: An adaptation of the formula of Figure 2 to open systems.

to specify closed systems properties have been extended to work on open systems. Over
the years, the CTL and CTL∗ temporal logics have been adapted respectively as ATL and
ATL∗ and the µ-calculus Lµ have been extend in an alternating version ALµ. (see [2]).

Multiple agents with multiple objectives

In this thesis, we move away from the traditional works on open systems where a device
is responding to its environment to study multi-objective properties on multi-agent sys-
tems. An example can be found in simulation softwares: we may wish to study different
simulations and check which properties they share and what differentiates them from one
another. The simulations may share some common behaviours (from agents with fixed
strategies) while differing in some others (agents representing the environment).

Many difficulties arise when the goal of an agent depends from the behaviour, and
therefore the goals, of other agents. Most techniques developed to handle single objective
specifications usually work by assuming the worst behaviour possible from the environ-
ment and finding a solution for it. This however cannot be done in multi-objective
specifications as the optimal behaviour for an objective may not be optimal for another
one. The question then moves on asking if an agent has a behaviour working for all its
objectives while not disrupting the others.

Often the system asks for a conjunction of objectives: everyone must be able to
satisfy its desires. Conjunctions are relatively easy to handle, see [4] for example where
goals are made from a conjunction of a LTL and energy constraints. As we will see,
the difficulty rises drastically when we move away from conjunctions to more complex
boolean combinations of objectives. The way the different goals of a system limit each
agent behaviour will be the heart of this thesis.
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Outline
This thesis focus on a singular formalism adapted to multi-agents systems with multiple
objectives: the Strategy Logic SL. We mainly work on two issues:

• algorithms for the model checking problem, i.e. algorithms that take as input a
formula φ in SL and a multi-agent system G, and find if φ holds on G.

• the semantics of SL.

In the first chapter, we do a survey of the existing formalisms for multi-agent systems.
At the end of the survey, we present SL and its main fragments (among which SL[BG]).
We formally introduce the model checking problem in the second chapter. We also outline
some complexity results surrounding SL, among which we find two of importance: the
algorithm developed for SL model checking in [39] by Mogavero, Murano, Perelli and
Vardi, and the lower bound we developed for SL[BG] model checking.

As we will see in details, strategies within SL are quantified as first-order variables
before being assigned to the agents of the system. Strategy translations allow us to move
strategies along a history ρ. Similarly, a valuation translation translate a set of strategies
along ρ. SL semantics translate not only strategies assigned to some agents but also the
strategies stored in the variables that have yet to be assigned to someone. In the third
chapter, we study SL under a new notion of valuation translation where only strategies
assigned to agents are shifted along ρ. We call these new translations floating, they give
a new semantic FSL (Floating Strategy Logic) to SL. After introducing formally FSL, we
highlight the differences in expressiveness with SL and study in details its model checking
complexity.

The fourth chapter focuses on extending SL with quantitative constraints. There exist
multiple kinds of constraints, we focus on two of them: the ones that can express equality
and periodicity (we call them one-counter constraints), and the ones using upward-closed
sets (energy constraints).

SL is a multi-objective logic and (as the name suggests) can handle multiple objectives
at once. These objectives may spread along different paths corresponding to multiple
executions of the system. The authors of [39] highlighted an interesting feature of SL:
the choice of a strategy xb on a given history ρ may depend on the choice of another
strategy xa made on another history π. We say there is a side dependency of xb on
xa. They also wonder when and why these dependencies appear. The second part of this
thesis (chapters five to seven) is devoted to this question, often referred as the dependency
problem. Chapter five introduces the problem, maps the different dependencies and study
the impacts of each dependency. Chapter six pursues this study by adding a new type
of dependency to bypass the quantification order on prefixes of the current history. The
seven (and last) chapter focuses on a promising fragment of SL.

1 2

3

4

5 6 7

Figure 4: Reading order.

Figure 4 highlights the different relations between the
chapters. An arrow from chapter a to chapter b means that
notions developed in chapter a are used in chapter b. In
particular, the second part of the thesis (chapters five to
seven) must be read linearly.
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Chapter 1

State of the art

We present here a survey on different formalisms for multi-agent systems. This sets the
context in which Strategy Logic (the subject of this thesis) emerged. We start with a brief
introduction to temporal logics for closed systems: ω-regular automata, CTL, LTL, CTL∗

and Lµ. Next, we discuss the first formalisms for open systems, namely ω-regular winning
conditions, ATL, ATL∗ and ALµ. These logics suffer from a lack of expressiveness due to
two severe drawbacks: forced commitment and forced discard. We explain each problem
and detail some possible answers (GL, CATL, BSIL for the first and IATL, ATLsc, QLµ for
the second). Finally, we define the Strategy Logic SL and position it in the constellation
of all the formalisms for multi-agent systems.

1.1 Temporal logics for closed systems

1.1.1 ω-regular automata

We briefly discuss ω-regular automata. Though not a logic per say, ω-regular automata
can also express temporal properties. There exists many kinds: Büchi, co-Büchi, parity,
Rabin, Street, Muller. . . We however only present Büchi and parity automata, the ones
used in this thesis.

Definition 1.1 (Automaton).
An automaton is a tuple A := 〈S,Σ,∆, s0〉 where S is the state space, Σ the input alphabet,
∆ : S× Σ→ 2S the transition function and s0 the initial state.

An automaton is complete and deterministic whenever |∆(s, ξ)| = 1 for any s ∈ S
and any ξ ∈ Σ. A word over Σ is a (finite or infinite) sequence w := (wi)i≤L where
L ∈ N ∪ {∞} and wi ∈ Σ. A path in an automaton N is a sequence (si)i∈N of states.
We say that a word w over Σ is compatible with a path π := (si)i∈N of an automaton N
using Σ as its input alphabet whenever si+1 ∈ ∆(si, wi) for any i < L. For any path π
in a automaton N , we write Inf(π) for the set of states that appear an infinite number of
times in π.

17
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Büchi condition A Büchi automaton is a tuple N := 〈A,Ω〉 made of an automaton
A := 〈S,Σ,∆, s0〉 and a set Ω ⊂ S of states. A word w over Σ is accepted by N whenever
there exists a path π compatible with w and

Inf(π) ∩ Ω 6= ∅

Parity conditions A parity automaton D is also a tuple N := 〈A,Ω〉 but here Ω is a
mapping S → N assigning an integer to each state. A word w over Σ is accepted by D
whenever there exists a path π compatible with w for which the maximal parity visited
infinitely often is even, i.e.

∃i ∈ 2N

{
∃s ∈ Inf(π) with Ω(s) = i

∀j > i, ∀s ∈ Inf(π) we have Ω(s) 6= j

Both conditions will become useful on multiple occasions in this thesis, mainly because
of Theorem 1.3 (page 20) linking LTL formulas to these automata.

1.1.2 Temporal logics on transition systems

Transition Systems

Transition systems are standard to represent the operational semantics of closed systems.

Definition 1.2 (Transition system).
A transition system is a tuple ST := 〈AP, S, ↪→, labels, s0〉 where AP is a set of atomic
propositions, S is a finite set of states, ↪→ ⊆ S×S is a transition function, labels : S→ 2AP

is a labelling function and s0 ∈ S the initial state.

There exists many other models, transitions systems are however the standard one
for checking temporal properties of potential executions. They also are sufficient for the
three main closed-system temporal logics CTL, LTL and Lµ.

We model an execution of the closed system under consideration by a path in its
associated transition system. A path in a transition system ST := 〈AP, S, ↪→, labels, s0〉
is an infinite sequence (si)i∈N where for any i ∈ N si ∈ S and (si, si+1) ∈↪→. We use
the standard notations π(i) to refer to the ith element of a path π and for any s ∈ S we
denote by Paths the set of all paths in ST starting from s.

Branching time logic: CTL

The first formalism we introduce is the computation tree logic CTL. It was designed in
1982 by Clarke and Emerson [16] to synthetize synchronization skeletons, an abstraction
of concurrent programs. Its formulas are built upon a set AP of atomic propositions by
the following grammar:

CTL 3 φ ::= p | φ ∨ φ | ¬φ | EXφ | AXφ | φEUφ | φAUφ
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CTL formulas are evaluated at a state s of a transition system ST . Its satisfaction
relation |= is boolean, meaning that it either evaluates to true (that we write >) if the
formula holds on the transition system or false (written ⊥) if it does not. We define it
inductively and start with the boolean combinations:

ST , s |= φ ∨ φ′ ⇔ ST , s |= φ or ST , s |= φ′

ST , s |= ¬φ ⇔ ST , s 6|= φ

The ∨ and ¬ operators are the standard boolean operators from propositional logic with
semantics adapted to CTL. We can retrieve the conjunction ∧ with the standard trans-
lation φ ∧ φ′ = ¬(¬φ ∨ ¬φ′). We can also define the universal true > within the logic by
> := p∨¬p and the universal false ⊥ by ⊥ := ¬ >. The other operators’ semantics obey
the following rules:

ST , s |= p ⇔ p ∈ labels(s)
ST , s |= EXφ ⇔ ∃s′ ∈ S with (s, s′) ∈↪→ and ST , s′ |= φ

ST , s |= AXφ ⇔ ∀s′ ∈ S s.t. (s, s′) ∈↪→ it holds ST , s′ |= φ

ST , s |= φ′EUφ ⇔ ∃ρ ∈ Paths ∃i ∈ N with ST , ρ(i) |= φ

and ∀j ≤ i it holds ST , ρ(j) |= φ′

ST , s |= φ′AUφ ⇔ ∀ρ ∈ Paths ∃i ∈ N with ST , ρ(i) |= φ

and ∀j ≤ i it holds ST , ρ(j) |= φ′

s0

s1

p1

s2

s3

p2

Figure 1.1: A transition
system

CTL is a branching-time logic, meaning it may express prop-
erties about multiple executions of the system. For example the
formula EX p1 ∧ (>EU p2) expresses the existence of a first
execution that will lead in one step to a state labelled by p1

and the existence of a second execution (potentially the same
as the first one) that will eventually see a state labelled by p2.
The formula holds from s0 on the transition system depicted on
Figure 1.1.

Since any temporal modality requires a fresh quantification
over paths, the logic is actually not very expressive. For exam-
ple, we cannot express the existence of an execution that sees
infinitely often two different atomic propositions [21]. To get more precise properties
about the path within a transition system, we need another formalism.

Linear time logic: LTL

Introduced in 1977 by Pnueli [44], LTL (for linear-time temporal logic) has no branching
capabilities and focuses on a single execution of the system. In compensation, it may
express more complex path properties than CTL. Given a set AP of atomic propositions,
its formulas obey the syntax

LTL 3 φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ



20

Unlike CTL, LTL formulas are evaluated relatively to a path ρ and a position i of ρ.
The semantics of the boolean operators are the same as in CTL, the semantics of the
other operators are defined by:

ST , ρ, i |= p ⇔ p ∈ labels(ρ(i))

ST , ρ, i |= Xφ ⇔ ST , ρ, i+ 1 |= φ

ST , ρ, i |= φ′Uφ ⇔ ∃i′ ∈ N with ST , ρ, i′ |= φ

and ∀j ≤ i′ it holds ST , ρ, j |= φ′

The U operator is referred to as “Until” and the X operator is called “Next”. We will
also refer to the two of them as temporal operators. From the U operator we can build
three other temporal modalities: the “Future” operator F, the “Release” operator R and
the “Global” operator G.

Fφ := >Uφ φRφ′ := ¬(¬φU¬φ′) Gφ := ¬F¬φ

The potential nesting of temporal operators and boolean operators allows for more
complex properties than the ones of CTL. For example, the formula G (F p ∧ F p′) ex-
presses that the path evaluated sees the atomic propositions p and p′ an infinite number
of times. This cannot be done in CTL [21]. There also exists a strong correlation between
LTL formulas and both Büchi and parity automata1.

Theorem 1.3 (Gerth, Peled, Vardi and Wolper [24] plus Piterman [43]).
For any LTL formula φ over a set AP of atomic propositions, there exists a Büchi au-
tomaton Nφ and a deterministic parity automaton Dφ over the alphabet 2AP such that for
any word w over 2AP the following are equivalent

• w (viewed as a path) satisfies φ

• w is accepted by Nφ

• w is accepted by Dφ

Merging CTL and LTL: CTL∗

We can merge LTL and CTL to get a logic capable of reasoning on multiple paths where
each requirement is an LTL formula. CTL∗ combines the temporal operators of LTL with
the paths quantifiers of CTL through the following grammar.

CTL∗ 3 φ ::= p | φ ∨ φ | ¬ φ | Eϕ | Aϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ | φ

1There exists many papers on the transition from LTL to Büchi automaton: [23], [49] and [60] for
example.
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We can see a separation within the grammar. The φ-type formulas derive from CTL.
They are evaluated relatively to a state s of a transition system ST so we refer to them
as state formulas. They obey the following semantics

ST , s |= p ⇔ p ∈ labels(s)
ST , s |= Eϕ ⇔ ∃ρ ∈ Paths with ST , ρ, 0 |= ϕ

ST , s |= Aϕ ⇔ ∀ρ ∈ Paths it holds ST , ρ, 0 |= ϕ

The ϕ-type formulas derive from LTL and are about a path property, we call them path
formulas. They obey the following semantics:

ST , ρ, i |= Xϕ ⇔ ST , ρ, i+ 1 |= ϕ

ST , ρ, i |= ϕ′Uϕ ⇔ ∃i′ ∈ N with ST , ρ, i′ |= ϕ

and ∀j ≤ i′ it holds ST , ρ, j |= ϕ′

ST , ρ, i |= φ ⇔ ST , ρ(i) |= φ

Consider the formula A(F p1)∧ E(G (F p2)), it translates to “All paths will eventually
reach a state labelled by p1 and there exists a path that sees p2 an infinite number of
times”. We retrieve the branching aspects of CTL (with two properties about two distinct
paths) and the expressiveness of LTL (with the imbrication of temporal operators).

Fix-point logics: Lµ

Other kinds of formalisms are possible. Among the most famous, we find fix-point log-
ics and the µ-calculus. The µ-calculus (Lµ for short) extends propositional logic with
“least” and “greatest” fix-point operators. Lµ formulas are build upon a set AP of atomic
propositions and a set V of variables, they obey the following rules:

Lµ 3 φ ::= p | Z | φ ∨ φ | ¬φ | [a]. φ | µZ. φ

with p ∈ AP and Z ∈ V ; considering a formula µZ. φ, every occurrence of Z in φ must
be positive (i.e. under an even number of negations).

The formulas in Lµ are evaluated relatively to transition systems enriched by actions,
i.e. a transition system ST = 〈AP, S,Act, ↪→, labels, s0〉 with an additional set Act of new
elements (the actions) and where the transition function ↪→: S×Act→ S is deterministic
and takes into account the actions. Unlike CTL, LTL or CTL∗, its satisfaction relation J·K
computes a function J·K : φ → 2S returning a set of states instead of a truth value. It is
defined inductively relatively to an interpretation χ : V → 2S of the variables in V by

JpKχ := {s ∈ S | p ∈ labels(s)}
JZKχ := {s ∈ S | s ∈ χ(Z)}

Jφ ∨ φ′Kχ := JφKχ ∪ Jφ′Kχ
J¬φKχ := S\JφKχ

J[a]. φKχ := {s ∈ S | ∀s′ ∈ S, if (s, a, s′) ∈↪→ then s′ ∈ JφKχ}

JµZ. φKχ :=
⋂
{T ⊆ S | JφKχ[Z/T ] ⊆ T}



22

with [Z/T ] meaning that we substitute every Z by T .
The operator µZ. φ is the least fix-point. Likewise to the other temporal logics we

can retrieve the ∧ operator using ∨ and ¬. We can also get two other modalities νZ.φ
and 〈a〉φ respectively dual of µZ. φ (making it the greatest fix-point) and [a]. φ.

〈a〉φ := ¬[a]. ¬φ νZ. φ := ¬µZ. φ[Z/¬Z]

1.2 Temporal logics for open systems
As we move to open systems, we need to update both the models and the formalisms.

1.2.1 Multi-agents models

Concurrent and turn-based game structures

Concurrent2 and turn-based games are the usual models used for open and multi-agent
systems.

Definition 1.4 (Concurrent game structure).
A concurrent game structure (CGS for short) is a tuple G := 〈AP,Agt,Q,Act,∆, labels〉
where AP is a non-empty and finite set of atomic proposition, Agt is a non-empty and
finite set of agents, Q is a non-empty and finite set of states, Act is a non-empty set of
actions, ∆ : Q × ActAgt → Q is a transition function and labels : Q → 2AP is a labelling
function.

Intuitively, the state space Q of a CGS represents the different status of the system and
the agents represent different parts of the system. The actions then express the possible
interactions between the agents. Finally the labelling adds some atomic informations, in
particular the bits needed to specify the good behaviour of the system.

Remark 1.5. In some works an initial state is added to the definition of CGS. In this
thesis, we deal with multiple objectives at the same time. Each objective may be evaluated
at a different state from the others, hence the notion of initial state is not particularly
relevant here and would only extend notations. For theses reasons, we omit it in our
definition of CGS.

Remark 1.6. In the definition of a CGS, the action set is common to all agents. However,
when building a CGS, we will need on multiple occasions to assign a given action a1 to a
given agent A1. This can be done by giving a fixed behaviour for the interactions of a1 with
the other agents. For example, we can build our game such that (within the transition
function) all the agents but A1 interact with a1 as they would with another action a2. This
way, an agent different from A1 has no use for a1, he can always play a2 equivalently.
We then refer to a1 as an action exclusive to agent A1.

2The notion of concurrency in computer science usually refers to the ability to decompose a system
into components whose executions can be done in any order: see for example the concurrency related
problems in Petri nets [19]. While concurrent games allow a certain form of concurrency, they are more
often used to model some notion of simultaneity.
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A second model called turn-based game structures, can be seen as a restriction of
CGS, where each state is controlled by a single agent. Turn-based game structures are
simpler and more intuitive than their concurrent counter-parts but may sometimes lack
expressiveness. For example they cannot convey any notion of simultaneity concerning
the choices of the agents.

Definition 1.7 (Turn-based game structure).
A turn-based game structure is a CGS G := 〈AP,Agt,Q,Act,∆, labels〉 where for each
state q ∈ Q there exists an agent A such that

∀m,m′ ∈ ActAgt\{A} ∀a ∈ Act ∆(q,m ∪ {A→ a}) = ∆(q,m′ ∪ {A→ a})

The agent A is then called the owner of q.

Histories, paths and strategies

To simulate an execution of the system, a pebble is placed on the state representing
the initial status of the system. At time t each agent plays an action, the resulting set
of actions, sometimes referred as a decision, combined with the pebble’s current state
determine a new state for the pebble through the transition function. The sequence of
states visited by the pebble as time passes determines the evolution of the system.

Definition 1.8 (History and paths).
A history in a game G := 〈AP,Agt,Q,Act,∆, labels〉 is a finite sequence (qi)i≤L (L ∈ N)
of states such that for any i < L there exists d ∈ ActAgt such that ∆(qi, d) = qi+1.

A path in G is an infinite sequence (qi)i∈N of states such that for any i ∈ N there exists
d ∈ ActAgt such that ∆(qi, d) = qi+1.

Note that a history does not include the actions played. A path represents an execu-
tion of the system (running forever) while a history can be seen as the beginning of an
execution that has yet to be completed. We denote by HistG and PathG respectively the
sets of histories and paths of G. For any history ρ, we also write lst(ρ) for the last state
of ρ. Finally, given either a history or a path ρ := (qi)i<L (with L ∈ N ∪ {∞}) and an
integer j < L, we write ρ≤j for the finite prefix (qi)i≤j of ρ and ρ(j) for the element qj.
As is customary, the singular and generalised concatenation of histories will respectively
be denoted by the symbols ρ · ρ′ and Πi∈I(ρi).

We use the notion of strategy to model the different behaviour of the agents. In this
thesis, strategies will be with infinite memory and deterministic, meaning no memory
restriction but no randomness.

Definition 1.9 (Strategy).
A strategy in a game G := 〈AP,Agt,Q,Act,∆, labels〉 is a (potentially partial) function
δ : HistG → Act taking a history and returning an action.

We write StratG for the set of strategies on G. A strategy is often reliant on a small
subset of all the informations carried by the history in input. For example it may look
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only at the last state of the history, the reactive synthesis community (another name for
people working with systems reacting to their environment) call such strategies positional
as they only depend on the position of the pebble. For reason that will become obvious
in Chapter 3, strategies are defined on all histories, independently of any starting state.

We refer as a context the assignment of a strategy to each agent. Formally, a context
is a function χ : Agt→ StratG . We can then define the outcome of a game.

Definition 1.10 (Outcome).
Let G := 〈AP,Agt,Q,Act,∆, labels〉 be a game, q one of its states and χ a context. The
outcome out(χ, q) := (qi)i∈N∗ of χ from q is the unique path where q1 = q and ∀i ∈ N∗,
qi+1 = ∆(qi, di) where di ∈ ActAgt is the function assigning an action to each agent by
following χ on history (qi′)i′<i.

Example

In 2005, the three french mobile operators Orange, SFR and Bouygues-telecom were
found guilty of fixed-price fraud and respectively fined for 220, 256 and 58 millions euros.
The fixed price fraud (FPF for short) consists in multiple companies agreeing to freeze
their products’ prices, making the concurrency (in the economic sense) disappear. In
most countries, including France, this practice is illegal. We present some of the notions
developed above through a naive model for the FPF applied to two of the three operators
(for simplicity), for example Orange and SFR.

We model the FPF through the following CGS G := 〈AP,Agt,Q,Act,∆, labels〉 where

• The agents are the two operators Orange and SFR.

• An operator can either push a new offer on the market, represented by the ccr
action, or stay idle, represented by the frz action. The set of actions then consists
of Act := {ccr, frz}.

• The atomic propositions represent each company policy regarding any reduction of
its prices. The set AP is made of four propositions pOfrz, pSfrz, pOccr and pSccr. The
proposition pAB represents the fact that the company A has adopted the policy B.

• The state space Q is composed of only four states, each representing a potential
status of our two operators mobile market. Formally, we set Q := {q?,∗ | ?, ∗ ∈
{frz, ccr}}. The state qfrz,ccr for example tell us that Orange is not trying to
lower its prices while SFR is. Such situation is preferable for SFR and undesirable
for Orange, as it will lose clients in benefits to its concurrent. Obviously, many
parameters come into play before engaging new offers in the mobile market; but for
all purposes in this example, we assume that at any time either of the companies
may, if it wishes, lower its price.

• A state q?,∗ (with ?, ∗ ∈ {frz, ccr}) is labelled by {pO? pS∗ }.
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qccr, ccrqfrz, ccr

qccr, frzqfrz, frz

(frz, ccr)

(ccr, ccr)

(ccr, frz)

(frz, frz)

(ccr, ccr)

(ccr, frz)

(frz, ccr)

(frz, frz)
(frz, frz)

(ccr, ccr)

(ccr, ccr)

(ccr, frz)

(frz, ccr)

(frz, frz)

(ccr, frz)
(frz, ccr)

Figure 1.2: The game G representing the mobile operator market

• The transition function ∆ is rather intuitive, it simply updates any change of mind
of the operators. As often, the formal definition is tedious, we refrain from giving
it and refer to Figure 1.2.

Our initial state (at time t = 1) is qccr,ccr, as we assume both companies to be in
concurrence at the beginning of the simulation. Consider the following scenario: at time
t = 2 through a shady meeting, representatives of both companies gather and agree to
freeze their prices from the time t = 3. At time t = 4, regulatory authorities catch the
subterfuge. Orange, fearful of heavy sanctions immediately issues new offers with lower
prices while SFR waits until the end of t = 5 to do so. The whole situation can be
represented by the path:

t = 1

qccr,ccr.

2

qccr,ccr.

3

qfrz,frz.

4

qfrz,frz.

5

qccr,frz.

6

qccr,ccr. . . .

Initial state FPF caught

Instead of a shady meeting, Orange can build a strategy δO trying to obtain a tacit
form of fixed-price market. Take the following behaviour: if SFR has not provided any
new offer for the last two time-units then Orange postpones any plan reducing its prices;
if SFR has put a new offer to attract customers in the last two time-units then Orange
pushes forward a concurrent answer. This can be modeled by the following δO strategy:
on a history ρ := (qi)i≤L of length L,
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• if either q(L− 1) or q(L) has the proposition pSccr it means that SFR has put a low
price offer and Orange must do the same so δO(ρ) = ccr.

• if neither q(L− 1) nor q(L) has pSccr, Orange will try to create a tacit frozen market
and postpone its new deals, so δO(ρ) = frz.

Now, consider a second strategy δS for SFR that puts a new offer every 4 time-unit. The
context where Orange plays along δO and SFR plays along δS will produce the following
infinite outcome

t = 1

qccr,ccr.

2

qccr,frz.

3

qccr,frz.

4

qfrz,frz.

5

qfrz,ccr.

6

qccr,frz.

7

qccr,frz. . . .

Initially
both have
new offers

Orange checks the last 2 states and acts accordingly

SFR waits 3 time-unit before new offer

1.2.2 Formalisms

ω-regular conditions

We briefly discuss how the ω-regular conditions described before can be adapted for
CGS. Consider a CGS G := 〈AP,Agt,Q,Act,∆, labels〉. Likewise to words, for any history
ρ ∈ HistG we write Inf(ρ) for the set of states that appear an infinite number of time in ρ.

A Büchi condition over G is a set Ω ⊆ S of states. We then say that a coalition
C ⊆ Agt satisfies the condition Ω from a state qini in G when there exist strategies for
each member of C such that no matter the other agents’ strategies, the resulting outcome
ρ starting from qini satisfies

Inf(ρ) ∩ Ω 6= ∅

A parity condition over a CGS G is a mapping Ω : Q → N assigning an integer to
each state. A coalition C ⊆ Agt can satisfy the condition Ω from a state qini when there
exists strategies for each member of C such that no matter the other agents’ strategies,
the resulting outcome ρ starting from qini satisfies

∃i ∈ 2N.

{
∃q ∈ Inf(ρ) with Ω(q) = i

∀q ∈ Inf(ρ) we have Ω(q) ≥ i
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The alternating time temporal logics ATL and ATL∗

There are three basic logics for open systems: ATL, ATL∗ and ALµ (also called AMC in [2],
we however rebrand it in ALµ to pair with the symbol Lµ for the µ-calculus). We start
with the easiest ones ATL and ATL∗. Proposed by Alur, Henzinger and Kupferman in
2002 [2] they can be seen for all purposes as the adaptations of CTL and CTL∗ to open
systems. ATL∗ formulas are build upon a set AP of atomic propositions and a set Agt of
agents through the grammar

ATL∗ 3 φ ::= p | φ ∨ φ | ¬φ | 〈〈C〉〉ϕ with C ⊆ Agt
ϕ ::= ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ | φ

We retrieve the next (X) and until (U) operators from LTL and the decomposition
in state and path formulas of CTL∗. Its semantics are defined similarly except for the
quantifiers 〈〈C〉〉ϕ. To ease the reading, and because ATL∗ is not at the heart of this
thesis, we only give an informal definition of the quantifiers semantics.

ST , s |= 〈〈C〉〉ϕ ⇔


There exists a set of strategies for the agents of C so
that, given any set of strategies for the agents of
Agt\C, the resulting outcome ρ satisfies ST , ρ |= ϕ

The logic ATL is the fragment of ATL∗ obtained by restricting the grammar of path
formulas to ϕ ::= ¬φ | Xφ | φUφ. for example, the formula 〈〈{A1, A2}〉〉F p is in ATL
and expresses the existence of a strategy for the coalition of A1 and A2 that produces (no
matter the other agents strategies) an outcome that will eventually see p.

ALµ an alternating version of the µ-calculus

Alur, Henzinger and Kupferman also proposed in [2] an extension of the µ-calculus Lµ
to work on CGS. They call it the alternating µ-calculus ALµ. Also a fix-point logic, it
follows the syntax of Lµ. Defined relatively to a set AP of atomic proposition, a set Agt
of agents and a set V of variables, its syntax is dictacted by the rules below.

ALµ 3 φ ::= p | Z | φ ∨ φ | ¬φ | 〈〈C〉〉φ | µZ. φ

The satisfaction relation J·K for ALµ formulas is still defined relatively to an interpre-
tation χ of the variables and as a function J·K : φ → 2S. All operators but 〈〈C〉〉φ have
the same semantics as in Lµ. The new operator semantics are defined by

J〈〈C〉〉φKχ := {s ∈ S |



there exists an action aA for each agent A ∈ C
such that against any other actions aB of the
agents B ∈ Agt\C, the state
∆(q, (A1 → aA1 , . . . , B1 → aB1 , . . . ))

belongs in JφKχ

}
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∧

〈〈C〉〉

JAgt\CK

ψ1

〈〈C〉〉

JAgt\CK

ψ2

No common

behaviour
quantification over

a coalition C ⊂ Agt

implicit universal quan-

tification over Agt\C

temporal

property

∧

〈〈C〉〉

JAgt\CK

ψ1

JAgt\CK

ψ2

Common strategy

for both branches

Figure 1.3: On the right an ATL formula and on the left what cannot be done neither in
ω-regular conditions nor in any ATL, ATL∗ or ALµ.

1.3 Commitment issues in multi-agents logics

In the formalisms for closed systems, to simulate potential executions of the system we use
quantifications over the potential paths in the model. These path quantifications, either
implicit as in LTL or explicit as in CTL, are of two forms: “is there a path such that. . . ” and
“for all paths it holds. . . ”. In the formalism for open systems, the path quantifications are
replaced by strategy quantifications (“is there a strategy for coalition C such that. . . ”). In
all the open-system formalisms defined above, after each strategy quantification there are
other implicit strategy quantifications making all properties expressible in the following
form

Are there strategies (actions for ALµ) for agents A1, . . . such that for all
strategies (actions for ALµ) for agents B1, . . . the resulting outcome satisfies
some temporal property ?

This makes the branching possibilities of ATL, ATL∗ and ALµ very similar to the ones of
CTL, CTL∗ and Lµ: a boolean combination of formulas, each about a given outcome. The
different branches have nothing in common: an agent may act in a way in one branch
and completely change its behaviour in another. This inability for different branches of
a formula to share some common behaviour is what we call the commitment issue, each
strategy obtained through quantification is committed to a single temporal objective.
Figure 1.3 illustrates the issue: on the left we can see the possibilities of ATL and on the
right a property not expressible with what we have presented so far. We present below
some new formalisms to address this issue.

GL

A first way to bypass the commitment issue is to add branching between the existential
and (implicit) universal quantifications, like in the right part of Figure 1.3. This was the
approach chosen by Alur, Henzinger and Kupferman in [2] for their game logic GL. GL
formulas are build by a three steps syntax: state formulas φ, tree formulas ψ and path
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formulas ϕ.

GL 3 φ ::= p | ¬φ | φ ∨ φ | 〈C〉ψ with C ⊆ Agt
ψ ::= ¬ψ | ψ ∨ ψ | Eϕ
ϕ ::= φ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

The semantics of the atomic propositions and boolean operators is similar to the ones
of all the logics we have already presented. We recall that a context is a partial function
associating strategies with agents. The 〈C〉ψ operator3 is an existential quantification for
the agents in the coalition C that sets a context for tree formulas. To define explicitly
a context χ in which an agent A follows a strategy δ while another agent B follows δ′,
we use the notation χ := {A → δ;B → δ′}. Then, the operator 〈C〉ψ has the following
semantics:

G, q |= 〈C〉ψ ⇔

{
∃δ1 . . . δ|C| ∈ StratG with G, q |={A1→δ1,...,A|C|→δ|C|} ψ

where A1, . . . A|C| are the agents of C

Tree formulas are defined relatively to the unwinding of the game. An unwinding of a
game G from a state q is the infinite tree TG obtained with q at the root and where the
children of a node are its successors. The Eϕ operator is an existential quantification
over the paths in TG.

G, q |= Eϕ ⇔ ∃ρ ∈ PathTG coherent with χ with G, ρ |= ϕ

Path formulas’ semantics are defined relatively to a path in the same way as in LTL.

BSIL

Another approach to the commitment problem, proposed by Wang, Huang and Yu in
2011 with their basic strategy interaction logic BSIL [63], is to add an operator 〈+C〉
to extend the current context. BSIL also decomposes its grammar in three parts: state
formulas φ, branching formulas ψ and path formulas ϕ.

BSIL 3 φ ::= p | ¬φ | φ ∨ φ | 〈C〉ψ with C ⊆ Agt
ψ ::= ¬ψ | ψ ∨ ψ | 〈+C〉ψ | ϕ
ϕ ::= Xφ | φUφ

As in GL, state formulas define an initial context; however branching formulas are
used to branch properties upon the current context or to refine it.

G, q |= 〈C〉ψ ⇔ ∃δ1 . . . δ|C| ∈ StratG with G, q |={A1→δ1,...,A|C|→δ|C|} ψ

G, q |=χ 〈+C〉ψ ⇔ ∃δ1 . . . δ|C| ∈ StratG with G, q |=χ[A1→δ1,...,A|C|→δ|C|] ψ

G, q |=χ ϕ ⇔ ∀ρ ∈ PathG coherent with χ, it holds G, ρ |= ϕ

3The symbol 〈〈C〉〉ψ is for the existential quantification of the agents in C with an additional implicit
universal quantification on Agt\C. When we wish to avoid the implicit universal quantification, as in
GL, we use the symbol 〈C〉ψ.
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The formula on the right of Figure 1.3 can be expressed in BSIL by

〈C〉


¬〈+Agt\C〉¬ψ1

∧
¬〈+Agt\C〉¬ψ2

CATL, a version of ATL with effective commitment

A different approach to the commitment problem is to treat the strategies in an explicit
manner rather than through the scope of quantifications. For this, the logic CATL,
developed by van der Hoek, Jamroga and Wooldridge in 2005 [59] extends ATL by adding
an operator C(δ, A)φ to assign a strategy δ to the agent A. The strategy δ is not the
results of a quantification but rather has to be explicitly given by the context.

CATL 3 φ ::=

{
p | φ ∨ φ | ¬φ | 〈+C〉Gφ | 〈+C〉Xφ | 〈+C〉Fφ
〈+C〉φUφ | 〈+C〉φRφ | C(δ, A)φ A ∈ Agt

At the beginning the context is empty. The 〈+C〉φ♥φ and 〈+C〉♦φ type formulas
(for ♥ ∈ {U ,R } and ♦ ∈ {X ,FG }) act as a concatenation of the 〈+C〉 operator from
BSIL extending the current context and of LTL temporal operators (F,U,G,X and R).
The new operator C(δ, A)φ obeys the following semantics

G, q |=χ C(δ, A)φ ⇔ G, q |=χ∪{A→δ} ψ

Note that unlike most logics, CATL formulas can be evaluated relatively to some strate-
gies given as parameters. CATL algorithms then work under assumptions such as “the
strategies used are positional” or “the strategies used have a memory of size λ”.

1.4 Revocation issues in multi-agents logics

q1

p

q2 p′

q3 ∅

1, 1
2, 0
2, 2

1, 0
1, 2
2, 1

0, ?

Figure 1.4: A CGS with two
agents A and B, with three ac-
tions 0, 1 and 2, and where q1

serves as initial state.

We have seen through the commitment issue that
when working with open systems, it is useful to branch
formulas in a more refined way than with closed sys-
tems. In particular we may force some shared be-
haviour between different simulations. A somewhat
similar problem occurs linearly.

To illustrate the problem, we extend an example
proposed by Agotnes, Goranko and Jamroga in [1].
Consider the CGS of Figure 1.4 with two agents A
and B and an action set {0, 1, 2} common to both
agents. We wish to express the following property

Agent A has a behaviour that always
sees p, no matter what the choices of B
are, but may at every moment decide to
go to p′.
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The intuitive way to express this in ATL is by the following formula:

φ := 〈〈A〉〉 G (p ∧ 〈〈A〉〉F p′)

The property is however ambiguous: should we requantify the strategy of B when A
starts to deviate towards p′? Formula φ works only if B is supposed to requantify its
strategy, in this case there is no solution and φ does not hold on the CGS of Figure 1.4.
If we wish to preserve the strategy B has chosen, the property should hold on the game.
Indeed, the strategy of agent B is fixed and is included in the current context, therefore
when A requantifies its strategy it may assume knowledge of B strategy. However φ does
not hold on the game and therefore fails to capture the second possibility. We need a
more expressive formalism than ATL. In fact none of the logics we have presented so far
(ATL, ATL∗, BSIL, CATL, ALµ) can manage this problem. There exist some solutions but
they are all dependent on the game (which we purposely kept simple).

The problem in the example above comes from the incapability for an agent (A) to
revoke its strategy without forcing other agents (B) to do the same. The incapability to
requantify the strategies for some of the agents while keeping the current strategies for
the other agents is what we call the revocation problem and what we investigate in this
section.

ATL with irrevocable strategies

One solution to the revocation issues is to force every agent existentially quantified to
keep its strategy when a nested quantification occurs. This is what Agotnes, Goranko
and Jamroga did in 2007 [1] with their irrevocable version IATL of ATL. The grammar of
IATL is the same as ATL:

IATL 3 φ ::= p | φ ∨ φ | ¬φ | 〈〈C〉〉ϕ
ϕ ::= Xφ | φUφ

Formulas in IATL are evaluated relatively to a context χ initially empty (before the first
quantifier) and that grows with each quantifier. Compared to ATL, only the semantics of
the 〈〈C〉〉ϕ operator is modified.

G, q |=χ 〈〈C〉〉ϕ ⇔


∃δ1, . . . δλ ∈ StratG such that for any strategies for the
agents of Agt\C the resulting context with χ satisfies
G, q |=χ∪{A1→δ1,...Aλ→δλ} ϕ.

where A1, . . . Aλ are the agents of C that have yet to be assigned a strategy in χ (meaning
Ai 6∈ dom(χ)). The context χ can only be refined by a quantifier.

ATL with strategy context

This approach was refined by Brihaye, Da Costa, Laroussinie and Markey in 2009 [10]
where the notion of context was pushed further by explicitly adding a operator 〉〉C〈〈φ to
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revoke the strategies assigned to the agents of a coalition C. Formally, they define a logic
ATLsc based upon the following grammar:

ATLsc 3 φ ::= p | φ ∨ φ | ¬φ | 〉〉C〈〈φ | 〈〈C〉〉ϕ with C ⊆ Agt
ϕ ::= φ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

The semantics are somewhat similar to IATL with the exception that (like ATL and
ATL∗) a quantification over a coalition C relatively to a context χ also requantifies the
strategies of dom(χ) ∩ C:

G, q |=χ 〈〈C〉〉ϕ ⇔


∃δ1, . . . δ|C| ∈ StratG such that for any strategy for the
agents of Agt\(C ∪ dom(χ))the resulting context with
χ satisfies G, q |=χ|Agt\C∪{A1→δ1,...A|C|→δ|C|} ϕ.

Note that the strategies from implicit universal quantifications do not override the strate-
gies in χ. The semantics of the new operator 〉〉C〈〈φ release the strategies assigned to C:

G, q |=χ〉〉C〈〈φ ⇔ G, q |=χ|Agt\C φ

The quantified µ-calculus QLµ

In a completely different way, the quantified µ-calculus QLµ also solves the revocation
problem. Developed in 2003 [48], Riedweg and Pinchinat idea was to add quantifications
over atomic propositions to the µ-calculus. The concept of quantification over atomic
propositions was initially proposed in 1983 [53] by Sistla for LTL (see also [54]). The
grammar of QLµ follows the one of Lµ with the addition of a quantification block (with
boolean operators) before the Lµ formula.

QLµ 3 φ ::= ∃pφ | ¬φ | φ ∨ φ | ϕ
Lµ 3 ϕ ::= p | Z | ϕ ∨ ϕ | ¬ϕ | [a]. ϕ | νZ. ϕ

QLµ (like Lµ) formulas are interpreted on transitions systems relatively to an inter-
pretation χ of the variables. The φ layer semantics are such that

T S, s |=χ ∃p. φ ⇔


There exists a transition system T Sp such that
T Sp, s |=χ φ where T Sp is a transition system with
the same state space and transitions functions, and where
p′ ∈ labelsT S(s)⇔ p′ ∈ labelsT Sp(s) for any p′ ∈ AP\{p}

While defined over transition systems, the quantified µ-calculus can model CGS through
the use of proposition quantifications. QLµ is also a superset of QCTL∗ (CTL∗ extended
with quantifications over the atomic propositions) and QCTL∗ has been shown in [31]
to have an expressive power similar to ATLsc. So, by transitivity, QLµ is more expres-
sive than ATLsc. As said before, ATLsc is an answer to both the commitment and the
revocation problems so QLµ has the same answer to these problems.
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1.5 Strategy Logic
Strategy Logic (SL for short) is another formalism for expressing temporal properties on
multi-agent systems. While offering another way to solve the commitment and revocation
problems, SL innovates by treating the strategies as first-order variables (in the spirit of
the first-order logic FO [33]).

A first version of SL was proposed in [15] by Chatterjee, Henzinger and Piterman. In
this thesis, we call it CHP-SL. CHP-SL is an answer to the commitment problem similar
to BSIL, with the additional possibility to nest temporal operators like LTL formulas
instead of a single operator. CHP-SL was then extended by Mogavero, Murano, Perelli
and Vardi [39]. We call Strategy Logic (SL) this second version. For most purposes
CHP-SL is (in spirit but not formally) another form of BSIL4. For this reason we only
give the syntax and semantics of the enhanced version.

1.5.1 Strategy translations, valuations and valuations transla-
tions

Before formally defining SL we need some new notions to manipulate strategies. As
explained in Section 1.2.1, to simulate an execution of the system within a game, the
agents force a pebble to move along the states and the path of the pebble describes an
execution of the system. After t time units, the sequence of states visited by the pebble
defines a history ρ and the strategies used by the agents make their choices at time t
based on ρ. To handle with ease the evolution of a strategy along a history, we use the
notion of strategy translations5.

Definition 1.11 (Strategy translation).
For a history ρ and a strategy δ both on a common game G, we call the translation δ−→ρ of
δ along ρ the partially defined strategy

δ−→ρ (ρ′) := δ(ρ.ρ′) for any history ρ′ starting in a successor of lst(ρ)

A particularity of SL is to treat strategies as first-order elements. For this, strategies
are stored in variables in a way similar to the first-order logic. For the rest of this section,
we fix a set V of variables.

Definition 1.12 (Valuation).
A valuation χ over a set Agt of agents and a set V of variables is a partial function
χ : Agt ∪ V 7→ StratG.

Intuitively, the strategies stored in the variables represent the behaviours under con-
sideration while the strategy associated with an agent represents its effective behaviour.
The notion of valuation is nothing more than an extension of contexts to handle variables.
We can then extend the notion of strategy translation to valuations.

4CHP-SL was the first one, introduced in 2007, while BSIL dated from 2011. The model checking of
BSIL is however better than the one of CHP-SL, making it easier to use in practice.

5The strategy translation of δ along a history ρ is a similar concept to the classical one of strategy
induced by another strategy in a sub-tree on games played on trees [42].
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Definition 1.13 (Valuation translation).
Given a game G, a valuation χ over Agt and V where Agt is the set of agents of a game
G, and a history ρ ∈ HistG, we define the valuation translation χ−→ρ by

∀x ∈ (Agt ∪ V) ∩ dom(χ) χ−→ρ (x) := χ(x)−→ρ

Sometimes, we will need to have a closer look at some specific choices. We define the
notion of move vector to model a strategy choices at a given time.

Definition 1.14 (Move vector).
A move vector over a set D ⊆ Agt is a partial function m : D 7→ Act mapping each
element of the domain to an action; if D = Agt we simply refer to m as a move vector
and omit its domain.

When Agt ⊆ dom(χ), each agent has an assigned behaviour. From a game G, one of
its states q and a valuation χ with Agt ⊆ dom(χ), we can launch a simulation and get an
outcome. We update the notion of outcome (defined page 24) to work with valuations

Definition 1.15 (Outcome).
Fix a game G := 〈AP,Agt,Q,Act,∆, labels〉, one of its states q and a valuation χ with
Agt ⊆ dom(χ). We define the outcome out(χ, q) := (qi)i∈N of χ from q by the unique path
where

• q0 = q

• ∀i ∈ N, qi+1 = ∆(qi, di) where di ∈ ActAgt is the move vector defined for all agent
A ∈ Agt by di(A) := χ(A)((qj)j≤i).

1.5.2 Strategy Logic

We are finally ready to define the logic at the heart of this manuscript. SL is built upon
a set Agt of agents, a set AP of atomic propositions and a set V of variables. SL formulas
are constructed by the following grammar:

SL 3 φ ::= ∃x.φ | assign(A, x).φ | φ ∨ φ | ¬φ | φUφ | Xφ | p

where x ∈ V is a variable, A ∈ Agt is an agent and p ∈ AP is an atomic proposition.
The operator assign(A, x) will be referred to as an assignment of x to A while we

retrieve some form of strategy quantification in the ∃x operator. The until (U ) and next
(X ) operators are similar to their eponymous parts in LTL.

In order to define the semantics of SL we need several intermediary notions. The
notation free(φ) represents the set of free agents and variables of a formula φ that have
yet to be associated with a strategy before φ can be evaluated. It is defined inductively
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as follows,

free(p) = ∅ for all p ∈ AP free(Xφ) = Agt ∪ free(φ)

free(¬φ) = free(φ) free(φUψ) = Agt ∪ free(φ) ∪ free(ψ)

free(φ ∨ ψ) = free(φ) ∪ free(ψ) free(∃x. φ) = free(φ) \ {x}

free(assign(A, x). φ) =

{
free(φ) if A /∈ free(φ)

(free(φ) ∪ {x}) \ {A} otherwise

We then say that φ is closed whenever free(φ) = ∅.

Notations. For the sake of formality, we define the notation used for updating a valua-
tion. For a valuation χ on a game G, a variable x and a strategy s on G, the notation
χ[x 7→s] represents the (unique) valuation where

• for any x′ 6= x such that x′ ∈ dom(χ), we have χ[x 7→s](x
′) = χ(x′)

• for any x′ 6= x such that x′ 6∈ dom(χ), we have x′ 6∈ dom(χ[x 7→s])

• χ[x 7→s](x) = s

Formulas of SL are evaluated on a concurrent game G := 〈AP,Agt,Q,Act,∆, labels〉 at
a state q with respect to a valuation χ where the sets of agents and atomic propositions
of the formula and the game coincide.

G, q |=χ p ⇔ p ∈ labels(q)
G, q |=χ φ ∨ φ′ ⇔ G, q |=χ φ or G, q |=χ φ

′

G, q |=χ ¬φ ⇔ G, q 6|=χ φ

If free(φ) \ {x} ⊆ dom(χ), then

G, q |=χ ∃x.φ ⇔ ∃δ ∈ StratG such that G, q |=χ[x 7→δ] φ

Additionally, given A ∈ Agt, if (free(φ) \ {A}) ∪ {x} ⊆ dom(χ) then

G, q |=χ assign(A, x).φ ⇔ G, q |=χ[A 7→χ(x)] φ

If Agt ∪ free(φ) ∪ free(ψ) ⊆ dom(χ) then χ produces a unique outcome π from q, i.e.
π := out(χ, q) (as explained page 34). We can translate the valuation χ based on this
outcome: for any integer j, we write χ−→

j
for χ−−→π≤j . We then let

G, q |=χ Xφ ⇔ G, out(χ, q)(1) |=χ−→
1
φ

G, q |=χ φUφ′ ⇔ ∃k ∈ N. G, out(χ, q)(k) |=χ−→
k
φ′ and

∀j ∈ N. 0 ≤ j < k ⇒ G, out(χ, q)(j) |=χ−→
j
φ

As in LTL we use the abbreviations > for the universal true, ⊥ for the universal false,
Fφ for the future operator (>Uφ) and Gφ for the always operator (¬F¬φ). We also
write ∀x.φ for the universal strategy quantification (¬∃x.¬φ).
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1.5.3 The nested and boolean goal fragments SL[NG] and SL[BG]

Like often in model checking and complexity related problems, a high expressiveness
induces serious drawbacks. SL grammatically allows many things :

• the capacity to handle multiple objectives at once:

∀x.∀y.∃x′.
((

assign(A1, x).assign(A2, y)F p1) ∨ (assign(A1, x
′).assign(A2, y)F p2

))
where Agt = {A1, A2} and AP = {p1, p2}

• multiple agents may share common strategies: in the following formula, the strategy
z is assigned to both A1 and A2.

∀y.∀x.∃z.
((

assign(A1, x).assign(A2, z)F p1

)
∨
(
assign(A1, z).assign(A2, y)F p2

))
• the possibility to redefine a strategy midway through the simulation:

∀x.∃y. assign(A1, x).assign(A2, y)F
(
p1 ∧ ∃x′assign(A1, x

′)F p2

)
For this reason, one may wish to restrict SL to simplify both algorithms and reasoning.
One way, proposed in [39], is to streamline the formulas by using the notion of goals.
A goal is a sub-formula composed of an assignment followed by a temporal objective
expressed with LTL operators or other (nested) goals. The idea is to create a fragment
SL[NG] of SL that does not allow partial re-quantifications once the simulation has started,
allowing for a clear separation of the quantifications on one side and the assignments and
the temporal operators on the other side.

The SL[NG] fragment

A formula will be in SL[NG] whenever we can regroup the quantifications in blocks in
such a way that any new block marks the beginning of a closed sub-formula. As a
counter-example, take the formula below

∀x.∃y. assign(A1, x).assign(A2, y)F
(
p1 ∧ ∃x′assign(A1, x

′)F p2

)
There are two blocks of quantifications: ∀x.∃y and ∃x′; the sub-formula

∃x′assign(A1, x
′)F p2

is not closed (the agent A2 is free) therefore the second block is partial and the overall
formula will not be in SL[NG].

To simplify the grammar of SL[NG], we use the notion of flatness. A logic will be
called flat when it does not allow closed sub-formulas. We first define the flat fragment
SL[NG][ of SL[NG] before giving the complete grammar.
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Remark 1.16. More generally, for all purposes in this thesis, closed sub-formulas are
seen as atomic propositions: given a game G and one of its state q, a closed formula φ
either evaluate to true or false on q independently of the current valuation. We can then
create a new atomic proposition pφ and label the states of the game with pφ whenever φ
holds true. Model checking algorithms then may proceed inductively by solving the deepest
closed sub-formula φ, labelling accordingly the game with a new atomic proposition pφ and
replacing φ in the main formula by pφ. Members of the verification community frequently
assimilate closed sub-formulas in their logics with atomic propositions, we simply continue
this trend.

Definition 1.17 (Nested goals strategy logic, SL[NG]).
Flat nested goal formulas are build upon the following rules:

SL[NG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p | β

where x ∈ V is a variable, A ∈ Agt is an agent and p ∈ AP is an atomic proposition.
SL[NG] (non flat logic) allows closed SL[NG] formulas in its grammar at the atomic

proposition level (i.e. in ϕ-type formulas).

We can now clearly see some notion of goal appearing in SL[NG]: the β type sub-
formulas. A closed formula of SL[NG] is then a block of quantification followed by a
boolean combination of goals (with potentially some nested goals within).

The SL[BG] fragment

Recently another fragment called SL[BG] has gained importance. It further restricts
SL[NG] by forbidding assignments past the start of the simulation, ensuring that each
agent keeps to its initial strategy. More precisely, SL[BG] aims at creating formulas of
the following form: ℘ξ(βiϕi)i≤n where ℘ is a block of quantifications, ξ is a boolean
combination and for all i ≤ n, βi is a block of assignments while ϕi is a LTL formula.

Definition 1.18 (Boolean goal strategy logic, SL[BG]).
The flat boolean goal fragment SL[BG][ has the grammar

SL[BG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p

The non-flat fragment SL[BG] allows closed SL[BG] formulas in its grammar at the
atomic proposition level (i.e. in ϕ-type formulas).
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Further restrictions of the boolean combination (ξ type formulas) are possible. As
we will see later, a deeper look into the boolean combinations yields interesting results.
Among the possible restrictions, we identify three major ones.

• SL[1G], introduced in [38], restricts SL[BG] to a unique goal. (The flat fragment of)
SL[1G] is defined from the grammar of SL[BG] by skipping the ξ line. More precisely,
ξ type sub-formulas must avoid any boolean operator i.e. must be of form ξ ::= β

• SL[CG], introduced in [40], is the fragment where only conjunctions of goals are
allowed. Formally, (the flat fragment of) SL[CG] is defined from the grammar of
SL[BG] with the restriction below on the ξ’s type sub-formulas ξ ::= ξ ∧ ξ | β

• Similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | β.

1.5.4 Examples

We give two examples to illustrate the expressive power of SL and of its fragments.

Nash equilibrium The first example is the existence of a pure (qualitative) Nash
equilibrium (with LTL objectives (ϕi)1≤i≤n) and was proposed in [39]. It works no matter
the game and can be expressed in SL[BG] as

∃x1, . . . xn. ∀y1, . . . , yn.
∧

1≤i≤n

assign(Aj, xj)j 6=i
(
assign(Ai, yi)ϕi ⇒ assign(Ai, xi)ϕi

)
,

where for the sake of readability we merge n strategy assignments into a single one.
In such a formula, (xi)1≤i≤n is the strategy profile we are looking for, and (yi)1≤i≤n are
intended to be the possible deviations of the agents. The formula states that if some
agent can change his strategy and achieve his goal, then his goal is already met in the
original strategy profile, thus making said strategy profile a Nash equilibrium.

Dominating strategies Consider a CGS G with two agents A and B. We say that a
strategy δ is dominating another strategy δ′ relatively to an agent A and an objective ϕ
when there is no behaviour for B for which δ′ leads to ϕ but δ does not.

Fix a valuation χ that stores a strategy δ in a variable x1:

χ := {x1 → δ}

Then δ is dominating any other strategy for agent A relatively to ϕ when the following
formula holds true on G relatively to the valuation χ

∀x2.
(
∃x3. assign(A, x3). assign(B, x2). ϕ

)
⇒
(
assign(A, x1). assign(B, x2). ϕ

)
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1.5.5 Expressiveness of SL fragments

Excluding SL[1G], all fragments allows two executions of the system to share some com-
mon behaviour. For instance, take the SL[CG] formula

∃x1. ∀x2. ∀x3. (assign(A, x1).assign(B, x2)F p ∧ assign(A, x1).assign(B, x3)F p′)

The strategy stored in x1 is common to A in both goals (assign(A, x1).assign(B, x2)F p
and assign(A, x1).assign(B, x3)F p′). This way, all fragments but SL[1G] offer a solution
to the commitment problem. On the other hand, SL[1G] focuses on a single execution
of the system; therefore, the commitment issue does not apply (does not make sense) in
SL[1G].

Only the full logic SL permits partial quantification within an outcome. the fragment
SL[NG] allows for the goals to change; therefore a player can change its strategy, but only
among the one quantified before the start of the execution. In all the other fragments,
in each execution of the system, an agent must stick to its assigned strategy (which does
not prevent an agent to have two different strategies in two different executions). This
way, SL provides a complete solution to the revocation issue and SL[NG] only a partial
answer. The other fragments do not touch the issue.

1.6 Summary
We sum up the relations between the different logics in Figure 1.5. A solid arrow L→ L′

denotes that L′ is at least as expressive as L, i.e. for any formula φ ∈ L we can find an
equivalent formula φ′ ∈ L′ in the sense that

For any concurrent game structure G and any state q of G G, q |= φ ⇔ G, q |= φ′

A dashed arrow L 99K L′ denotes the existence of a polynomial reduction from L to L′,
i.e there is a transformation T taking as input a formula φ ∈ L, a modelM adapted to
L and one of its state, and returning a formula φ′ of L′, a modelM′ adapted to L′ and
a state q′ ofM′ in polynomial time of φ andM such that

M, q |= φ ⇔ M′, q′ |= φ′

There are also a few results distinguishing the logics that do not appear on Figure 1.5.
First, in [2] it was proved that GL is not more expressive than ALµ. For example, GL
cannot express that all even states along a path are labeled p without imposing some
condition on the odd states while ALµ can. The authors of [10] proved that ALµ is not
more expressive than ATLsc. In particular ALµ cannot distinguish between alternating-
bisimilar models while ATLsc can6. Combining the two, we get that ALµ has a very
distinct expressive power compared to either GL or ATLsc.

6A bisimulation is a binary relation between transition systems that associate systems that behave
similarly. We do not formally define the notion of bisimulation (nor the one of alternating-bisimulation)
and refer to [36] and [55] for surveys.
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Chapter 2

Complexity of SL

In this chapter we go over the complexity results known on SL. In the theoretical frame-
work of SL, two questions come of interest: the first one, the satisfiability problem, asks
for an algorithm to check if there is some game on which a formula given in input is satis-
fiable or if the formula is structurally incoherent; the second, the model checking problem,
asks for an algorithm taking as inputs a formula and a game that returns whether the
formula holds on the game. We define formally both problems though we will mostly
focus on the second one.

Definition 2.1 (Satisfiability problem).
The satisfiability problem for a logic L ask for an algorithm that takes as input a formula
φ ∈ L and returns whether there is some CGS G such that φ holds on G.

Definition 2.2 (Model checking problem).
The model checking problem for a logic L asks for an algorithm that takes as input a
formula φ ∈ L and a CGS G, and returns whether φ holds on G.

We are looking for which complexity class the model checking and satisfiability prob-
lems belong. We do not define complexity classes and refer the interested reader to [3, 52].
We now focus on the model checking problem. We however recall the existing results
about the satisfiability of SL, its sub-logics and a few other game-related temporal logics.

Initially developed on transition systems, LTL can easily be adapted to games: can
an agent enforce that the outcome satisfies the LTL formula no matter the decisions of
the other agents? Pnueli and Rosner found in 1989 [45] that LTL on games admits a
2 -EXPTIME-complete model checking. This result was applied in [2] to get the following
theorem.

Theorem 2.3 (Alur, Henzinger and Kupferman [2]).
ATL∗ model checking and satisfiability are both 2 -EXPTIME-complete.

Other techniques were applied for solving the SL[1G] satisfiability problem. The result
is however similar, as shown by the theorem below. In particular, SL[1G] satisfiability is
not more complex than ATL∗ or LTL (on games).

41
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Theorem 2.4 (Mogavero, Murano, Perelli and Vardi [38]).
SL[1G] satisfiability is 2 -EXPTIME-complete.

While there is no formal proof of the undecidability of SL[BG] satisfiability, it can
easily be derived from the undecidability of the satisfiability problems for other logics.
QCTL [18] is a temporal logic whose expressiveness is similar in many way to that of
SL[BG] (it is also very similar to ATLsc expressiveness). QCTL satisfiability can be reduce
to SL[BG] satisfiability relatively easily. In [30] QCTL satisfiability was proven undecid-
able, we can then use the reduction from QCTL to SL[BG] to get the same undecidability
for SL[BG]. Due to its high expressiveness, this result is not a surprise. As show by
Theorem 2.4, we regain decidability in the SL[1G] fragment.

Theorem 2.5. SL[BG] (and therefore SL) satisfiability problem is undecidable

For the rest of this chapter, we focus on the model checking problem of SL and its
sub-logics.

2.1 SL upper bound
In [39], Mogavero, Murano, Perelli and Vardi developed an algorithm for SL model check-
ing.

Theorem 2.6 (Mogavero, Murano, Perelli and Vardi [39]).
The model checking problem for SL is in NONELEMENTARY with respect to the size of
the formula. It is in (k + 1 )-EXPTIME for SL[NG] formulas with k or less quantifier
alternations.

The algorithm acts in a fashion similar to the well-known decidability result for MSO
on infinite binary trees (also known as S2S). The proof presented in [56] builds a Büchi
tree automaton by iteration on the formula. The emptiness of the final automaton is then
equivalent to the validity of the MSO formula on the infinite binary tree. For SL model
checking, the proof also proceeds by building an automaton by induction on the formula
and by solving the emptiness problem of the automaton at the last step. The Büchi tree
automaton is however replaced by an alternating parity tree automaton. The proof is
rather long, we therefore provide only a sketch of it. The curious reader may refer to the
original paper for more details.

Sketch of proof.
We start with two definitions:

Definition 2.7. A tree over the state space Q is a tuple T := 〈T,E〉 where T ⊆ Q∗ is
the set of nodes (with each node a finite sequence over Q); E : T → 2T is a transition
function such that for any t, t′ ∈ T, if t′ ∈ E(t) then |t′| = |t|+ 1;

A Σ-labelled tree T is a tuple T := 〈Σ,T,E, labels〉 where 〈T,E〉 is a tree, Σ is the
input alphabet and labels : T→ Σ is a labelling function associating an input symbol with
each node of the tree.
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χ(x1)(a) = 0
χ(x2)(a) = 1

x1 → 0
x2 → 1

χ(x1)(ab) = 0
χ(x2)(ab) = 0

x1 → 1
x2 → 0

χ(x1)(ac) = 0
χ(x2)(ac) = 1
χ(x1)(abc) = 1
χ(x2)(abc) = 1

x1 → 0
x2 → 1

x1 → 1
x2 → 1

Figure 2.1: Correspondence between a valuation χ on a game G, and a labelled unwinding
of G.

Definition 2.8. The unwinding of a CGS G = 〈AP,Agt,Q,Act,∆, labels〉 is an (unla-
belled) tree T := 〈T,E〉 where T is built upon the state space Q of G and such that for
any t ∈ T,

t.q′ ∈ E(t) if and only if there exists d ∈ ActAgt such that ∆(lst(t), d) = q′

Consider a SL formula φ, a game G, a set V of variables and a valuation χ over G and
V . We let T be the infinite tree representing the unwinding of G. The valuation χ can
be put in correspondence with a labelling of T over the alphabet ActAgt, where the label
of a state q in a branch t of T represents the action choices of χ(t) when t is viewed as a
history of G. Figure 2.1 illustrates the idea.

The model checking procedure of SL uses this idea to build an appropriate alternating
parity tree automaton by a bottom-up induction on the formula. At step φ′ (for a sub-
formula φ′ of φ), the algorithm produces an automaton Nφ′ based on φ′ own sub-formulas.
This automaton Nφ′ encodes the game G by accepting only unwindings of G and obeys
the following property.

Proposition 2.9. For any valuation χ with dom(χ) = free(φ′), writing Tdom(χ) for the
labelled tree in correspondence with χ (with Actdom(χ) the set of labels), then

G, qini |=χ φ
′ ⇔ Tdom(χ) ∈ L(Nφ′)

Sub-formulas made of an LTL operator are handled using standard techniques, for ex-
ample the φ1Uφ2 operator uses the decomposition φ2∨ (φ1∧X (φ1Uφ2)). A sub-formula
φ′ = assign(A, x). φ′′ starting with an assignment simply modifies the automaton Nφ′′ of
φ′′ built at previous steps by updating the transition function according to assign(A, x).
A sub-formula φ′ = ∃x. φ′′ proceeds by a projection of the Nφ′′ automaton. There re-
mains the case of the boolean operators. The ∨ and ¬ operators are handled through
the standard union and intersection of automata. Finally, the ¬ operator is handled
through complementation of parity tree automata with a standard technique (also devel-
oped in [43]). Then, at the last step of the induction we get a parity tree automaton Nφ
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such that
G, qini |= φ ⇔ ∃T ∈ Tree∅ s.t T ∈ L(Nφ)

where Tree∅ is the set of unwindings of G. The equivalences can be solved by using
standard techniques to solve the emptiness of tree automata in time ab, where a is the
number of state of Nφ and b is the number of indexes. An algorithm can be found in [29].

The algorithm over SL[NG]: The first operator of a closed formula can only be either
a quantification or an atomic proposition (otherwise the formula has some free variable or
free agent or is not syntactically in SL[NG]). The last possibility makes φ trivial and we
set it aside. If φ starts by a universal quantification, we can solve the model checking for
its negation ¬φ and reverse the result to get φ’s model checking. We can therefore assume
without loss of generality that φ is of form φ = ∃x. φ′. This existential quantification at
the start allows us to stop the induction the step before φ and get an automaton Nφ′

G, qini |= φ ⇔ G, qini |= ∃x. φ′ ⇔ ∃T ∈ Tree{x} s.t T ∈ L(Nφ′)

The automata built at the initial step of the induction are of size exponential in the
formula and polynomial in the game. For sub-formulas starting by all but a ¬φ′ operator,
the automaton built at step α is of size polynomial in the automata build at steps less than
α. The only step where the automaton increases in a non polynomial factor compared
to the size of the automata previously built is for sub-formulas starting with the ¬φ′
operator. Then, the build-up is exponential in the size of the automaton of φ′.

Using the ∨ and ∧ operator we may modify any SL[NG] formula to push the negation
either between quantifiers or at the atomic propositions’ level. The size of the automaton
for the modified formula then grows only through quantifier alternation and we retrieve
the complexity result of Theorem 2.6 for SL[NG].

2.2 Data complexity
The data complexity of an algorithm is the complexity relative to the size of the game
given as input. In the model checking procedure for SL exposed above, the size of the
parity tree automaton respectively to the size of the game grows exponentially with each
quantifier alternation. The data complexity is therefore a tower of exponentials of height
equal to the number of quantifier alternations and final exponent a polynomial in the size
of the game.

Definition 2.10.
We define the function Tower : N× N → N by induction. Initially Tower(a, 0) := a while
Tower(a, b+ 1) := 2Tower(a,b) at the induction step. This encodes towers of exponentials of

the form 22.
..
a

.

To be precise, the order of magnitude of SL data complexity (for the model check-
ing problem) is Tower(k, P (|G|)) with k the number of quantifier alternations and P a
polynomial. The authors of [39] made a calculation error and claimed a data complexity
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in PTIME for their SL model checking algorithm, the algorithm however provides only a
NONELEMENTARY data complexity.

Theorem 2.11. SL model checking data complexity is in NONELEMENTARY.

With this rectification, we provide a proof of hardness for the data model checking of
SL[BG] (hence also SL). We show that the data complexity of SL[BG] model checking is
PH-hard(as in hard for each level of the polynomial hierarchy).

Theorem 2.12. The data complexity of SL[BG] model checking is PH-hard.

Proof. We prove that it is hard for each level of the boolean formulas hierarchy, Theo-
rem 2.12 will follow. SL expressiveness in general is heavily linked to QCTL expressiveness
and its data complexity is known to be PH-hard. We could have worked by a reduction
from QCTL towards SL to prove Theorem 2.12. We instead opt for a more direct (and
shorter) approach, by a reduction towards the satisfiability problem for quantified boolean
formulas.

Quantified boolean formulas

Definition 2.13 (Quantified boolean formulas in conjunctive normal form).
Fix an infinite set V = {v1, . . . } of boolean variables. A quantified boolean expression in
conjunctive normal form over V is a formula build upon the following grammar:

CNF-SAT 3 φ ::= ∃v φ | ∀v. φ | ζ where v is any variable of V .
ζ ::= ζ ∧ ζ | η
η ::= η ∨ η | ψ
ψ ::= v | ¬v

We reuse standard vocabulary: ψ type formulas are called literals, η formulas are
called clauses and ζ formulas are called conjunctions. Quantified boolean formulas over a
set V of variables are evaluated over a (partial) interpretation int : V → {>,⊥} and are
true when int evaluates φ to >. Given a pre-existent interpretation int, the ∃v φ operator
asks for the existence of an interpretation int′ agreeing with int on any variable different
from v such that int′ evaluates φ to >. The ∀v. φ operator asks for each interpretation
int′ agreeing with int on all variables different from v to be so int′ evaluates φ to true.
Over an interpretation int of domain V , boolean operators are standard.

For any positive integer k, formulas with k quantifier alternations or less, starting by
a block of existential quantifications and where all variables are quantified, form the set
ΣSAT
k of formulas. The satisfiability problem for a formula φ ∈ ΣSAT

k asks whether φ
evaluate to > from the empty alternation; this problem is known to be complete for ΣP

k

(the k existential level of the polynomial hierarchy).

ΣP
1 hardness of SL[BG] model checking

Lemma 2.14. SL[BG] (and thus SL[NG] and SL) model checking with respect to the size
of the game is ΣP

1 -hard.
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Proof. We first define a formula φ (independently of any ΣP
1 formula) on the sets AP :=

{plit, pvar, ok, no} of atomic propositions and Agt := {∧∧ , ∨∨ , lrlr , } of agents:

φ :=∃x.∃w← [.∃w 7→.∀y.∀z.∀y∧.∃z∨.



assign(∧∧ , y; ∨∨ , z; lrlr , w7→; , x)F plit
∧
assign(∧∧ , y; ∨∨ , z; lrlr , w←[; , x)F pvar
∧(
assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w←[; , x)F ok

⇔ assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w7→; , x)F ok
)

Fix a boolean expression Φ := ∃v1 . . . ∃vn.
∧
i≤I
∨
j≤J li,j with I, J two sets of integers

and where li,j is a literal build on the variables {v1, . . . , vn}. From Φ, we derive a con-
current game G := 〈AP,Agt,Q,Act,∆, labels〉 represented in Figure 2.2. AP and Agt are
the same as in φ.

• The state space Q is composed of an initial state qini, of three states (ok, no, vari)
per variable in {v1 . . . , vn} and of one state liti,j per literal li,j of Φ.

• The agent lrlr has two actions {7→,←[}. ∧∧ has I actions: 1, . . . , I and ∨∨ has J
actions: 1, . . . , J . Finally has two actions: aok, ano.

• On the initial state qini, ∆ depends on the actions of lrlr , ∧∧ and ∨∨ . The agent lrlr
decide if we go to the left (to the variable states with the action←[) or right (to the
literal states with the action 7→) part of the game as in Figure 2.2. If lrlr chooses
left, ∆ goes from the initial state to the state representing the variable present in
li,j; if lrlr goes to the right, ∆ goes to the liti,j literal state.

On a variable state vari, the decision is done by who can play aok to go to the
ok state and ano to go to the no state.

• The variable states are labelled by pvar while the literal states are labelled with the
common proposition plit. We also label the ok states with an eponymous atomic
proposition and do the same for the no states. Finally for any i, j we label the state
liti,j by ok if li,j is a variable in Φ and by no if li,j is the negation of a variable.

We now have the game and the formula. It remains to prove the correctness of the
reduction, i.e.

Φ evaluates to > ⇔ G, qini |= φ

Proof of the left-to-right implication Assume there is an interpretation int that
evaluates Φ to >, we must prove that G, qini |= φ. We define a strategy δint for
by following the choices of int: on vari, δint plays to ok if int(vi) = > and to no if
int(vi) = ⊥. We also define two strategies δ←[ and δ7→ for lrlr that play respectively the
action ←[ and the action 7→. Write

χ := {x→ δint;w←[ → δ←[;w 7→ → δ7→}
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qini

var1

...

vari

...

varn

{(←[, i, j)} with

li,j ∈ {v1,¬v1}

{(←[, i, j)} with

li,j ∈ {vn,¬vn}

ok

no

ok

no

ok

no

lit1,1

...

liti,j

...

litI,J

(7→, 1, 1)

(7→, I, J)

labelled pvar labelled plit

labelled ok if l1,1 is a variable and

no if l1,1 is a negation of a variable

Figure 2.2: Game G used in lemma 2.14’s proof. Not all actions appear on the figure.

Trivially, we get

G, qini |=χ ∀y.∀z.∀y∧.∃z∨.


assign(∧∧ , y; ∨∨ , z; lrlr , w7→; , x)F plit
∧
assign(∧∧ , y; ∨∨ , z; lrlr , w← [; , x)F pvar

(2.1)

Now, because int is a working interpretation for Φ, for any i ∈ I there exists some
integer j(i) ∈ J depending on i -that we shorten to j in the following when i is clear of
context- such that int evaluates li,j to >. Fix any strategy δ∧ for ∧∧ and write i for the
action played by δ∧ on qini. We let δ∨ be the strategy for ∨∨ that plays j(i) and write

χ′ := χ ∪ {y∧ → δ∧; y∨ → δ∨}

The assignment assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w7→; , x) applied to χ′ produces an outcome
that goes to the literal state liti,j while assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w← [; , x) applied to χ′
produces an outcome to the variable state var(i, j), where var(i, j) is the variable present
in li,j. This means that

• either li,j = v(i, j): then ok ∈ labels(liti,j). As int evaluates li,j to > and li,j =
v(i, j), int evaluates v(i, j) to > and by construction of δint, δint(var(i, j)) = ok.

• or li,j = ¬x(i, j): then no ∈ labels(liti,j). Moreover int evaluates li,j to > hence int
evaluates v(i, j) to ⊥ and δint(var(i, j)) = no.

In both cases, the equivalence below holds.

assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w←[; , x). F ok
⇔ assign(∧∧ , y∧; ∨∨ , z∨; lrlr , w7→; , x). F ok
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Combining this equivalence with Formula (2.1), we get that if Φ is satisfiable then
G, qini |= φ.

Proof of right-to-left implication Now, assume that there is a working strategy δint
and that for any δ∧ we can find a working strategy δ∨. We can deduce an interpretation
int that evaluates true on Φ. To find the working literal, given i ∈ I, we assign the
strategy that plays j to y∧. We can then use the hypothesis to find a answer strategy δ∨
and deduce from it an integer j that ensures li,j to be evaluated to > by int. In the end,
if G, qini |= φ, we can find a suitable interpretation int that evaluates Ψ to >.

We get that G, qini |= φ if and only if we can find a suitable interpretation int that
evaluates Ψ to >. This ensures the correctness of our reduction. SAT being NP -hard and
the SL[BG] formula being independent from the CNF-SAT formula, the data complexity
of SL[BG] model checking must also be NP-hard.

The same idea used to prove Lemma 2.14 can be applied to extend it to the whole
polynomial hierarchy.

Theorem 2.12. The data complexity of SL[BG] model checking is PH-hard.

2.3 A lower bound for SL[BG]

In this section, we prove that the model checking problem for SL[BG] is Tower-hard
(the complexity class Tower is the class of problems of complexity bounded by a tower
of exponentials, whose height is an elementary function of the input [50]). We actually
prove the result for (the flat fragment) SL[BG][, closing a question left open in [39]. The
proof is an extend version of the one presented in [7].

Theorem 2.15. SL[BG] model checking is Tower-hard.

We prove this result by encoding the satisfiability problem for QLTL into the model
checking problem for SL[BG]. QLTL is the extension of LTL with quantification over
atomic propositions [53]: formulas in QLTL are of the form Φ = ∀p1∃p2 . . . ∀pn−1∃pn. ϕ
where ϕ is in LTL. Notice that we only consider strictly alternating formulas for the
sake of readability. The general case can be handled similarly. Formula ∃p. ϕ holds true
over a word w : N → 2AP if there exists a word w′ : N → 2AP with w′(i) ∩ (AP \ {p}) =
w(i) ∩ (AP \ {p}) and w′ |= ϕ for all i. Universal quantification is defined similarly. we
then say that Φ is satisfiable if there is a word on which Φ holds.

As an example, consider the formula Φ := ∀p1∃p2 G (p1 ⇔ X p2). Formula Φ is sat-
isfiable. Indeed, consider any word w : N→ 2AP resulting of the universal quantification
over p1. Define w′ : N→ 2AP such that for any i ∈ N, p1 ∈ w(i) if and only if p1 ∈ w′(i)
and (if i ≥ 1) p2 ∈ w′(i) if and only if p2 ∈ w(i−1). The word w′ satisfies G (p1 ⇔ X p2),
therefore the word w satisfies ∃p2 G (p1 ⇔ X p2) and Φ is satisfiable.



49

It is well-known that satisfiability of QLTL is Tower-complete [54]. We reduce the
satisfiability of QLTL into a model checking problem for a SL[BG] formula involving n+4
agents (where n is the number of quantifiers in the QLTL formula), and three additional
quantifier alternations.

2.3.1 SL lower bound

Before developing this technical encoding, we first present an example of a reduction to
SL, which already contains most of the intuitions of our reduction from QLTL to SL[BG].

s

a1

a2

p1

¬p1

¬p2

p2

Figure 2.3: The 3-agent turn-
based game for the reduction to
SL model checking

Consider the QLTL formula

Φ = ∀p1.∃p2. G (p2⇔X p1).

To solve the satisfiability problem of this formula via
SL, we use the three-agent turn-based game depicted
on Figure 2.3. In that game, Agent Gold controls the
Gold state s, while Agents Orange and Red control
the square states a1 and a2, respectively. Fix a strat-
egy of Agent Orange: this strategy will be evaluated
only in Orange state a1, hence after histories of the
form sn ·a1. Hence a strategy of Agent Orange can be
seen as associating with each integer n a value for p1.
In other words, a strategy for Agent Orange defines

a labeling of the time line with atomic proposition p1. Similarly for Agent Red and
proposition p2.

It remains to use this correspondence for encoding our QLTL formula. We have to ex-
press that for any strategy δOrange of Agent Orange, there is a strategy δRed of Agent Red
under which, at each step along the path that stays in s forever, Agent Gold can enforce
X 2p2 if and only if he can enforce X 2p1 one step later. In the end, the formula reads as
follows:

∀x1. assign(Orange, x1). ∃x2. assign(Red, x2). ∃x3. assign(Gold, x3).

G


ss ∧ ∃x3. assign(Gold, x3). X 2 p2p2

⇔
X (∃x3. assign(Gold, x3). X 2 p1p1 )

(2.2)

One may notice that the above property is not in SL[BG]: for instance, the sub-formula
∃x3. assign(Gold, x3). X 2 p2p2 is not closed.

2.3.2 SL[BG] lower bound

We provide a new construction, refining the ideas above, in order to reduce QLTL satis-
fiability to SL[BG] model checking.
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ϕ, p1, p2

ϕ, p1,¬p2

ϕ,¬p1, p2

ϕ,¬p1,¬p2 ¬ϕ, p1, p2¬ϕ, p1,¬p2

¬ϕ,¬p1, p2¬ϕ,¬p1,¬p2

p1, p2

p1,¬p2 ¬p1,
p2

¬p1,¬p2

p1,
¬p2

p1, p2

¬p1,¬p2

¬p1, p2

p1, p2

p1,¬p2

¬p1,
p2

¬p1,¬p2

p1,
¬p2 p1, p2

¬p1,¬p2
¬p1, p2

¬p1, p2

¬p1,¬p2

p1, p2

p1,¬p2

Figure 2.4: Büchi automaton for G (p2⇔X p1)

Refining SL lower bound

In order to do so, we take another approach for encoding the LTL formula, since our
technique of encoding p2 with ∃x3. assign(Gold, x3).X 2 p2p2 is not compatible with getting
a formula in SL[BG]. Instead, we will use a Büchi automaton encoding the formula;
another agent, say Agent Oak, will be in charge of selecting states of the Büchi automaton
at each step. Using the same trick as above in the game structure on the left of Figure 2.5,
a strategy for Agent Oak can be seen as a mapping from N to states of the Büchi
automaton. Our formula will ensure that this sequence of states is in accordance with
the atomic propositions selected by the square agents in states ai, and that it forms an
accepting run of the Büchi automaton.

s

a1

a2

p1

¬p1

¬p2

p2

b

ϕ, p1, p2

ϕ,¬p1, p2

ϕ, p1,¬p2

ϕ,¬p1,¬p2

¬ϕ, p1, p2

¬ϕ,¬p1, p2

¬ϕ, p1,¬p2

¬ϕ,¬p1,¬p2

α

β1 β2

γ

δ

Figure 2.5: The concurrent game for the reduction to SL[BG] model checking.

For our example, an eight-state Büchi automaton associated with the (LTL part of
the) QLTL formula is depicted on Figure 2.4. Notice that smaller automata exist for this
property (for instance, the four states on the right could be merged into a single one),
but for technical reasons in our construction, we require that each state of the Büchi
automaton corresponds to a single valuation of the atomic propositions, hence the number
of states must be a multiple of 2|AP|. Accordingly, we augment our game structure of
Figure 2.3 with eight extra states, as depicted on the left of Figure 2.5. Again, a strategy
of Agent Oak (controlling state b) defines a sequence of states of the Büchi automaton.
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(s, α, γ)k

∃δCyan∞ γ

∀δGreen α βl

∃δGreeni α βi
∃δCyan=

γ δ
∃δGreen+ α βl′

∃δCyan+
γ δ

∃δGreenacc α βl′′

∃δGoldBüchi s b
∃δGoldAP s al

Figure 2.6: Visualization of the strategies selected by Ψaux on history (s, α, γ)k.

It then remains to “synchronise” the run of the Büchi automaton with the valuations
of the atomic propositions, selected by the agents controlling the square states. This
is achieved by taking the product of the game we just built with two extra one-agent
structures, as depicted on the right of Figure 2.5. The product gives rise to a concurrent
game, where one transition is taken simultaneously in the main structure and in the
OliveGreen and BlueGreen structures. In this product, as long as Agent Gold remains
in s and Agent Green remains in α, a strategy of Agent Cyan (controlling state γ) either
remains in γ forever, or it can be characterised by a value n ∈ N. Similarly, as long
as Agent Gold remains in s and Agent Cyan remains in γ, a strategy of Agent Green
(controlling state α) either loops forever in α, or can be uniquely characterised by a
pair (k, pl), where k is the number of times the loop over α is taken before entering
state βl corresponding to pl ∈ AP.

Our construction can then be divided in two steps:

• first, with any strategy of Agent Green (characterised by (k, pl) for the interesting
cases), we associate auxiliary strategies of Agents Gold, Green and Cyan satisfying
certain properties, that can be enforced by an SL[BG] formula Ψaux. Figure 2.6
should help visualising the associated strategies. In particular, strategies δCyan+ , δGold+

and δGreen+ characterise position k+ 1 (which will be useful for checking transitions
of the Büchi automaton), while δGoldBüchi and δ

Gold
AP are Agent Gold strategies that go

either to the Büchi part or to the proposition part of the main part of the game.

• Then, using those strategies, we write another SL[BG] formula to enforce that the
transitions of the Büchi automaton are correctly applied, following the valuations
of the atomic propositions selected in the square states, and that an accepting state
is visited infinitely many times.

The construction of the game structure GΦ depicted on Figure 2.5 is readily extended to
any number of atomic propositions, and to any Büchi automaton. We now explain how
we build our SL[BG] formula replacing Formula (2.2), and ensuring correctness of our
reduction.
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Specifying auxiliary strategies

We begin with simple constructions to select specific strategies, independently of the
choice of the valuations for the atomic propositions. In the rest of this proof, we name
strategy variables after the name of the agent who will be assigned that strategy; for
instance, δCyan∞ (that we use below) is the strategy of Agent Cyan that always plays to γ.
Our assignment operator will thus take only a strategy as argument, as the associated
agent will be clear from the name of the strategy. Also, agents with no assigned strategies
may have any strategy.

We consider the following formula, which we denote Ψaux in the sequel, in which
we write β as a shorthand for

∨
pi∈AP βi:

∀δGreen. ∃δCyan∞ . ∃(δGreeni )pi∈AP. ∃δCyan= . ∃δGreen+ . ∃δCyan+ . ∃δGreenacc . ∃δGoldBüchi.

∃δGoldAP . ∃δGold+ . ∃δGoldacc . ∀δGold∀ . ∀δGreen∀ .

assign(δGold∀ , δGreen∀ , δCyan∞ ). G (¬δ) (ϕ1)
∧

assign(δGoldBüchi, δ
Green, δCyan∞ ).

[
G (α ∧ s) ∨ (α ∧ s)U (β ∧ b)

]
(ϕ2)

∧
assign(δGold+ , δGreen+ , δCyan∞ ).

[
G (α ∧ s) ∨ (α ∧ s)U (β ∧ b)

]
(ϕ3)

∧
assign(δGoldacc , δ

Green
acc , δCyan∞ ).

[
G (α ∧ s) ∨ (α ∧ s)U (β ∧ b)

]
(ϕ4)

∧
assign(δGoldAP , δGreen, δCyan∞ ).

[
G (α ∧ s) ∨ (α ∧ s)U (

∨
pi∈AP

βi ∧ ai)
]

(ϕ5)
∧

assign(δGoldBüchi, δ
Green, δCyan= ). G (β⇔ δ) (ϕ6)

∧ ∧
pi∈AP

[
assign(δGoldBüchi, δ

Green
i , δCyan= ). G (βi⇔ δ) ∧

∧
pj 6=pi

G¬βj
]

(ϕ7)
∧

assign(δGoldBüchi, δ
Green, δCyan∞ ). F β ⇒


assign(δGold+ , δGreen+ , δCyan∞ ). F β
∧
assign(δGoldBüchi, δ

Green
+ , δCyan= ). F (δ ∧ ¬β)

(ϕ8)
∧

assign(δGoldBüchi, δ
Green, δCyan∞ ). F β ⇒


assign(δGoldacc , δ

Green
acc , δCyan∞ ). F β

∧
assign(δGoldBüchi, δ

Green
acc , δCyan= ). F (δ ∧ ¬β)

(ϕ9)

∧
assign(δGold+ , δGreen+ , δCyan+ ). G (¬s⇔ β⇔ δ) (ϕ10)

∧ ([
assign(δGoldBüchi, δ

Green
∀ , δCyan= ). F (δ ∧ α)

]
⇒[

assign(δGold+ , δGreen∀ , δCyan+ ). αU δ
])

(ϕ11)

We now explain how this formula holds true in the product game of Figure 2.5,
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whichever strategies are assigned to the square agents and to Agent Oak. Actually,
it only associates, with each strategy δGreen (quantified universally at the beginning of
the formula) a set of strategies that “synchronize” with δGreen:

(i) strategy δCyan∞ always plays to γ, whatever the history of the game (Formula (ϕ1));

(ii) strategy δGoldBüchi must be such that, for all ρ of the form (s, α, γ)j, it holds δGoldBüchi(ρ) = s
as long as δGreen(ρ) = α, and δGoldBüchi(ρ) = b when (if ever) δGreen(ρ) 6= α (For-
mula (ϕ2));

(iii) with similar ideas, strategy δGold+ must be such that, for all ρ of the form (s, α, γ)j,
it holds δGold+ (ρ) = s as long as δGreen+ (ρ) = α, and δGold+ (ρ) = b when (if ever)
δGreen+ (ρ) 6= α (Formula (ϕ3));

(iv) also, strategy δGoldacc must be such that, for all ρ of the form (s, α, γ)j, it holds
δGoldacc (ρ) = s as long as δGreenacc (ρ) = α, and δGoldacc (ρ) = b when (if ever) δGreenacc (ρ) 6= α
(Formula (ϕ4));

(v) similarly, strategy δGoldAP (ρ) = s when δGreen(ρ) = α, and δGoldAP (ρ) = ai when (if ever)
δGreen(ρ) = βi (Formula (ϕ5));

(vi) similarly, strategy δCyan= (ρ) = γ as long as δGreen(ρ) = α, and δCyan= (ρ) = δ when
(if ever) δGreen(ρ) = βi for some i (Formula (ϕ6) combined with item (ii));

(vii) using similar ideas, it must be the case that δGreeni (ρ) = α as long as δCyan= (ρ) = γ,
and δGreeni (ρ) = βi when (if ever) δCyan= (ρ) = δ (Formula (ϕ7)). Combining this
with item (vi), it must be the case that δGreeni (ρ) = α as long as δGreen(ρ) = γ, and
δGreeni (ρ) = βi when (if ever) δGreen(ρ) 6= α;

(viii) if δGreen(ρ) = βi for some ρ = (s, α, γ)j and for some i, then δGreen+ (ρ′) = βl for
some ρ′ = (s, α, γ)k and some l. Moreover, the last part of Formula (ϕ8) imposes
that k > j;

(ix) strategy δGreenacc satisfies the same condition as above (possibly for a different value
of k) (Formula (ϕ9));

(x) strategy δCyan+ (ρ) = γ as long as δGreen+ (ρ) = α, and δCyan+ (ρ) = δ when (if ever)
δGreen+ (ρ) = βi for some i (Formula (ϕ10)). Similarly, strategy δGold+ (ρ) = s as long
as δGreen+ (ρ) = α, and δGold+ (ρ) = ¬α when (if ever) δGreen+ (ρ) = βi for some i;

(xi) finally, Formula (ϕ11) imposes that δCyan+ plays δ (for the first time) exactly one step
after δGreen has played β (for the first time). This also imposes the same property
for the first time at which δGreen+ plays βl. By item (viii) we know that δCyan+ plays δ
(for the first time) after δGreen. Assume δCyan+ plays to δ on (s, α, γ)k for the first
time and δGreen plays to a βi on (s, α, γ)j. Take for δGreen∀ the strategy playing to
βi for the first time after (s, α, γ)j+1, then the first formula holds. If k 6= j + 1 the
second formula does not hold and neither does Formula (ϕ11).
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Figure 2.6 page 51 summarises the constraints imposed by the formulas above on the
selected strategies.

Enforcing correct transitions

We now focus on the Büchi automaton simulation. We look for a strategy of Agent Oak
that will mimic the run of the Büchi automaton, following the valuation of the atomic
propositions selected by the square agents A1 to An. We also require that the run of the
Büchi automaton be accepting.

The formula Ψ enforcing these constraints is as follows 1, with Q the state space of
the Büchi automaton and qini its initial state :

∀δA1 . ∃δA2 . . . . ∀δAn−1 . ∃δAn . ∃δOak. assign(δA1 , δA2 , . . . , δAn−1 , δAn , δOak, δCyan∞ ). Ψaux∧
pi,pj∈AP

∧
q∈Q

(assign(δGoldBüchi, δ
Green
i )F q)⇔(assign(δGoldBüchi, δ

Green
j )F q) (ϕ12)

∧
assign(δGoldBüchi, δ

Green)(X b⇒ X 2qini) (ϕ13)
∧
∧q∈Q assign(δGoldBüchi, δ

Green). F q ⇒
∨

q′∈succ(q)

assign(δGold+ , δGreen+ ). F q′ (ϕ14)

∧
assign(δGoldacc , δ

Green
acc ).

∨
q∈accept(Q)

F q (ϕ15)

∧
∧pi∈AP

((
assign(δGoldAP , δGreen). F¬pi

)
⇒(

assign(δGoldBüchi, δ
Green).

∨
q∈Q|pi /∈labelsq

F q
))

(ϕ16)

∧ ∧
pi∈AP

((
assign(δGoldAP , δGreen). F pi

)
⇒
(
assign(δGoldBüchi, δ

Green).
∨

q∈Q|pi∈labelsq

F q
))

(ϕ17)

We now analyze formula Ψ:

(xii) Formula (ϕ12) requires that strategy δOak returns the same move after any history
of the form (s, α, γ)k(b, βi, γ), whichever βi has been selected by δGreen;

(xiii) Formula (ϕ13) ensures the initial state in the run of the Büchi automaton. The
universal quantification of δGreen force δOak to preventively chose the appropriate
state while items (i), (ii) and (xii) ensure that the outcome is of the correct shape
according to our encoding, namely (s, α, γ)j(b, βi, γ) for some i;

(xiv) Items (iii), (x) and (xi) ensure that the outcome of δGold+ , δGreen+ and δCyan∞ loops one
more time on (s, α, γ) than the outcome of δGoldBüchi, δ

Green and δCyan∞ . Formula (ϕ14)

1We notice that Ψ is not syntactically in SL[BG], as some assignments appear before quantifications
in Ψaux. However, quantifiers in Ψaux could be moved before the assignments of Ψ.
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then additionally requires that two consecutive states of the run of the Büchi au-
tomaton indeed correspond to a transition.

(xv) Similarly, items (iv) and (ix) ensure that the outcome of δGoldacc δGreenacc and δCyan∞ loops
more time on (s, α, γ) than the outcome of δGoldBüchi, δ

Green and δCyan∞ . Formula (ϕ15)
then states that for any position (selected by δGreen), there exists a later position
(given by δGreenacc ) at which the run of the Büchi automaton visits an accepting state.

(xvi) Items (ii) and (v) ensure that δGoldAP and δGoldBüchi loop the same number of time on
(s, α, γ). Formulas (ϕ16) and (ϕ17) then constrain the state of the Büchi automaton
to correspond to the valuation of the atomic propositions selected. Because of the
universal quantification over δGreen, this property will be enforced at all positions
and for all atomic propositions;

Correctness of the reduction

It remains to prove the correctness of the construction. For this we establish a correspon-
dence between words over 2AP and valuations of domain {δA1 , . . . , δAn}. The correspon-
dence follows the idea described at the beginning of the proof: a word w : N→ 2AP is in
correspondence with the valuation χw where

∀k ∈ N ∀1 ≤ i ≤ n pi ∈ w(k) ⇔ χw
(
δAi
(
(s, α, γ)k.(ai, βi, γ)

))
= pi

In the following we write ΨnoAP for the sub-formula corresponding to the part of Ψ
without the quantifiers coding the atomic propositions ∀δA1 . ∃δA2 . . . . ∀δAn−1 . ∃δAn . We
also denote ΦLTL the LTL part of the QLTL formula Φ. The lemmas below state the
correctness of the construction in two steps. Their proofs, which can be found in the
annex (page 58), are based on the correspondence described above.

Lemma 2.16. A word w satisfies ΦLTL if and only if G, (s, α, γ) |=χw ΨnoAP with χw the
valuation corresponding to w.

Lemma 2.17. Formula Φ is satisfiable if and only if Formula Ψ holds true in state (s, α, γ)
of the game GΦ.

The Lemma 2.16 handles the correctness of the construction based on the corre-
spondence described above between words and valuations. In a standard fashion, the
Lemma 2.17 extends Lemma 2.16 by taking care of the quantifications over the atomic
propositions. It also proves the correctness of our reduction and concludes the proof of
Theorem 2.15.

Closing remarks

SL[BG] and several other fragments were defined in [40, 41] with the aim of getting more
tractable fragments of SL. In particular, the authors advocate for the restriction to be-
havioural strategies : this forbids strategies that prescribe actions depending of what other
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strategies would prescribe later on, or after different histories. Non-behavioural strate-
gies are thus claimed to have limited interest in practice; moreover, they are suspected
of being responsible for the non-elementary complexity of SL model checking. Our hard-
ness result strengthens the latter claim, as SL[BG] is known for not having behavioural
strategies. In the second part of the thesis, we will study behavioural strategies and more
generally dependencies in SL[BG].

|=φ
p1 p1 p1

p2 p2

We had to rely on a Büchi automaton instead of
directly using the original LTL formula directly in the
SL[BG] formula. This is because we need to evaluate
the formula not on a real path of our game structure,
but on a sequence of “unions” of states. The figure on
the right represents this situation for the game struc-
ture of Figure 2.3: the path on which the LTL formula
is evaluated is given by the orange and red circle states, which define the valuations for p1

and p2.

2.4 Conclusion

Model Checking Satisfiability
Formula Data Formula

SL Upper Bound NONELEMENTARY [39]

UNDECIDABLE

Lower Bound TOWER PH-hard

SL[NG]
and

SL[BG]

Upper Bound
In (k + 1 )-EXPTIME for

k quantifier alternations [39]

Lower Bound TOWER PH-hard

SL[1G] Upper Bound 2 -EXPTIME-complete [38]
(PTIME-complete for the model checking data complexity)Lower Bound

Table 2.1: Complexities of SL and its fragments.

We can see on Table 2.1 that SL[NG] and SL[BG] model checking complexities are
high while the satisfiabilities are outright undecidable. The TOWER lower bound we
developed in Section 2.3.2 for SL[BG] proves that we cannot do much better. It would
be interesting to close the gap in the data complexity between the NONELEMENTARY
upper bound and the PH lower bound. The SL model checking algorithm proceeds by a
bottom up induction using the state space of the game in the basic case; there may exists
a potential solution in a similar algorithm that proceed without using the game in the
basic case.

To regain a decent complexity (if we may call 2 -EXPTIME decent), the only solution
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is to heavily restrict the logic. Satisfiability of SL[1G], the fragment with a unique ob-
jective, is 2 -EXPTIME-complete. While never proved formally, the technics developed by
Mogavero, Murano, Perelli and Vardi in [38] for the satisfiablity problem may be adapted
to get a 2 -EXPTIME algorithm for the model checking problem. We will also provide our
own algorithm in Chapter 5.
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2.A Annex
Lemma 2.16. A word w satisfies ΦLTL if and only if G, (s, α, γ) |=χw ΨnoAP with χw the
valuation corresponding to w.

Proof. Write w := (wj)j∈N for the word w : N → 2AP , N for the Büchi automaton
associate with ΦLTL and ∆N for its transition function.

Proof of left-to-right implication Assume that w ∈ L(N ), then there exists a path
π in N witnesses that w is accepted by N , i.e. π(1) is the initial state of N , π ∈ L(N )
and

∀j ∈ N ∆N (π(j), w(j)) = π(j + 1) (2.3)

We define a strategy δOak for Agent Oak. For any k, we set

δOak((s, α, γ)j) := π(j)

We can then follow the choices explained in Section 2.3.2 to complete χw into a
complete valuation χ that satisfies the goals of ΨAux. It remains to check that χ satisfies
the Formulas (ϕ12) to (ϕ17). Formula (ϕ12) holds de facto by the choices made in ΨAux. π
is, by definition, a proper path of N so by items (xiii) and (xiv), Formulas (ϕ13) and (ϕ14)
must hold. Similarly, as π is accepting and because of item (xv), Formula ϕ15 must also
hold. Finally, by construction of δOak and as explained in item (xvi), Formulas (ϕ16)
and (ϕ17) must be true.

Proof of right-to-left implication For the converse implication, we assume that
w 6∈ L(N ), and towards a contradiction we further assume that

G, (s, α, γ) |=χw ΨnoAP (2.4)

Fix a strategy δOak for Agent Oak and let χ be a complete valuation resulting from
the interplay between the quantifications that extend χw and use δOak. First, as described
in Section 2.3.2, the behaviour of all strategies existentially quantified in ΨAux is imposed
by the goals within ΨAux and the universally quantified strategies within ΨAux (namely
δGreen, δGold∀ and δGreen∀ ). If the strategies of χ do not follow the rules imposed by ΨAux

and χ(δGreen), χ(δGold∀ ) and χ(δGreen∀ ) then there must exist some goal in ΨAux that does
not hold. This means that ΨnoAP does not hold either and we get a contradiction with
Formula (2.4). So for the rest of the right-to-left implication, we assume that χ is working
for the goals of ΨAux.

Similarly to the left-to-right implication, the strategy δOak describes a sequence of
state (πj)j∈N in N through the following equality

δOak((s, α, γ)j) = π(j)

Items (xiii) and (xiv) ensure that π is a proper path, starting in the initial state qini
of N . Items (xv) makes sure π is accepted by N . Finally, item (xvi) establishes a
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correspondence between the word w and the path π. Combining items (xiii) to (xvi), we
get that w is accepted by N which contradicts the hypothesis we made at the start of
the implication. So the hypothesis w 6∈ L(N ) and the Formula (2.4) are contradictory
and the right to left implication must hold.

Lemma 2.17. Formula Φ is satisfiable if and only if Formula Ψ holds true in state (s, α, γ)
of the game GΦ.

Proof. We proceed by induction on the number of atomic propositions. For this proof we
write Ψi for the formula consisting of Ψ without the quantifications ∀δA1 , . . . Qi−1δ

Ai−1

and Φi for the sub-formula of Φ that withdraws the quantifications ∀p1, . . . , Qi−1pi−1.
The induction aims to prove that

w satisfies Φi ⇔ GΦ, (s, α, γ) |=χw Ψi (2.5)

where w : N → 2p1,...,pi−1 is a word, χw is the valuation associate with w as described in
Section 2.3.2, and with i ranging from n to 0.

The initial case (i = n, Φi = ΦLTL and Ψi = ΨnoAP) has already be done by Lemma 2.16
and only the induction case remains. For the ith step, by induction hypothesis For-
mula (2.5) holds for i + 1.Without loss of generality we assume that Qi = ∃, the case
Qi = ∀ is similar. First, consider a word w and assume that w satisfies Φi. Then there
exists a function wi : N→ {pi, ∅} such that w′ := w∪wi satisfies Φi−1. Then by induction
hypothesis, GΦ, (s, α, γ) |=χw′

Ψi. This implies that there exists a strategy (χw′(δAi)) that
extends χw in χ′ and such that GΦ, (s, α, γ) |=χ′ Ψi. We get the left-to-right implication of
the ith step of the induction. The right-to-left implication works similarly, and we use the
working strategy δAi to create a word wi : N → {pi, ∅} handling the atomic proposition
pi. Having both implications, we deduce that the equivalence in Formula (2.5) holds. We
can then conclude the induction. The case with i = 0 gives us the lemma.
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Chapter 3

Floating strategy logic

Consider a network of several clients, who may ask a central server for access to a shared
resource. One (or several) user(s) can turn the clients on and off, and when turned on,
each client then requests access to the resource. The server then has two objectives: one
is to enforce that no two clients access the resource at the same time, whatever the clients
do; the second property is that the clients must have a strategy that each of them can
apply when turned on, and that ensures access to the resource (by collaborating with
the server). This, in SL (with adapted syntax to make the formula readable), would be
written

∃δserver. ∃δclient. if server applies δserver then
[
( always mutual exclusion)

∧ ( always ( if client applies δclient then eventually access ).)
]

Intuitively, when assigned, the strategy δclient should start on an empty history as it
has no knowledge of requests made by the other users to the server; however in SL the
history of a strategy is preserved from the moment of its quantification. SL is limited
in its expressiveness by its semantics forcing strategies to retain the history from the
moment they were quantified.

The importance of this semantic choice has been under-considered in all SL related pa-
pers. We can indeed propose a second semantics making another choice, where the client
has no knowledge about the history prior to being assigned a strategy. Both semantics
are interesting but they model different phenomenons; as we will see the semantics also
has an heavy impact on the model checking problem.

We propose a framework to handle this issue and study its algorithmic possibilities
and limitations. We start in Section 3.1 by changing the definition of valuation translation
and reworking SL semantics into a new logic FSL to take into account the aforementioned
semantical subtlety. We then focus on the model checking problem. In Section 3.2 we
show that FSL[NG] (the nested goal fragment of FSL) is undecidable while in Section 3.3
we highlight a decidable fragment FR-FSL[NG] whose expressiveness is between SL[BG]
and FSL[NG].

61
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q

q’

ρ

starts with
history δ(ρ)

q

q’

ρ

starts with
history δ(q′)

“∃x”
δ is stored
in variable x

“assign(A, x)”
δ is assigned from
x to agent A

in Strategy Logic in Floating Strategy Logic

Figure 3.1: Strategy knowledge about history in Strategy Logic and Floating Strategy
Logic.

3.1 Definition
One way to solve the issue described above is to translate1 only the strategies of the
agents but not the ones of the variables. This way we ensure that when an agent is
assigned a strategy stored in a variable midway through the simulation, the said strategy
has no knowledge of the history. Figure 3.1 illustrates the concept.

Definition 3.1 (Floating valuation translations).
Given a valuation χ over a game G, a set of variables V and a history ρ in G, we define
the floating valuation translation χ ρ

−→
by

∀x ∈ Agt ∩ dom(χ), χ ρ
−→

(x) := χ(x)−→ρ

∀x ∈ V ∩ dom(χ), χ ρ
−→

(x) := χ(x)

The floating strategy logic FSL obey the same grammar as SL:

FSL 3 φ ::= ∃x.φ | assign(A, x).φ | φ ∨ φ | ¬φ | φUφ | Xφ | p

but the semantics of the temporal operators and quantifications are modified.
Firstly, we want the temporal operators to use floating translations. Fix a valuation

χ with Agt ∪ free(φ) ∪ free(φ′) ⊆ dom(χ); as before χ produces a unique outcome ρ. We
write χ j

−→
for χρ≤j

−−→
and let

G, q |=χ Xφ ⇔ G, q |=χ 1−→
φ

G, q |=χ φ
′Uφ ⇔ ∃k ∈ N.

{
G, q |=χ k−→

∀j ∈ N. 0 ≤ j < k ⇒ G, q |=χ j
−→
φ′

Secondly, a strategy is not bound to its history and therefore not bound to its initial
state: it may be quantified on a state q0 and applied at state q1, and thus must be

1“Translate” as in strategy translation, see Section 1.5.1.



63

defined on suffixes of q0 but also on suffixes of q1. To maintain a rigorous definition of
FSL’s semantics, we adapt the semantics of quantifications to add the initial state onto
the history2. If free(φ) \ {x} ⊆ dom(χ), then

G, q |=χ ∃x.φ ⇔ ∃δ ∈ StratG such that G, q |=χ[x 7→δ−→q ] φ

We call FSL[NG] the fragment of FSL using the same grammar as SL[NG], we recall
the grammar of the flat fragment:

FSL[NG][ 3 φ ::= ∃x.φ | ∀x.φ | ψ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p | β

SLFSL

SL[NG]FSL[NG]

SL[BG]

Floating

translations

Usual

translations

Translations of the strategies stored
in variables don’t matter

Figure 3.2: The two semantics.

The two semantics (with usual valuation trans-
lation or with floating valuation translation) coin-
cide in SL[BG]. We recall that SL[BG] formulas are
made by a series of quantifications followed by a
boolean combination of goals (assignment followed
by LTL operators) and that there is no assignment
possible after the first temporal operator outside of
closed sub-formulas. This means that when apply-
ing a formula φ ∈ SL[BG] to a game G from a state
qini, the strategies used in a SL[BG] formula are all
assigned on qini. The strategies stored in the vari-
ables are never assigned outside qini and whether we
translate them (as the usual valuation translation)
or not (as in the floating valuation translation) does
not matter, see Figure 3.2.

Client/Server interaction. We return to the
example given in the introduction of this chapter. Consider the formula (still with an
adapted syntax to make the formula readable)

∃δserver. ∃δclient. if server applies δserver then
[
( always mutual exclusion)

∧ ( always ( if client applies δclient then eventually access ).)
]

but within the semantics of FSL. When the client connects to the server, i.e. when δclient

is applied, he has no knowledge of the previous actions of the server (as δclient has the
current state for history). FSL’s semantics therefore seem an appropriate answer to the
problem exposed in the introduction to this chapter.

2This is a technical detail. A strategy usually starts on the empty history ε and is defined (at a meta
level) relatively to an initial state. We just make the initial state appear clearly in the history. In FSL
strategies are never evaluated on ε.
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3.2 Undecidability of FSL[NG]

The high expressive power of these new semantics implies an undecidable model checking
of FSL. In [8], we proved FSL model checking to be undecidable Here, we improve the
proof to work in FSL[NG] and for formulas with a single quantifier alternation.

Theorem 3.2. The model checking problem for closed FSL[NG] formulas is undecidable.

Proof. We do a reduction from the halting problem for deterministic two-counter au-
tomata, known to be undecidable to FSL[NG] model checking.

Deterministic two-counter automata

Definition 3.3. A deterministic two-counter automaton is a tuple M = 〈S,E, s0, sh〉
where S is the state space, s0 is an initial state of QM and sh ∈ QM is a halting state.
E : S→ {c1, c2}×{S∪S×S} is the transition function. Transitions of form E(s) = (c, s′)
increment the counter c and go to s′, while transitions of form E(s) = (c, s′, s′′) either go
to s′ if the counter c equals 0 or decrement c and go to s′′ if c > 0.

A configuration ofM is a triple (s, c1, c2) ∈ S×N×N, with the initial configuration
being (s0, 0, 0). A history is then a finite sequence of configurations that follows the rules
of E, while a path is an infinite sequence, also following the rules of E.

The halting problem for two-counter automata takes as input an automatonM and
asks if there exists a path inM that eventually reaches the halting state.

Theorem 3.4. (Minsky [37])
The halting problem for two-counter automata is undecidable.

The reduction

Let M = 〈S,E, s0, sh〉 be a two-counter automaton. We start by building a turn-based
game G := 〈AP,Agt,Q,Act,∆, labels〉 before explaining the idea behind our reduction.

• There are two agents in Agt: Decider (represented below in the states) and
Checker (represented in the states).

• The set of atomic propositions is AP := {pmain, phalt}∪{ps | s ∈ S}∪
⋃
j∈{1,2}{p

j
⊥, p

j , pj }.

• The state space is Q :=
⋃
s∈S{s , s } ∪

⋃
j∈{1,2}{g

j , gj , gj⊥}, with two states per
element of S (we will call them the main states) and one gadget per counter, each
having three states.

• For each s ∈ S, there is a transition from s to s ; from s to gj for any j ∈ [1, 2];
and from s to s′ whenever E(s) = (cj, s′) or E(s) = (cj, s′, s′′) for some j ∈ {1, 2}
and some s′′ ∈ S.

We also add transitions inside the gadgets: from gj to gj , from gj to gj , from
gj to gj⊥, from gj to gj⊥ and a loop over gj⊥ for any j ∈ [1, 2]. See Figure 3.3
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s s

s′ s′

s′′ s′′ main
states

g1g1

g1
⊥

counter(1)

g2 g2

g2
⊥

counter(2)

Figure 3.3: The game G.

• We label each main square state s (for s ∈ S) with ps and each main state with
pmain. Moreover both copies ( and ) of the halting state sh ofM are labelled
with phalt. Finally, we label the three states of each gadget with an eponymous
proposition.

• We also identify an initial state for G: qini is the copy of the initial state s0 of
M.

The intuition is for Decider ( ) to recreate an accepting path of M in the “main
part” of G and for Checker ( ) to check for any error. The main difficulty lies in the
counters updates: for this task we will “store” a counter into a strategy and check it
later on to ensure proper incrementation/decrementation. More precisely given a path
ρ = ρ1.ρ2 . . . in M we associate a strategy δmain for Decider that will try to create the
path π := ρ1 .ρ1 ρ2 .ρ2 . . . and encode the first (resp. second) counter at step j through
the number of time it loops on g1 .g1 (resp. g2 .g2 ) after history ρ1 .ρ1 . . . ρj .g1

(
resp.

ρ1 .ρ1 . . . ρj .g2
)
. For this encoding to work, we need to ensure that δmain satisfies the

initial conditions on the counter, deals correctly with the zero-test edges and updates the
counters correctly.

The formula

Before going into details, we give the main formula so the reader can see the order in the
quantifications.

φ := ∃xmain.∃x∞.∃x→g1 .∃x→g2 .∃x ,
loop .∀xCount.

{
ψcode ∧ ψinit ∧ ψzero
∧ψAccept ∧ ψUpdate

Each sub-formula serves a specific purpose and we provide the definitions below with
some comments before proving the correctness of the reduction. Within the name of each
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variable we make obvious the intended agent. The xloop variable will be assigned to both
agents, as allowed by FSL syntax. It simplifies the formula and avoids adding another
variable, the result however still holds if we forbid strategy sharing between two agents.
To shorten the formulas, we abbreviate “Decider” to “Dec” and “Checker” to “Che”.

Preliminary work

We start by some preliminary work. The formula ψcode ensures that any realisation of
∃x∞ must always play to the main states and that any realisation of ∃x→gj from the s
states must play to gj . Formally, ψcode := ψ1

code ∧ ψ2
code ∧ ψ3

code with

ψ1
code := assign(Dec, xmain;Che, x∞).G pmain

ψ2
code := assign(Dec, xmain;Che, x∞).G

[
(
∨
s∈S

ps )⇒ assign(Che, x→g1)X g1
]

ψ3
code := assign(Dec, xmain;Che, x∞).G

[
(
∨
s∈S

ps )⇒ assign(Che, x→g2)X g2
]

Trivially, we have

Proposition 3.5. Given four strategies δmain, δ∞, δ→g1 and δ→g2, we have that

G, qini |={xmain→δmain; x∞→δ∞ ; x
→g1
→δ
→g1

; x
→g2
→δ
→g2
}

∧
∈[1;3]

ψcode

if and only if the outcome of δmain and δ∞ follows the main states and for j ∈ {1, 2} and
any s state (s ∈ S), δ→gj on history s plays to gj.

Consider a strategy δmain intended for the variable xmain. It defines a (unique) se-
quence (si, ci1, c

i
2)i∈N of (S×N∪{∞}×N∪{∞})N where si = δmain(s1 .s1 . . . si−1) and for

j ∈ {1, 2}, cij is the number of time δmain loops on gj .gj after history s1 .s1 . . . si .gj .
We use the sequence to encode the counter values.

The initial conditions

We define the formula ψinit below to ensure that both counters are initialised to zero.

ψinit :=
∧

j∈{1,2}

assign(Dec, xmain;Che, x→gj).X
2gj⊥

Proposition 3.6. Fix four strategies δmain, δ∞, δ→g1 and δ→g2 such that they satisfy∧
∈[1;3] ψ


code. Write (si, ci1, c

i
2)i∈N for the sequence associated with δmain and δ∞ in (S ×

N ∪ {∞} × N ∪ {∞})N. Then

G, qini |={xmain→δmain; x∞→δ∞ ; x
→g1
→δ
→g1

; x
→g2
→δ
→g2
}
ψinit ⇔ c1

1 = c1
2 = 0.



67

Proof. Assume

G, qini |={xmain→δmain; x∞→δ∞ ; x
→g1
→δ
→g1

; x
→g2
→δ
→g2
}
ψinit (3.1)

Because of Proposition 3.5, the outcome of {xmain → δmain; x→g1 → δ→g1} starts as
qini.g

1 , and because of Formula (3.1), it continues as qini.g1 .g1
⊥ and therefore c1

1 = 0.
The same idea can be applied to show that c1

2 = 0. The other direction is similar: if
Formula (3.1) does not hold, then c1

1 6= 0 or c1
2 6= 0.

The zero tests

We define the formula ψzero below. Its role is to ensures that whenever the outcome of
{Dec, xmain; Che, x∞} takes a zero-test edge on counter 1 (resp. 2) between step i and
i + 1, δmain encodes at step i the value 0 on the gadget 1(resp. 2). The fact that the
counter encoded at step i+ 1 is 0 will be ensured in the incrementation/decrementation
step later on.

ψzero :=
∧

j,s,s′ s.t.
j∈{1,2}

E(s)=(cj ,s′,s′′)

assign(Dec, xmain;Che, x∞). G

{
(ps ∧X 2ps′ )⇒
assign(Che, x→gj)(X gj ∧X 2gj⊥)

Proposition 3.7. Fix four strategies δmain, δ∞, δ→g1 and δ→g2 such that they satisfy∧
∈[1;3] ψ


code. Write (si, ci1, c

i
2)i∈N for its associated sequence in (S×N∪{∞}×N∪{∞})N.

Then

G, qini |={xmain→δmain; x∞→δ∞ ; x
→g1
→δ
→g1

; x
→g2
→δ
→g2
}
ψzero

⇔ ∀i ∈ N ∀j ∈ {1, 2} ∀s′′ ∈ S E(si) = (cj, si+1, s′′)⇒ cij = 0

Proof. Assume that

G, qini |={xmain→δmain; x∞→δ∞ ; x
→g1
→δ
→g1

; x
→g2
→δ
→g2
}
ψzero (3.2)

and that there exists s′′ ∈ S, i ∈ N and j ∈ {1, 2} with E(si) = (cj, si+1, s′′). After 2i

steps, the outcome of {δmain; δ∞} will satisfy (ps ∧X 2ps′ ). This means, by Formula (3.2),
that at step 2i, it must also satisfy assign(Che, x→gj)(X gj ∧X 2gj⊥) which implies that
cij = 0 by definition of cij.

The converse implication is done similarly by assuming that Formula (3.2) does not
hold and deducing some i, j and s′′ such that E(si) = (cj, si+1, s′′) and cij 6= 0.
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The path encoded reaches the halting state in M

We set
ψAccept := assign(Dec, xmain;Che, x∞).F phalt

The proof of the following proposition is straightforward thus omitted.

Proposition 3.8. Fix two strategies δmain and δ∞, and write (si, ci1, c
i
2)i∈N for the asso-

ciated sequence of δmain and δ∞.

G, qini |={xmain→δmain; x∞→δ∞ }
ψAccept ⇔ ∃i ∈ N phalt ∈ labels(si)

Storing counter values within strategies

To check the counter updates, we store them within a strategy using the specificity of
FSL[NG]. First, for j ∈ {1, 2} we define the following open formula

ψjEgal := assign(Che, x→gj).X assign(Che, xCount).F


gj

∧X gj⊥

∧assign(Dec, x ,
loop )

{
X¬gj⊥
∧X 2gj⊥

We can compare the number of times two strategies δmain and δCount, intended respectively
for the variables xmain and xCount, loop respectively on gj and gj .

Proposition 3.9. Fix i ∈ N, j ∈ {1, 2} and a history ρ that travels through the main
states and finishes in a ps states. Fix any four strategies δmain, δ∞, δCount and δ ,

loop

where δ ,
loop always plays from gj to gj . Write (si, ci1, c

i
2)i∈N for the associated sequence

of δmain and δ∞. Let

χ := {Dec→ δmain; Che→ δ∞; xCount → δCount; x
,

loop → δ ,
loop }

Then

G, gj |=χ ρ
−→
ψjEgal ⇔ δCount loops c

|ρ|
j times on gj

Proof. Assume that δCount loops c
|ρ|
j times on gj . Then, reusing the χ ρ

−→
notation for the

floating valuation translation, the outcome of {Dec → δCount; Che → (δmain)ρ.gj

−−−→

} from

gj will loop c|ρ|j times on gj .gj before seeing gj then gj⊥ (as δmain stops looping after

c
|ρ|
j times). Hence

G, gj |=χ ρ
−→
assign(Che, x→gj).X

(
assign(Che, xCount).F (gj ∧X gj⊥)

)
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Moreover, if we assign δ ,
loop to x ,

loop after |ρ| steps then, because δCount is also done
looping and keeps its history, δCount will send the outcome to gj⊥. Hence

G, gj |=χ ρ
−→
ψjEgal

and the ⇐ implication of Proposition 3.9 holds. The other way is similar and Proposi-
tion 3.9 must hold.

Test for incrementation and decrementation

Using formulas similar to ψjEgal, we can test if the strategy stored in xCount loops one
more or one less time than the one stored in xmain.

ψjInc := assign(Che, x→gj). X assign(Che, xCount). F


gj ∧X gj⊥

∧assign(Dec, x ,
loop ).

{
X 3¬gj⊥
∧ X 4gj⊥

ψjDec := assign(Che, x→gj). X assign(Che, xCount). F


gj ∧X gj⊥

∧assign(Che, x ,
loop ).

{
X 2¬gj⊥
∧ X 3gj⊥

Similarly to Proposition 3.9, we get

Proposition 3.10. Fix i ∈ N, j ∈ {1, 2} and a history ρ that travels through the main
states and finishes in a ps states. Fix any four strategies δmain, δ∞, δCount and δ ,

loop

where δ ,
loop always plays from gj to gj and from gj to gj . Write (si, ci1, c

i
2)i∈N for the

associated sequence of δmain and

χ := {Dec→ δmain; Che→ δ∞; xCount → δCount; x
,

loop → δ ,
loop }

Then

G, gj |=χ ρ
−→
ψjInc ⇔ δCount loops c

|ρ|
j + 1 times on gj

G, gj |=χ ρ
−→
ψjDec ⇔ δCount loops c

|ρ|
j − 1 times on gj

Updating counter values

Using the work done above, we can now specify the formula encoding proper counters
updates.

ψUpdate :=
∧

j∈{1,2}

assign(Dec, xmain;Che, x∞).G (ψ= ∧ ψ+ ∧ ψ−)
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Loop ci1 times

Loop ci1 times

Loop ci+1
1 times

Loop ci1 times

Number of steps i i+ 2

ρOutcome of δmain, δ∞ s s s′

δmain on history ρ.s

�

δCount on empty history

δmain
on history ρ.s .s .s′

δCount on empty history

�

Figure 3.4: Testing for an incrementation of the first counter at step i.

where

ψ+ :=
∧

s,s′|E(s)=(cj ,s′)

(ps ∧X 2ps′ )⇒ ψjEgal ⇒ X 2ψjInc

ψ= :=
∧

s,s′|E(s)=(cj ,s′)

(ps ∧X 2ps′ )⇒ ψjEgal ⇒ X 2ψjEgal

ψ− :=
∧

s,s′|E(s)=(cj ,s′)

(ps ∧X 2ps′ )⇒ ψjEgal ⇒ X 2ψjDec

Figure 3.4 illustrates the idea. δCount loops the same number of time when assigned
after history ρ.s and after history ρ.s .s .s′ . This is due to the floating semantics of

FSL and is not true in SL. The strategy δCount can then be used to compare the number
of times δmain loops after history ρ.s and after history ρ.s .s .s′ . This comparison
allows us to check for proper update of a counter values.

Correctness of the reduction

This terminates the definitions of the intermediary formulas. Using the propositions
provided in each part, we establish a correspondence between the existence of a working
strategy δmain in G and the existence of an accepting path inM. This is done through
the following proposition.

Proposition 3.11. There is an accepting path inM if and only if G, qini |= φ

Proof. Assume there is an accepting path (qi, ci1, c
i
2)i∈N. Let δmain be a strategy with

associated sequence (qi, ci1, c
i
2)i∈N (intended for xmain). Let also δ∞, δ→g1 , δ→g2 and δ ,

loop

be four strategies such that
G, qini |=χ ψcode

where

χ := {xmain → δmain; x∞ → δ∞; x→g1 → δ→g1 ; x→g2 → δ→g2 ; x ,
loop → δ ,

loop }



71

Then, because (qi, ci1, c
i
2)i∈N is an accepting path and because of Propositions 3.5, 3.6,

3.7, 3.8, 3.9 and 3.10, we have that

G, qini |=χ ψinit ∧ ψzero ∧ ψAccept ∧ ψUpdate

For the reverse implication, assume there is no accepting path and fix any five strate-
gies δmain, δ∞, δ→g1 , δ→g2 and δ ,

loop . Write

χ := {xmain → δmain; x∞ → δ∞; x→g1 → δ→g1 ; x→g2 → δ→g2 ; x ,
loop → δ ,

loop }

If G, qini 6|=χ ψCode, trivially G, qini 6|=χ ψCode∧ψinit∧ψzero∧ψAccept∧ψUpdate. So we assume
G, qini |=χ ψCode.

Let (qi, ci1, c
i
2)i∈N be the sequence associated with δmain. By hypothesis, (qi, ci1, c

i
2)i∈N

cannot be an accepting path. There are two possibilities:

• First possibility, it is a path but it does not reach an accepting state. In this case,
by Proposition 3.8, G, qini 6|=χ ψAccept.

• Second possibility, (qi, ci1, c
i
2)i∈N does not correspond to a valid path.

– If it fails a zero test then by Proposition 3.7 we have that G, qini 6|=χ ψzero.
– If it does not have the proper initial values for the counters, then by Proposi-

tion 3.6 we have that G, qini 6|=χ ψinit.
– If it fails to update one of the counters, then by Propositions 3.9 and 3.10 we

have that G, qini 6|=χ ψUpdate.

In any case, δmain is not an adequate strategy and therefore G, qini |= φ.

This last proposition proves the correctness of our reduction and therefore gives us
Theorem 3.2.

3.3 Decidability of FR-FSL[NG]

The undecidability of FSL[NG] model checking comes from the ability to compare strategy
choices on multiple histories. One way to gain decidability on a fragment of FSL is to
force a reassignment of all agents. This ensures that comparison of strategies can only
be done on a common history: as we reassign all the agents at every reassignment, any
two agents at any moment in the game and on any branch of the formula will always
share a common history. Figure 3.5 shows the differences. With FSL we can correlate
the choices of a strategy on the orange history with the choice on the red history by
checking the outcome they produces in combination with an annex strategy on a fixed
history (represented by the gold arrow on fixed history q). In SL the comparison of two
strategies happens on the same history hence we cannot compare the choices made by a
strategy on the orange and red histories. In this section, we define a fragment FR-FSL[NG]
between FSL[NG] and FSL[BG] (which we recall coincides with SL[BG]) and prove that its
model checking is decidable.
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Figure 3.5: The differences between FSL[NG] (on the left) and FR-FSL[NG] (on the right).

Definition 3.12 (FSL[NG] with full reassignments: FR-FSL[NG]).
A flat FR-FSL[NG] formula over a set of agents Agt := {A1, . . . Aλ} and a set of variables
V := {x1, . . . } obey the grammar

FR-FSL[NG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A1, x1; . . . ;Aλ, xλ).ϕ

ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p | β

where x, x1, . . . , xλ are variables in V.

For the sake of readability and because any assignment must reassign all the agents,
we regroup the assign() operators to work on all agents at once. As usual, the non flat
fragment allows closed formulas at the same level as atomic propositions. The semantics
follow the ones of FSL and FSL[NG].

Consider the two closed formulas below where A and B are two agents:

φ1 :=∃x1.∀x2.∃x3. assign(A, x1;B, x2).
(
F p ∧ assign(B, x3)G¬p

)
φ2 :=∃x1.∀x2.∃x3. assign(A, x1;B, x2).

(
F p ∧ assign(A, x1;B, x3).G¬p

)
In φ1, we can see two goals: a standard goal assign(A, x1;B, x2).

(
F p∧assign(B, x3).G¬p

)
and a nested goal assign(B, x3).G¬p within the standard one. Formula φ1 is not in
FR-FSL[NG] because assign(B, x3).G¬p does not reassign the strategy of agent A. The
strategies of agents A and B are running on different histories. On the other hand, φ2 is
in FR-FSL[NG], the nested goal assign(A, x1;B, x3).G¬p reassigns every agent and their
histories run on the same history. This common history makes all the difference.

Theorem 3.13. The model checking problem for closed formulas of (the flat fragment)
FR-FSL[NG][ with k alternations is in (k + 2 )-EXPTIME.

Proof. The proof consists in a reduction to SL[BG] model checking, known to be decidable
(see Chapter 2). The idea is to lift the floating fully reassigned nested goals into the
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game in order to get something belonging to SL[BG]. We can then check the new formula
through SL[BG] model checking algorithm. The central idea at the heart of FR-FSL[NG]
can be expressed through the following lemma.

Lemma 3.14. Fix a game H, a goal ψ in FR-FSL[NG] (hence starting by a full reas-
signment) and a valuation χ in H with free(ψ) ⊆ dom(χ). Then, for any history π in
H,

H, lst(π) |=χπ−→
ψ ⇔ H, lst(π) |=χ ψ

The proof follows from the semantics of FSL where all agents are reassigned a new
strategy on empty history, and from the fact that the strategies used by the agents at
step i all share a common history. The lemma does not hold for nested goals of FSL[NG],
where there may be two strategies assigned to two different agents that progress based
on different histories (a first strategy assigned to an agent at some previous point with a
non-empty history and a newly assigned strategy that has no history).

Consider a game G := 〈AP,Agt,Q,Act,∆, labels〉 and an initial state qini of Q. Con-
sider also a FR-FSL[NG][ formula φ := ℘ξ(ψd,i)d∈[1;D] i∈[1;λd] with ℘ a quantification prefix,
with ξ a boolean combination of goals where every nested goal is fully reassigned, with
D ∈ N the maximal depth3 of the nested goals of φ, with λd the number of goals at
depth d, and with ψ{d,1}, . . . , ψ{d,λd} the list of goals at depth d. For example in the
formula below on two agents A and B:

∃x1. ∀x2. ∃x3. ∀x4


assign(A, x1;B, x2).


F p1∧

assign(A, x3;B, x4).

{
F p2∨
assign(A, x1;B, x2).F p1

assign(A, x1;B, x4).G¬p3

the maximal depth of the nested goals is three; each sub-formula starting by an assignment
is a new goal. At depth three there is a unique goal assign(A, x1;B, x2)F p1. At depth two
there is also a unique goal assign(A, x3;B, x4)F p2 ∨ (assign(A, x1;B, x2)F p1). At depth
one there are two goals:

assign(A, x1;B, x2).
(
F p1 ∧

(
assign(A, x3;B, x4).(F p2 ∨ assign(A, x1;B, x2).F p1)

))
assign(A, x1;B, x4).G¬p3

Building the game

We start by defining a game H := 〈APH,AgtH,QH,ActH,∆H, labelsH〉 as follows

• AgtH := Agt ∪ {Dec}. The agents of H are the agents of G plus a Decider agent
Dec.

3The depth of reassignment of a goal ψ is the number of (full) reassignments containing ψ. A goal ψ
appearing just after the quantification block is at depth 1 while a nested goal ψ′ within ψ is at depth 2.
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G, f1 copy

. . .
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aq1,f1 aqini,f1
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aqini,fΛ aq2,fΛ

Figure 3.6: The game H where Λ = Q× {(d, i) | d ≤ D, i ≤ λd}

• QH := {qHini} ∪ {qf | q ∈ Q, f ∈ {0, 1}Q×{(d,i)|d≤D, i≤λd}} : the state space is made
of one initial state qHini and of {0, 1}Q×{(d,i)|d≤D, i≤λd} copies of Q.

• ActH := Act ∪ {aq,f | q ∈ Q, f ∈ {0, 1}Q×{(d,i)|d≤D, i≤λd}}. The actions of G (Act)
are accessible to any non-decider agent. We also add an action for each couple
(q, f) ∈ Q× {0, 1}Q×{(d,i)|d≤D, i≤λd}, all exclusive to the decider agent.

• ∆H := : In qHini, only Dec plays and only the aq,f ’s actions are activated. If Decider
plays aq,f the game moves to the q state within the f copy of Q. Within a copy of
Q, the aq,f actions are deactivated and ∆H follows ∆ (the transition function of G).

• labelsH : For any f ∈ {0, 1}Q×{(d,i)|d≤D, i≤λd} and any state qf of the f copy, we
label qf as q in G and add the labels pf and pq. For example, given q ∈ Q and
f ∈ {0, 1}Q×{(d,i)|d≤D, i≤λd}, we have labelsH(qf ) = labels(q) ∪ {pf , pq}.

Figure 3.6 illustrates the construction. It remains to specify the formula we use and to
prove the correctness of our reduction.

Specifying the formula

The main idea behind our reduction is to transfer the validity of the nested goal to the
choice of a copy of Q. Then, using Lemma 3.14, we can enforce the correct choice with
an SL[BG] formula.

The formula φH of our reduction is defined by

φH := ℘. ∃xDecCopy.Πq∈Q(∃xDec→q )


assign(Dec, xDecCopy).X

ξ
[∨

f |f(d,i)=1 pf/ψd,i

]
2≤d≤D, i≤λd

∧ pqini
∧
∧
∈[1;2] ψ


code

where Πq∈Q(∃xDec→q ) represents a sequence of existential quantifiers, one per state of Q.
The sub-formula

∧
∈[1;2] ψ


code transfers the validity of the nested goal through the choice
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of which copy of Q the strategy of xDecCopy must go. We define them formally below, where
β is any assignment present in φ. By the nature of H, which assignment β is chosen does
not matter, it is just a technicality to assign a strategy to each agent.

ψ1
code :=


∧
q∈Q assign(Dec, xDec→q ).X pq

∧
∧
f∈{0,1}Q×{(d,i)|d≤D, i≤λd}

{
assign(Dec, xDecCopy).βX pf

⇒ assign(Dec, xDec→q ).βX pf

ψ2
code :=

∧
(q,d,i)|q∈Q, d≤D, i≤λd


assign(Dec, xDec→q ).Xψd,i

⇔
assign(Dec, xDecCopy).X

∨
f |f(q,d,i)=1 pf

Correctness of the reduction

We start by a purely technical proposition whose proof is a consequence of the definition
of ψ1

code.

Proposition 3.15. Let χ be a valuation defined on the variables in φH. Then the fol-
lowing are equivalent

• for any q ∈ Q, χ(xDec→q )(qHini) plays to q in the f copy of Q and χ(xDecCopy)(q
H
ini) plays

to the copy of qini in the f copy of Q.

• G, qHini |=χ ψ
1
code

The strategy stored in xDecCopy must choose a copy of the game. Which copy it chooses
defines a function f taking as input a state q and the indexes d and i representing a goal,
and returning a truth value.

We write Var(℘) for the set of variables appearing in ℘. For a history ρ in G, we
define ρf as the history in H where ρf (i) is the copy of the ρ(i) state in the f copy of Q.
For a valuation X in G of domain dom(X) = Var(℘), we define a valuation XH of domain
dom(XH) = Var(℘) in H and where for any x ∈ Var(℘) and any history ρ in G

XH(x)(qHini.ρ
f ) := X(x)(ρ)

Trivially, XH is a properly defined valuation. We can then prove the main step in the
correctness of our reduction.

Proposition 3.16. Fix a valuation X in G of domain dom(X) = Var(℘). Then we have
G, qini |=X ξ(ψd,i)d∈[1;D] i∈[1;λd] if and only if

H, qHini |=XH ∃xDecCopy.Πq∈Q(∃xDec→q )


assign(Dec, xDecCopy). X

ξ
[∨

f |f(d,i)=1 pf/ψd,i

]
2≤d≤D
1≤i≤λd

∧ pqini
∧
∧
∈[1;2] ψ


code
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Proof. Assume G, qini |=X ξ(ψd,i)d∈[1;D] i∈[1;λd]. We deduce from X a function f ∈ {0, 1}Q×{(d,i)|d≤D, i≤λd}
such that

f(q, d, i) = 1 ⇔ G, q |=X ψd,i (3.3)

We define δDecCopy to play aqini,f , i.e. to go to the copy of qini in the f copy of Q. We also
set δDec→q to play aq,f for any q ∈ Q. Finally we write χ for the valuation

χ := X ∪ {xDecCopy → δDecCopy} ∪
⋃
q∈Q

{xDec→q → δDec→q }

Our choices plus Proposition 3.15 gives

H, qHini |=χ ψ
1
code (3.4)

Moreover, again by construction of XH and definition of χ,

H, qHini |=χ assign(Dec, xDec→q )Xψd,i ⇔ G, q |=X ψd,i

⇔ f(q, d, i) = 1 (by Formula 3.3)

so
H, qHini |=χ ψ

2
code (3.5)

Finally, the hypothesis G, qini |=X ξ(ψd,i)d∈[1;D] i∈[1;λd] gives

H, qHini |=χ assign(Dec, xDecCopy). X pqini ∧ ξ
[ ∨
f |f(d,i)=1

pf/ψd,i

]
2≤d≤D, i≤λd

(3.6)

The combination of Formulas (3.4), (3.5) and (3.6) gives the left-to-right way of Propo-
sition 3.16.

Conversely, the right-to-left implication is somewhat similar. Assume the right-hand
side of the equivalence to hold and let X be any valuation resulting from the interplay
within ℘. Write χ for a working valuation that extends X by giving strategies to xDecChoice

and the xDec→q ’s variables. Write f for the copy chosen by χ(xDecChoice)(q
H
ini). Because of ψ1

code

and Proposition 3.15, the choices of xDec→q are set to play to q in the f copy of Q. Then
because ψ2 and ψ3 hold,

H, qHini |=χ assign(Dec, xDec→q )Xψd,i ⇔ f(q, d, i) = 1

Now, by definition of XH,

G, q |=χ ψd,i ⇔ f(q, d, i) = 1

hence

G, q |=χ ψd,i ⇔ H, qHini |=χ assign(Dec, xDec→q )Xψd,i

Combining this with the hypothesis

H, qHini |=χ assign(Dec, xDecCopy). X (pqini ∧ ξ
[ ∨
f |f(d,i)=1

pf/ψd,i

]
2≤d≤D, i≤λd

)

we get that G, qini |=X ξ(ψd,i)d∈[1;D] i∈[1;λd].
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It remains to handle the quantifications within ℘. We will proceed by induction but
first we need some notations. We write ℘ := (Qixi)1≤i≤l where Qi ∈ {∃, ∀} and, for any
j ≤ l, we define φ≥j as the sub-formulas of φ without Q1x1 . . . Qj−1xj−1.

Proposition 3.17. For any 1 ≤ j ≤ l + 1 and any valuation X<j over dom(X<j) :=
{x1, . . . , xj−1}, we have

G, qini |=X<j φ≥j ⇔ H, qHini |=XH<j
φH≥j

Proof. We proceed by induction on j. The initial step (j = l + 1) was done in Proposi-
tion 3.16. So only the induction step (1 ≤ j ≤ l) remains. We assume that by induction
we have

G, qini |=X<j+1
φ≥j+1 ⇔ H, qHini |=XH<j+1

φH≥j+1 (3.7)

and aim to prove that G, qini |=X<j φ≥j ⇔ H, qHini |=XH<j
φH≥j.

We treat the case where Qj = ∃, the case with Qj = ∀ is similar. For the left-to-right
implication, assume that G, qini |=X<j φ≥j; then there is δj such that G, qini |=X<j∪{xj→δj}
φ≥j+1 and therefore, by induction hypothesis –Formula (3.7)–, we get

H, qHini |=XH<j∪{xj→δHj } φ
H
≥j

with δHj (x)(qHini.ρf ) := δHj (x)(ρ) for any history ρ in G. We can then infer

H, qHini |=XH<j
∃xj. φH≥j+1

and H, qHini |=XH<j
φH≥j

The right to left way is similar hence omitted. In the end we get the induction step
and, by induction principle, we can conclude the proof of Proposition 3.17.

We can then deduce the correctness of our reduction (expressed by the proposition
below) from Proposition 3.17 applied to j = 1.

Proposition 3.18.
G, qini |= φ ⇔ H, qHini |= φH

We recall that the algorithm proposed in Chapter 2 for SL[BG] model checking works
in time (k + 1 )-EXPTIME for formulas with k alternations (see Theorem 2.6 page 42).
The size of the SL[BG] formula φH is exponential in the size of G (the original game), in
the maximal depth of φ and in the number of nested goals in φ; the others parameters are
polynomial in the size of φ. We can therefore solve the model checking of FR-FSL[NG][

formulas with k alternations in (k + 2 )-EXPTIME, one exponential more than SL[BG].

We recall that SL[BG] is a fragment of FR-FSL[NG]. So, with the hardness proofs
developed for SL[BG] in Sections 2.2 and 2.3, we cannot hope for a fundamentally better
complexity. At best we can reduce it by an exponential so that FR-FSL[NG] upper bound
matches the one known for SL[BG]. Note that Theorem 3.13 can be trivially extend to the
non flat fragment by using a labelling algorithm (a la CTL) and applying Theorem 3.13
in an inductive fashion. Hence

Theorem 3.19. The model checking of FR-FSL[NG] with formula of k alternations is in
(k + 2 )-EXPTIME.
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SLFSL

SL[NG]FSL[NG]

FR-FSL[NG]

SL[BG]

Floating

translations

Usual

translations

Translations of the strategies stored
in variables don’t matter

∈ NONELEMENTARY [39]

∈ NONELEMENTARY [39]

[39] NONELEMENTARY 3

NONELEMENTARY 3

Undecidable

Undecidable

Figure 3.7: Inclusion graph with the different semantic choices and the model checking
complexity.

3.4 Conclusion

Overall view: In this chapter we have highlighted an important subtlety of SL seman-
tics related to the notion of valuation translation. We proposed in Section 3.1 a new
variant FSL of SL that tackles the aforementioned problem. FSL has the same grammar
as SL, only the notions of valuation translations and strategies are adapted. FSL and SL
coincide on their common fragment SL[BG]. We then proved in Section 3.2 that FSL[NG]
(the equivalent of SL[NG] within the framework of FSL) admits an undecidable model
checking. As shown in Section 3.3, decidability can be regained when forcing the reas-
signment to be total; for this we defined a fragment FR-FSL[NG] of FSL. Figure 3.7 sums
up our work.

On a more refined level: The undecidability of FSL[NG] holds for the set of for-
mulas with one quantifier-alternation and for games with only two agents. Outside of
FR-FSL[NG] decidability, regaining decidability takes us away from the framework defined
by SL and related logics. For example we may look at formulas without quantifier alter-
nation but this essentially takes us away from closed systems. Indeed, while working with
one quantifier-alternation formulas does not technically take us away from multi-agent
CGS, we can easily draw connections with existing results for closed systems and from
automata theory. We believe the model checking to be decidable though we do not give
a formal proof.

A second possibility is to consider the number of agents allowed to reassign their
strategies. In the undecidable FSL and FSL[NG], any subset of Agt may reassign its
strategies; in the decidable FR-FSL[NG], all agents are forced to reassign. In the proof of
undecidability for FSL[NG] model checking, both agents reassign their strategies, it may
be interesting to know about the decidability status of FSL where only a single agent
is allowed to do so. The essence of the undecidability proof explained at the beginning
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of Section 3.3 and on Figure 3.5 (page 72) is still possible if a single agent is allowed
reassignment. However, the gadget used to prove SL[NG] undecidability in Section 3.2
needs both agents to reassign their strategies: to check for proper incrementation of
the counters, the agent Dec needs to be reassigned while for the decrementation, it is
the agent Che who needs reassignment. Torn between these two arguments, we do not
conjecture one way or the other on the decidability of FSL[NG] where a single agent is
allowed to reassign its strategies.
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Chapter 4

Quantitative Strategy Logic

Many computerised systems have internal quantitative aspects: systems managing energy
grids, computer softwares with loops. . . The standard (qualitative) formalisms usually
fail to model properly such systems. The verification community therefore developed
adaptations of existing formalisms to handle quantitative aspects. So far, all our results
have been on CGS, hence qualitative. We take a look at what can be done to adapt SL
and its sub-logics to express quantitative constraints.

Quantitative verification of open systems is a well-studied domain with many branches.
Among the most famous ones, we find energy games [13, 14], mean-payoff games [64, 14],
alternating-VASS [46], counter-games [5], pushdown-games [62], timed games [6] and hy-
brid games [27]. Each one corresponds to a type of quantitative systems, to which we
often add other conditions (imperfect information, probabilistic edges. . . ). Often an al-
gorithm working for one model fails in another. For this reason there is a large (too large,
some may say) number of algorithms, each adapted to a different model representing a
different type of quantitative open systems.

In this chapter, we focus on two of them: energy games and counter games. For each
model, we give a brief introduction, update the model, add adequate constraints to the
logic, discuss the choices we made and provide some complexity results.

4.1 With counters

Counters are omnipresent in programming, even without considering mathematical for-
mulas. Indeed, every loop is handled through a counter (as explained in [5]) and it is
therefore not surprising to find a large literature on systems with counters [5, 51]. The
usual framework consists in adding weights on the transitions of the model (be it a graph
or an automaton). Counter constraints are then appended either on the transition of the
model (as with zero-test edges in counter automata) or in the formalism for the prop-
erties (as in weighted MSO, see [20]). Figure 4.1 shows the idea with a LTL formula
and a two-counter constraint (3, 2) ≤ (c1, c2). Here we adopt the second approach, note
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nevertheless that in SL both are equivalent1.

p

p′
(1,−1)

(0, 0)

(0, 1)
(1, 1)

(−1,−1)

F p ∧G
(
p′ ⇒ (3, 2) ≤ (c1, c2)

)

p

p′
(1,−1)

(0, 0)

(0, 1)

(−1,−1)

(3, 2) ≤ (c1, c2)

(1, 1)

(3, 2) 6≤ (c1, c2)

F p

Figure 4.1: The two ways to work with quantitative constraints: on the left, constraints
are on the formula and on the right, constraints are on the game.

Many things are known for closed systems with counters. However, when working with
open systems, there exist fewer results and many questions remain open. We highlight
the three most important results for our work. First, reachability in counter games
with two agents is undecidable; this is a consequence of the undecidability of two-counter
machines [37]. Second, as shown by Serre in [51], reachability, Büchi and parity conditions
are PSPACE-complete in one-counter games. Finally, ATL∗ model checking was shown to
be 2 -EXPTIME-complete in [61].

We first adapt our framework by defining weighted concurrent game structures and
by extending SL with counter constraints. Then, in Section 4.1.2 we prove a periodicity
result for the satisfaction relation. Finally we study in Section 4.1.3 the expressiveness
of SL with counter constraints through a correspondence with MSO theory on ordinals.

4.1.1 Adding counter constraints to SL

Adding weights to CGS

Definition 4.1 (Weighted Concurrent Game Structure with weights: WCGS).
An n-dimensional Weighted Concurrent Game Structure (n-WCGS) is a tuple G :=
〈AP,Agt,Q,Act,∆,Weights, labels〉 where AP, Agt, Q, Act, ∆, and labels represents the
same notions as in (qualitative) CGS, and where Weights : Q× ActAgt → {−1, 0, 1}n is a
function that assigns n integers (called weights) to each transition of ∆.

A Weighted Concurrent Game Structure (WCGS) is an n-WCGS for some strictly
positive integer n.

1In the sens of a polynomial reduction from the framework with constraints on the transitions of the
model toward the one with constraints onto the logic formalism, and vice-versa. We do not provide a
proof however.



83

To simplify the proofs, we chose to use only 0, −1 and 1 weights, we could have also
chosen weights in Z. Choosing Z and encoding the weights in binary may however affect
the complexity by an exponential factor. Haase, Kreutzer, Ouaknine and Worrell studied
this question in [26] for one-counter automata.

Beside CGS, we also need to adapt the notions we used in previous chapters. For an
n-WCGS structure G, a configuration is a pair (q, c) ∈ Q × Nn of a state and a tuple of
n non-negative integers. A history (resp. path) is a sequence (qi, ci)i<L of configurations
where L ∈ N (resp. L = ∞), for any i ≤ L (resp. i ∈ N) ci ∈ Nn and such that for
any i < L − 1 (resp. i ∈ N) qi+1 = ∆(qi,mi), and ci+1 = ci + Weights(qi,mi) for some
mi ∈ ActAgt. All other notions are defined similarly to the ones of Chapter 1, using the
new notions of histories and paths.

Remark 4.2. For the sake of tradition, we ask for all weights to stay above 0. Although
there may exists results that are impacted by such restriction [47], this is not the case
of the results presented in this thesis. In particular, in this case, the periodicity result
(Theorem 4.7) of Section 4.1.2 still holds and one can prove a similar theorem for negative
values.

Adding constraints to SL

In conjunction with the addition of weights on CGS, we extend SL by allowing it to
express numerical constraints on the weights.

Definition 4.3 (Counter Constraints).
A counter constraint on n weights is a subset S of Nn made of a (finite) union of periodic
sets of integers: sets of the form a + b · Nn for a fixed initial threshold vector a and a
period vector b, both in Nn.

This definition of constraints allows us to express standard counter constraints like
cnt ≤ (4, 5, 2) (by taking b = (0, . . . , 0)) but also more advanced constraints2.

Definition 4.4 (Strategy logic with counter constraints: cSL).
The logic cSL is built upon a number n of weights, a set Agt of agents, a set AP of
atomic propositions and a set V of variables. Its formulas are structured by the following
grammar:

cSL ∈ φ ::= ∃x.φ | assign(A, x).φ | φ ∨ φ | ¬φ | φUφ | Xφ | p | cnt ∈ S

with x ∈ V a variable, A ∈ Agt an agent and p ∈ AP an atomic proposition, and where S
is a counter constraint on n weights.

The notions of free agents and variables for cSL are the same as in SL, with the
addition of the condition

free(cnt ∈ S) = ∅ for all counter constraint S

2The notion of period used here (numerical constraints on the weights) is to be dissociated with the
one of Section 4.1.2 (related to the potential initial values of the initial configuration). There is some
degree of connection between the two but the two notions are clearly distinct.
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Formulas of cSL based on n weights are evaluated on an n-WCGS structure G, at a
configuration (q, c) of G and relatively to a valuation χ. The semantics of all but the
cnt ∈ S operator is the same as in SL, using the state q and the updated notions of
histories and paths. The cnt ∈ S operator has the following semantic rule:

G, (q, c) |=χ cnt ∈ S ⇔ c ∈ S

Example 4.5. An example of 2-WCGS with an unique player A can be found on the left
of Figure 4.1. Let φ be the following cSL formula:

φ := ∃x. assign(A, x)F p ∧G
(
p′ ⇒ (3, 2) ≤ (c1, c2)

)
On can see that starting from the node at the bottom, φ does not hold on the game.
Indeed, while a p labelled state p can be eventually reached, the path must pass through
the p′ labelled state and its counter will be 0. Hence the second conjunct will not be
satisfied and φ will not hold.

The model checking problem for cSL is defined similarly to the one for SL (see Chap-
ter 2 for a formal definition). Since Minsky’s result [37], it is well known that reachability
in two-counter machines is undecidable and therefore so is the reachability problem in
n-WCGS where n ≥ 2 (see [9] for more results on reachability in counter games that keep
weights above 0).

Theorem 4.6. cSL model checking over WCGS is undecidable.

As a consequence, cSL cannot have a decidable model checking without restricting
the number of weights. On the other hand, the undecidability result fails when automata
have only a single counter. For this reason, we focus on games with a unique weight.
We call a 1-WCGS any concurrent game structure with one weight and 1cSL the fragment
of cSL built using a single weight. Finally, we extend the definition of SL and all its
fragments with counter constraints on a single weight. In particular, the (flat) fragment
1cSL[BG][ analogue of SL[BG][ follows the grammar:

1cSL[BG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p | cnt ∈ S

As usual, the full fragment 1cSL[BG] is obtained by allowing closed 1cSL[BG] formulas at
the level of the atomic propositions. We call 1cLTL the set of formulas of type ϕ in the
grammar of 1cSL[BG][.

4.1.2 Periodicity of 1cSL[BG]

In this section, we prove a periodicity property for 1cSL[BG]. We recall that Tower is the
function Tower : N× N→ N taking two entries a, b and returning the integer equals to a
tower of exponentials of height b and value a, see page 44 for the formal definition.
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Theorem 4.7. Let G be a 1-WCGS, and φ be a 1cSL[BG] formula. Then there exists
a threshold ∆ ≥ 0 and a period Λ ≥ 0 for the truth value of φ over G. That is, for
every configuration (q, c) of G with c ≥ ∆, for every k ∈ N, G, (q, c) |= φ if and only if
G, (q, c+ k · Λ) |= φ.

Furthermore the order of magnitude for ∆ + Λ is bounded by

Tower
(

max
θ∈SubForm(φ)

nθ, max
θ∈SubForm(φ)

kθ + 1
)|Q|·22|φ|

where Q is the state space of G, SubForm(φ) is the set of 1cSL[BG] sub-formulas of φ, kθ is
the number of quantifier alternations in θ, and nθ is the number of different assignments
used in θ.

A result similar to the one of Theorem 4.7 should be mentioned: Göller and Lohrey
showed in [25] that CTL admits exponential thresholds and periods, where the exponent
is made of the left imbrication of the E · U · operators. The verification community
usually focuses on complexity results but rarely on combinatorial ones, therefore periodic
properties are unusual3.

Proof. We first prove this property for the flat fragment 1cSL[BG][, and then extend it to
the full 1cSL[BG]. To keep the proof readable we moved the proof of some intermediary
results to the annex (page 106) and replace it with a sketch. The rest of this section is
devoted to the proof of Theorem 4.7.

The flat fragment 1cSL[BG][

We fix a 1-WCGS G and a formula φ := Q1x1 . . . Qkxk. ξ(βiϕi)1≤i≤n in 1cSL[BG][, where
for every 1 ≤ j ≤ k, we have Qj ∈ {∃,∀} (assuming quantifiers strictly alternate), ξ is a
Boolean formula over n atoms, and for every 1 ≤ i ≤ n, βi is a complete assignment for
the agents’ strategies, and ϕi is a 1cLTL formula. We write M for the maximal constant
appearing in one of the finite sets describing a counter constraint S appearing in φ.

For every 1 ≤ i ≤ n, we let Di be a deterministic (one counter) parity automaton
that recognises formula ϕi. This is the standard LTL to deterministic parity automata
construction of Theorem 1.3 (page 20) in which quantitative constraints are seen as atoms.
A run of G is read in a standard way, with the additional condition that quantitative
constraints labelling a state should be satisfied by the counter value when the state is
traversed (a state can be labelled by a constraint cnt ∈ S, with S arbitrarily complex—
it does not impact the description of the automaton).

The proof proceeds by showing that, above some threshold, the truth value of φ
is periodic w.r.t. counter values. To prove this, we define an equivalence relation over

3The verification community solves the model checking of quantitative temporal logics almost exclu-
sively by a reduction to the emptiness of a given automata. The periodicity properties are then hidden
within the algorithm solving the emptiness of the automata. On a personal note, I believe that working
exclusively with automata techniques is not sufficient to fully understand the underlying behaviour of
the quantitative logics. While the proof of Theorem 4.7 uses of automata, their roles are reduced to
transforming the LTL goals in parity conditions.
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counter values that generates identical strategic possibilities (in a sense that will be made
clear later on).

Definition of an equivalence relation Fix a configuration γ = (q, c) in G, pick for
every 1 ≤ i ≤ n a state di in the automaton Di, and define the tuple D = (d1, . . . , dn). For
every valuation χk for variables {x1, . . . , xk}, we define the level-0 identifier Idχk(γ,D) as:

Idχk(γ,D) :=
{
i
∣∣ 1 ≤ i ≤ n and out(βi(χk), γ) is accepted by Di from di

}
where βi(χk) is the valuation obtained by assigning a strategy from χk to each agent
in Agt following βi.

Assuming we have defined level-(k − j + 1) identifiers Idχj+1
(γ,D) for every partial

valuation χj+1 for variables {x1, . . . , xj+1}, we define the level-(k− j) identifier Idχj(γ,D)
for every partial valuation χj for variables {x1, . . . , xj} as follows:

Idχj(γ,D) :=
{
Idχj+1

(γ,D)
∣∣ χj+1 is a valuation for {x1, . . . , xj+1} that extends χj

}
.

There is a unique level-k identifier for every configuration γ = (q, c) and every D,
which corresponds to the empty valuation. It somehow contains full information about
what kinds of strategies can be used in the game (this is a hierarchical information set,
which contains all level-j identifiers for j < k).

We will first give a characterization of the construction of identifiers, which will help
understand how it can be used; we then count how many values the level-k identifier can
take, from which our period will be derived.

Characterization We inductively define the following boolean property:

Pq,D0 (χk, χ
′
k)(c, c

′) : (truth value of) Idχk((q, c), D) = Idχ′k((q, c
′), D)

and for every 0 ≤ j < k,

Pq,Dk−j(χj, χ
′
j)(c, c

′) :

{
∀vj+1. ∃v′j+1. P

q,D
k−j−1(χj ∪ {vj+1}, χ′j ∪ {v′j+1})(c, c′) and

∀v′j+1. ∃vj+1. Pq,Dk−j−1(χj ∪ {vj+1}, χ′j ∪ {v′j+1})(c, c′)

This property reads a bit like an alternating equivalence between c and c′. It allows
to characterize equivalent configurations w.r.t. the identifier predicate.

Lemma 4.8. Fix some 0 ≤ j ≤ k and some partial valuations χj and χ′j for variables
{x1, . . . , xj} from (q, c) and (q, c′), respectively. The following two properties are equiva-
lent:

• Idχj((q, c), D) = Idχ′j((q, c
′), D)

• Pq,Dk−j(χj, χ′j)(c, c′)
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Proof. We show the equivalence by induction on 0 ≤ j ≤ k, starting from j = k, where
the equivalence precisely corresponds to the definition.

Assume Idχj((q, c), D) = Idχ′j((q, c
′), D) for some 0 ≤ j < k. By definition, it means

that for every extended valuation χj+1 of χj, there exists an extended valuation χ′j+1 of χ′j
(and conversely) such that Idχj+1

((q, c), D) = Idχ′j+1
((q, c′), D). By induction hypothesis,

it holds Pq,Dk−j−1(χj+1, χ
′
j+1)(c, c′). Since this holds for all appropriate quantifications,

we get that Pq,Dk−j(χj, χ′j)(c, c′) holds as well. The converse is similar.

Let P be the least common multiple of all the periods appearing in periodic constraints
used in formula φ. We define the following equivalence on counter values:

c ∼ c′ if and only if c = c′ mod P and ∀D. ∀q. Id∅((q, c), D) = Id∅((q, c′), D).

Combinatorics. Given a configuration (q, c) and a tuple D, the number of possible
values for the level-0 identifier is Tower(n, 1), and for the level-j identifier it is Tower(n, j+
1). Hence, the number ind∼ of equivalence classes of the relation ∼ satisfies

ind∼ ≤ P · (Tower(n, k + 1))

(
|Q|·

∏
1≤i≤n 22|ϕi|

)
≤ P · (Tower(n, k + 1))

(
|Q|·22|φ|

)
with |Q| the number of states in G. We let M = M + ind∼ + 1. By the pigeon-hole
principle, there must exist M < ∆ < ∆′ ≤ M such that ∆ ∼ ∆′.

Periodicity property We define Λ = ∆′ −∆, and now prove that Λ is a period for φ
for counter values larger than or equal to ∆. Assume that γ = (q, c) is a configuration
such that c ≥ ∆, and define γ′ = (q, c+Λ) (note that c+ Λ ≥ ∆′). We show that G, γ |= φ
if and only if G, γ′ |= φ.

Notations. For the rest of this proof, we fix the following notations:

1. if ρ is a run starting with counter value a > c, then either the counter always
remains strictly above c along ρ (in which case we say that ρ is fully above c), or
it eventually hits value c, and we define ρ%c for the smallest prefix of ρ such that
lst(ρ%c) has counter value c;

2. let ρ be a run that is fully above M, and let c be the least counter value appearing
in ρ. For every ν ≥ M − c, we write Shiftν(ρ) for the run ρ′ obtained from ρ by
shifting the counter value by ν. It is a well-defined run since the counter values
along ρ′ are also all above M hence above 0.

3. if D is a tuple of states of the deterministic automata (Di)1≤i≤n, and if ρ is a finite
run of G that is fully above M, then we write D+ρ for the image of D after reading ρ.

We first show an easy result:

Lemma 4.9. Let ρ be a finite run, and ρ′ = Shift+Λ(ρ). Let D be a tuple of states of
the automata (Di)1≤i≤n. Then, ρ is fully above ∆ iff ρ′ is fully above ∆′. In case both
conditions are wrong, it holds that ρ′%∆′ = Shift+Λ(ρ%∆). Furthermore, in the first case,
D+ρ = D+ρ′ whereas in the second case, D+ρ%∆

= D+ρ′%∆′
.
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Proof. The two first properties are obvious by definition of Shift+Λ (since ∆′ = ∆ + Λ).
Since ∆ > M, all counter values along both histories are larger than M, and hence,

two corresponding configurations along ρ and ρ′ satisfy the same non-modulo counter
constraints. The period Λ is a multiple of P, the lcm of all the periods, hence two
corresponding configurations along ρ and ρ′ also satisfy the same modulo constraints.
Finally, all atomic propositions are equivalently satisfied at two corresponding positions
along ρ and ρ′. Fix 1 ≤ i ≤ n. Since Di is deterministic, using the above arguments, we
get the last results.

Let 0 ≤ j ≤ k. We assume that χj and χ′j are two valuations for {x1, . . . , xj}, and D
is a tuple of states of the Di’s. We write RD,j

(γ,γ′)(χj, χ
′
j) if the following property holds for

any run ρ from γ:

(i) if ρ is fully above ∆ (or equivalently, if ρ′ = Shift+Λ(ρ), which starts from γ′, is fully
above ∆′), then for every 1 ≤ g ≤ j, χj(xg)(ρ) = χ′j(xg)(ρ

′);

(ii) if ρ is not fully above ∆ (equivalently, if ρ′ = Shift+Λ(ρ) is not fully above ∆′), then
we decompose ρ (resp. ρ′) w.r.t. ∆ (resp. ∆′) and write ρ = ρ%∆ ·ρ and ρ′ = ρ′%∆′ ·ρ′.
Then:

Idχj−−→ρ%∆
(lst(ρ%∆), D̃) = Idχ′j−−−→ρ′%∆′

(lst(ρ′%∆′), D̃)

with D̃ = D+ρ%∆
= D+ρ′%∆′

. Recall that χj−−→ρ%∆
shifts all strategies in valuation χj

after the prefix ρ%∆ (that is, χj is the strategy such that χj−−→ρ%∆
(π) = χj(ρ%∆ · π) for

every π).

We can see in the R property an extension of the P property. We can then get a result
similar to Lemma 4.8 for R.

Lemma 4.10. Fix 0 ≤ j < k, and assume that RD,j
(γ,γ′)(χj, χ

′
j) holds true. Then:

1. for every strategy v for xj+1 from γ, one can build a strategy T (v) for xj+1 from γ′

such that RD,j+1
(γ,γ′) (χj ∪ {v}, χ′j ∪ {T (v)}) holds true;

2. for every strategy v′ for xj+1 from γ′, one can build a strategy T −1(v′) for xj+1

from γ such that RD,j+1
(γ,γ′) (χj ∪ {T −1(v′)}, χ′j ∪ {v′}) holds true.

Sketch of proof. The idea is the following: either we are in case (i), in which case identical
(but shifted) strategies can be applied; or we are in case (ii), in which case identical
(but shifted) strategies can be applied until counter value ∆ (resp. ∆′) is hit, then the
equality of identifiers allows to apply equivalent strategies. The construction is illustrated
in Figure 4.2.

We use this lemma to transfer a proof that γ |=∅ φ to a proof that γ′ |=∅ φ. We de-
compose the proof of this equivalence into two lemmas:
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∆′

∆
Λ

•
γ

•
γ′ = ShiftΛ(γ)

Λ

•

•
identical (but shifted) strategies

equivalent strategies (∆ ∼ ∆′)

Figure 4.2: Construction in Lemma 4.10 (case (ii))

Lemma 4.11. Fix D0 for the tuple of initial states of the Di’s. Assume that RD0,k
(γ,γ′)(χ, χ

′)

holds (for full valuations χ and χ′). Let 1 ≤ i ≤ n, and write ρ = out(βi(χ), γ) and
ρ′ = out(βi(χ′), γ′). Then ρ |= ϕi if and only if ρ′ |= ϕi. In particular, γ |=χ ξ(βiϕi)1≤i≤n
if and only if γ′ |=χ′ ξ(βiϕi)1≤i≤n.

Sketch of proof. As long as runs are above ∆ (resp. ∆′) they visit states that satisfy ex-
actly the same atomic properties (atomic propositions and counter constraints), hence
they progress in each Di along the same run. When value ∆ (resp. ∆′) is hit, they are
generated by strategies that have the same level-0 identifiers, which precisely means they
are equivalently accepted by each Di. Hence both outcomes satisfy the same formulas ϕi
under the valuation βi(χ) (resp. βi(χ′)).

We finally show the following lemma. The proof proceeds by induction on the valua-
tion, and by noticing that the hypothesis ∆ ∼ ∆′ precisely implies the induction property
at level 0 (i.e RD0,0

(γ,γ′)(∅, ∅)).

Lemma 4.12. γ |=∅ φ if and only if γ′ |=∅ φ.

This allows us to conclude with the following corollary:

Corollary 4.13. Λ is a period for the satisfiability of φ for configurations with counter
values larger than or equal to ∆.

Furthermore, ∆ + Λ is bounded by M + P · (Tower(n, k + 1))|Q|·
∏

1≤i≤ 22|φ|

+ 1.

Remark 4.14. Note that the above proof of existence of a period, though effective (a pe-
riod can be computed by computing the truth of identifier predicates), does not allow for
an algorithm to decide the model checking problem. One possible idea to lift that peri-
odicity result to an effective algorithm would be to bound the counter values; however
things are not so easy. In Figure 4.2, equivalent strategies from ∆ and ∆′ might generate
runs with (later on) counter values larger than ∆ or ∆′ (despite the filled representations
staying below the thresholds, counter values of equivalent strategies are not bounded). The
decidability status of 1cSL[BG][ (and of 1cSL[BG]) model checking remains open.
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Extension to 1cSL[BG]

We explain how we can extend the previous periodicity analysis to the full logic 1cSL[BG].
Let φ be a fixed formula of 1cSL[BG]

φ := Q1x1 . . . Qkxk · ξ(βiϕi)1≤i≤n

with the same notations than the ones at the beginning of the previous subsection, but
now ϕi can use closed formulas of 1cSL[BG] as sub-formulas.

Let Ψφ be the set of closed sub-formulas of 1cSL[BG] that appear directly under the
scope of some ϕi. We will replace sub-formulas of Ψφ by other formulas involving only
(new) atomic propositions and counter constraints. Pick ψ ∈ Ψφ. Let ∆ψ and Λψ be the
threshold and the period mentioned in Corollary 4.13 for ψ. For every location q of the
game, the set of counter values c such that (q, c) |= ψ can be written as the union Sψq of
a finite (non periodic) set for the values smaller than ∆ψ and of a periodic set Λψ for the
values above ∆ψ. Note that we know such a set exists, even though there is (for now)
no effective procedure to express it. The size of Sψq is 1 (we do not take into account the
complexity of writing the precise sets used in the constraint). Expand the set of atomic
propositions AP with an extra atomic proposition for each location, say pq for location q,
which holds only at location q. For every ψ ∈ Ψφ, replace that occurrence of ψ in φ

by formula
∧
q∈L pq → (cnt ∈ Sψq ). This defines formula φ′, which is now a 1cSL[BG][

formula, and holds equivalently (w.r.t. φ) from every configuration of G. The size of φ′ is
that of φ. We apply the result of the previous subsection and get a proof of periodicity
of the satisfaction relation for φ′, hence for φ.

It remains to compute bounds on the overall period Λφ and threshold ∆φ. The modulo
constraints in φ′ involve periods Λψ (ψ ∈ Ψφ), and the constants used are bounded by
∆ψ. So the maximal constant Mφ′ appearing in φ′ is bounded by max(maxψ∈Ψ(∆ψ),Mφ)
where Mφ is the maximal constant used in φ, and the l.c.m Pφ′ of the periods appearing
in φ′ is the l.c.m. of the periods used in φ (call it Pφ) and of the Λψ’s (for ψ ∈ Ψφ): hence
Pφ′ ≤ Pφ ·maxψ∈Ψφ(Λψ)|φ| Hence for formula φ′, we get

∆φ′ + Λφ′ ≤ Mφ′ + Pφ′ · Tower(nφ, kφ + 1)|Q|·2
2|φ
′|

+ 1

We infer the following order of magnitude for ∆φ + Λφ, where ωΨφ = maxψ∈Ψφ ωψ:

ωφ ≈ ωΨφ + M|φ|φ · (max
ψ∈Ψφ

Λψ)|φ| · Tower(nφ, kφ + 1)|Q|·2
2|φ|

≈ M|φ|φ · ω
|φ|
Ψφ
· Tower(nφ, kφ + 1)|Q|·2

2|φ|

Using notations of Theorem 4.7, the order of magnitude can therefore be bounded by

Tower
(

max
θ∈SubForm(φ)

nθ, max
θ∈SubForm(φ)

kθ + 1
)|Q|·22|φ|

.
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Remark 4.15. Note that this proof is non-constructive, even for the period and the
threshold, since it relies on the model checking of sub-formulas, which we do not know
how to do. We can nevertheless effectively compute a threshold and a period by taking the
l.c.m. of all the integers up to the bound over the period and threshold given in this proof.
The model checking problem of 1cSL[BG] (and its effectivity) remains an important open
problem.

4.1.3 An application of 1cSL[BG]: MSO(ωω, <)

As said before, while we have a periodicity property, we cannot derive a model checking
algorithm for 1cSL[BG]. In this section, we assume that such an algorithm exists and
works in “reasonable” time and we use this to improve the validity problem of MSO
over (ωω, <). This problem is shown to be decidable in [12] using automata over linear
orderings, but this requires complementing those automata, which has doubly-exponential
complexity Hence globally the validity problem of MSO over (ωω, <) can be decided in
time Tower(|φ|, 2k + c), where φ is the MSO formula, k is the number of alternations in
the quantifications of φ and c is a positive constant. Other algorithms are known for
MSO over (ωi, <), running in time Tower(|φ|, k + c), see [11] for more details. However,
as explained in [11], the technique they employ, based on tree automata, cannot extend
to (ωω, <), since it would contradict the fact that any tree-automatic ordinal is less than
ωω

ω .
We propose a reduction from the validity problem of MSO over (ωω, <) toward the

model checking problem of 1cSL[BG] over 1-WCGS. This implies that any algorithm for
1cSL[BG]’s model checking working in time Tower(|φ|, k+c) where φ is an SL[BG] formula,
k is the number of alternations of quantifications in φ and c is any constant, will improve
the complexity of the validity problem of MSO over (ωω, <). The periodicity property of
Section 4.1.2 makes the existence of such algorithm for 1cSL[BG] very likely and we have
good hope of finding it in the near future.

A note on ordinals

We assume basic knowledge about ordinals and refer to [28] for further details. An ordinal
is a well-ordered set. It is either 0 (or ∅), or the successor of an ordinal α, which we write
α + 1, or a limit ordinal. The first limit ordinal, denoted ω, is identified with the set of
natural numbers. For any two ordinals α and β, it holds that α < β if and only if α ∈ β.
Also, any ordinal α is equal to {β | β < α}. In the following, we will be interested in ωω,
and we will write equivalently α ∈ ωω or α < ωω.

The Cantor normal form of ordinals w.r.t. ω [28] allows to (abusively)4 write any
ordinal ∅ < α < ωω in a unique way as a sum

α = ωpnp + ωp−1np−1 + · · ·+ ω1n1 + n0

where p and all the ni’s are non-negative integers, and np is positive. By extension,
we write ∅ = 0, (that is, p = 0 and n0 = 0). In the above writing, we call p the degree

4The standard normal form would remove terms where ni = 0.
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of α and write deg(α) = p. We then write cnf(α) for the tuple (ndeg(α), . . . , n0) associated
with this writing.

This writing does not allow for easy computation of the addition of two ordinals
(which we do not need in the sequel), but it allows to very easily compare two ordinals.
Indeed, given α, β ∈ ωω, the following holds: α < β if and only if one of the two following
conditions hold:

• deg(α) < deg(β), or

• deg(α) = deg(β) and cnf(α) <lex cnf(β) where <lex is the lexicographic order, with
standard order over the integers.

MSO over ordinals

The logic MSO is defined inductively as follows:

MSO 3 Φ ::= (x < y) | X(x) | ¬Φ | Φ ∨ Φ | ∃X · Φ | ∃x · Φ

where x, y are first-order variables (ranging over elements) and X is a second-order vari-
able (ranging over sets of elements). Let Φ be an MSO formula. A variable x (resp. X) is
free in Φ whenever it is not under the scope of a corresponding quantification. The for-
mula is closed whenever it has no free variable. It is then also called a sentence.

Let Φ(X1, . . . , Xk, x1, . . . , xl) be an MSO formula with free second-order variables
X1, . . . , Xk and free first-order variables x1, . . . , xl. In our context, it is interpreted over
a tuple (P1, . . . , Pk, a1, . . . al), where Pi ⊆ ωω and aj ∈ ωω, with the standard inductive
semantics:

• (α1, α2) |= (x1 < x2) if and only if α1 < α2;

• (P, α) |= X(x) if and only if α ∈ P ;

• (P1, . . . , Pk, a1, . . . al) |= ∃x·Φ(X1, . . . , Xk, x1, . . . , xl, x) if and only if there is a ∈ ωω
such that (P1, . . . , Pk, a1, . . . al, a) |= Φ(X1, . . . , Xk, x1, . . . , xl, x);

• (P1, . . . , Pk, a1, . . . al) |= ∃X · Φ(X1, . . . , Xk, X, x1, . . . , xl) if and only if there is
P ⊆ ωω such that (P1, . . . , Pk, P, a1, . . . al, a) |= Φ(X1, . . . , Xk, X, x1, . . . , xl);

• Boolean combinations have their standard semantics.

The validity problem

Given a sentence Φ in MSO, the validity problem asks whether Φ is true over (ωω, <).
We recall that there exists an algorithm for the validity of MSO over (ωω, <) working in
time Tower(|φ|, 2k + c) where φ is the MSO formula, k is the alternation height of the
formula and c is a constant; it was shown using automata over linear orderings [12].
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Theorem 4.16. Assume that there exists an algorithm for 1cSL[BG] model checking
problem working in time Tower(|φ|, k + c) for a formula φ with k alternations of quan-
tifications, for some fixed constant c. Then the logic MSO over (ωω, <) can be decided
in time Tower(|Φ|, k + c) for a formula Φ with alternation-height k and where c is the
constant of the 1cSL[BG]’s algorithm.

Proof. The proof uses a reduction to 1cSL[BG] over a fixed game. Many elements are
similar to Theorem 2.15 (page 48). Let

Φ := Q1X1 . . . QhXh. Qh+1xh+1 . . . Qh+lxh+l. Ψ(X1, . . . , Xh, xh+1, . . . , xh+l)

be a sentence of MSO in prenex normal form. For every i, we have Qi ∈ {∃,∀}. The Xi

are second-order variables, whereas the xi are first-order variables; the Xi and the xi are
the only free variables of Ψ.

The proof consists in building a fixed concurrent game G (independent of the for-
mula Φ) and a formula φ such that G |= φ if and only if Φ is true over ωω.

The game G has three agents Decider (Dec), Follower (Fol) and SecondOrder (SO).
It is the concurrent product of the two graphs depicted in Figure 4.3. That is, a state of G
is a pair (x, y) with x ∈ {a, b, c,D, no, yes} and y ∈ {a′, b′, c′, d′}, and there is a concurrent
move from (x, y) to (x′, y′) whenever there is a move from x to x′ in the left arena and a
move from y to y′ in the right arena; actions are given to the agent to which belongs the
corresponding state. For instance, there is a concurrent move from (a, a′) to (b, d′) whose
first action belongs to Agent Dec and second action to Agent Fol. The weights in G is
taken from the left-hand side arena.

c a b

D
yes

no

−1

0

−1

0−11

0

0
00

0

0

c′ a′ b′

d′

Figure 4.3: Game G is the concurrent product of these two arenas

An ordinal α ∈ ωω will be encoded by the finite outcome

ρα = (c, c′)p+2(a, a′)(b, b′)np(a, a′)(b, b′)np−1 . . . (a, a′)(b, b′)n0(D, d′)

where p = deg(α) and cnf(α) = (np, . . . , n0). The convention for encoding ∅ is to use the
finite outcome ρ∅ = (c, c′)2(a, a′)(D, d′). Starting from weight 0, we realize that, along ρα,
the weight is p+1 just before leaving (c, c′), and is back to 0 when reaching (D, d′). An in-
finite outcome ρ is said to encode an ordinal α whenever ρα is a prefix of ρ (independently
of what happens after ρα).
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We define the winning condition Ωord as follows: a run in G is in Ωord if and only if

1. it starts in (c, c′) with weight 0

2. it visits (c, c′) at least twice

3. it visits only states in {(a, a′), (b, b′), (c, c′)} until reaching (D, d′)

4. when it reaches (D, d′), the weight is 0

5. if the weight when reaching (a, a′) for the first time is positive, then it should
visit (b, b′) immediately after.

This winning condition can be expressed in 1cLTL as follows:

ψΩ :=


(c, c′) ∧ cnt ∈ {0} ∧X (c, c′)

∧
(
(a, a′) ∨ (b, b′) ∨ (c, c′)

)
U
(
(D, d′) ∧ cnt ∈ {0}

)
∧ (c, c′)U

(
(a, a′) ∧

(
cnt ∈ {0} ∨X (b, b′)

))
Lemma 4.17. Let σ = (σDec, σFol, σSO) be a valuation giving a strategy to each of the three
agents, and ρ be its unique outcome. Then ρ belongs to Ωord (or equivalently satisfies ψΩ)
if and only if it encodes an ordinal α. The value α is independent of the strategy σSO,
and we then say that (σDec, σFol) encodes ordinal α.5

Proof. Let ρ be the infinite outcome of the valuation (σDec, σFol, σSO) from (c, c′).

• Assume ρ |= ψΩ. Then, just looking at the discrete part of formula ψΩ, we get that

ρ ∈ (c, c′)2(c, c′)∗(a, a′)
(

(a, a′) + (b, b′)
)∗

(D, d′)
(

(no, d′)ω + (yes, d′)ω
)

Now, if p+2 is the number of visits to (c, c′) in the beginning of ρ, the weight before
the first visit to (a, a′) is p + 1, and then, the number of visits to (a, a′) is p + 1
since the accumulated weight must be 0 when reaching (D, d′). So we can write:

ρ = (c, c′)p+2(a, a′)(b, b′)np(a, a′)(b, b′)np−1(a, a′) . . . (a, a′)(b, b′)n0(D′, d)ρ′

for some suffix ρ′ ∈ {(no, d′)ω, (yes, d′)ω} and integers np, . . . , n0. Furthermore, if
p > 0 then, by the fifth point in ψΩ’s definition, np > 0. If np > 0, then it
implies that ρ encodes the (unique) ordinal ∅ < α < ωω with deg(α) = p and
cnf(α) = (np, . . . , n0). If np = 0 (in which case p = 0 as well), ρ encodes ∅.
Note that the strategy σSO has no impact on the above prefix of ρ, and hence on
the ordinal being encoded.

• Assume ρ encodes an ordinal α. Then formula ψΩ obviously holds along ρ.

5Somehow those two strategies agree on “playing α”.
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From now on, we will write (σDec
α , σFolα ) for a pair of strategies that encodes ordinal α.

All the results will be independent of the choice of these strategies.
We now show how we compare two ordinals by playing the strategies of the two

different ordinals, as follows:

Lemma 4.18. Fix two ordinals α, β ∈ ωω, and let σSO be a strategy of agent SO. Let ρ
be the outcome of (σDec

α , σFol
β , σSO) from (c, c′) and define ψ1, ψ2 and ψ3 the following LTL

formulas

ψ1 := (
∨

i∈{a,b,c}

(i, i′))U (a, b′) ψ2 := (c, c′)U (a, a′) ψ3 := (c, c′)U (a, c′)

• Assume deg(α) = deg(β). Then α < β if and only if ρ satisfies ψ1;

• Furthermore deg(α) = deg(β) if and only if ρ satisfies ψ2.

• Similarly, deg(α) < deg(β) if and only if ρ satisfies ψ3

• As a consequence, α < β if and only if ρ satisfies ψ< := ψ3 ∨ (ψ2 ∧ ψ1).

Proof. Since (σDec
α , σFolα ) (resp. (σDec

β , σFolβ )) encodes α (resp. β), it holds that the outcome
of (σDec

α , σFolα , σSO) (resp. (σDec
β , σFolβ , σSO)) satisfies ψΩ.

Now, if deg(α) = deg(β)
def
= δ, then the two strategies together generate (c, c′)δ+1(a, a′).

Now, as long as cnf(α) and cnf(β) agree, they generate the corresponding expected out-
come. The first time they disagree, it will lead either to (a, b′) (in case cnf(α) < cnf(β))
or to (a′, b). This paragraph allows to infer the various properties of lemma 4.18.

We now explain how we encode sets of ordinals (for second-order variables in the
logic). It will be the role of Agent SO, which should play from state D to yes (resp. no)
whenever the ordinal played so far is (resp. is not) in the encoded set. Let A ⊆ ωω be a
set of ordinals and σSOA be a strategy of Agent SO. We say that this strategy encodes A
if the following conditions hold: σSOA (ρα) = yes if α ∈ A and σSOA (ρα) = no if α /∈ A (the
value of σSOA (ρ) when ρ /∈ {ρα | α ∈ ωω} is irrelevant). There is not a unique encoding
of every second-order set, but a family of such encodings. Nevertheless, any choice that
satisfies the above will be correct. The following lemma is then straightforward:

Lemma 4.19. Let A ⊆ ωω, and σSO
A be a corresponding strategy for Agent SO. Let

α ∈ ωω and ρ be the outcome of (σDec
α , σFol

α , σSO). Then, α ∈ A if and only if ρ satisfies
the formula ψSO

def
= F yes.

We now explain how we transform the MSO formula into a 1cSL[BG] formula

Φ = Q1X1 . . . QhXh. Qh+1xh+1 . . . Qh+lxh+l. Ψ(X1, . . . , Xh, xh+1, . . . , xh+l)

We first focus on the block of quantifiers, and then on the quantifier-free formula Ψ.
We define the transformation T as follows:

• T (∃Xi) = ∃τSOi (it will later be assigned to Agent SO)
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• T (∀Xi) = ∀τSOi (it will later be assigned to Agent SO)

• T (∃xi) = ∃τDec
i ∃τFoli (strategy τDec

i will later be assigned to Agent Dec and strategy
τFoli to Agent Fol)

• T (∀xi) = ∀τDec
i ∀τFoli (strategy τDec

i will later be assigned to Agent Dec and strategy
τFoli to Agent Fol)

• T (Qv Qv′) = T (Qv) T (Q′v′) where Q,Q′ are existential or universal quantifica-
tions, and v, v′ are first-order or second-order variables.

We will need to check that strategies τDec
i and τFoli do actually encode ordinals, and

that τDec
i and τFoli agree when quantifying existentially. We will also need to restrict the

universal quantifications blocks such as ∀τDec
i ∀τFoli in T to actually encode a common

ordinal. For that, we define the two following formulas, assuming that I∃ (resp I∀) is the
subset of indices i in {1, . . . , l} such that variable xi is existentially (resp. universally)
quantified in Φ:

κ? =
∧
i∈I?

assign(Dec, τDec
i ;Fol, τFoli ) ψΩ (with ? ∈ {∃,∀}).

We now define the transformation T to the quantifier-free formula Ψ(X1, . . . , Xh, x1, . . . , xl).
We proceed inductively on the structure of the formula as follows:

• T (Ψ1 ∨Ψ2) = T (Ψ1) ∨ T (Ψ2)

• T (¬Ψ) = ¬T (Ψ)

• T (Xi(xj)) = assign(Dec, τDec
j ;Fol, τFolj ; SO, τSOi ) ψSO

• T (xi < xj) = assign(Dec, τDec
i ;Fol, τFolj ) ψ<

Finally, we define T (Φ) as follows:

T (Φ) := T (Q1X1 . . . QhXhQh+1xh+1 . . . Qh+lxh+l)

{
κ∃ ∧
κ∀ ⇒ T (Ψ(X1, . . . , Xh, xh+1, . . . , xh+l))

Lemma 4.20. Let ((c, c′), 0) be the initial configuration of G. The sentence Φ is true if
and only if G, ((c, c′), 0) |= T (Φ).

Proof. In this proof, for the sake of readability, instead of writing G, ((c, c′), 0) |=χ θ
(as given by the semantics of the logic), we will assume implicitly G and ((c, c′), 0), and
simply write χ |= θ.

Let A1, . . . , Ah and ah+1, . . . , ah+l be realisations for the second-order and first-order
variables (over ωω). We first notice, applying Lemma 4.17, that:

(σSOA1
, . . . , σSOAh , σ

Dec
ah+1

, σFolah+1
, . . . , σDec

ah+l
, σFolah+l

) |= κ∃ ∧ κ∀
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Also, it follows from Lemmas 4.18 and 4.19 that:

(A1, . . . , Ah, ah+1, . . . , ah+l) |= Ψ iff
(σSOA1

, . . . , σSOAh , σ
Dec
ah+1

, σFolah+1
, . . . , σDec

ah+l
, σFolah+l

) |= T (Ψ(X1, . . . , Xh, xh+1, . . . , xh+l)) (4.1)

For a subset I ′ ⊆ {h+ 1, . . . , h+ l}, we write κI′? (? ∈ {∃,∀}) for the formula

κI
′

? =
∧

i∈I?∩I′
assign(Dec, τDec

i ;Fol, τFoli ) ψΩ

Notations. To simplify reading, we will use the following notations:

• (A[1,h], a[h+1,h+j]) for the realisation profile (A1, . . . , Ah, ah+1, . . . , ah+j)

• (σSO
A[1,h]

, σDec,Fol
a[h+1,h+j]

) for the valuation (σSO
A1
, . . . , σSO

Ah
, σDec

ah+1
, σFol

ah+1
, . . . σDec

ah+j
, σFol

ah+j
)

• Q[h+j+1,h+l]x[h+j+1,h+l] for the quantification Qh+j+1xh+j+1 . . . Qh+lxh+l

We will now show by a downward induction on j (0 ≤ j ≤ l) that for all realisations
A1, . . . , Ah for the second-order variables and ah+1, . . . , ah+j for the j first first-order
variables, the following holds:

(A[1,h], a[h+1,h+j]) |= Qh+j+1xh+j+1 . . . Qh+lxh+l Ψ iff

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j]
) |= T (Qh+j+1xh+j+1 . . . Qh+lxh+l)

{
κ≥h+j+1
∃ ∧
κ≥h+j+1
∀ ⇒ T (Ψ)

(4.2)

The first part of the proof shows the case j = l through Formula (4.1). We fix
0 < j ≤ l and we assume the condition expressed in Formula (4.2) to hold for j. We will
show it for j − 1. We distinguish between two cases:

• Case Qh+j = ∃. We first assume that the formula below holds

(A[1,h], a[h+1,h+j−1]) |= ∃xh+jQ[h+j+1,h+l]x[h+j+1,h+l] Ψ

Let ah+j be a realisation of xh+j such that

(A[1,h], a[h+1,h+j−1], ah+j) |= Q[h+j+1,h+l]x[h+j+1,h+l] Ψ

By induction hypothesis, this implies:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j]
) |= T (Q[h+j+1,h+l]x[h+j+1,h+l])

(
κ≥h+j+1
∃ ∧

(
κ≥h+j+1
∀ ⇒ T (Ψ)

))
Hence, by assigning σDec

ah+j
(resp. σFolah+j

) to τDec
h+j (resp. τFolh+j), we get:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
) |= ∃τDec

h+j∃τFolh+jT (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)
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since those strategies properly encode an ordinal ah+j (hence the part of κ∃ corre-
sponding to xh+j holds true under that assignment).

Conversely, assume that

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
) |= ∃τDec

h+j∃τFolh+jT (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

There exist assignments ηDec and ηFol for τDec
h+j and τFolh+j such that:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
, ηDec, ηFol) |= T (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

Now, due to formula κ≥h+j
∃ (Lemma 4.17), it holds that there is an ordinal ah+j

such that ηDec and ηFol encode ah+j. We can then rewrite:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j]
) |= T (Q[h+j+1,h+l]x[h+j+1,h+l])

(
κ≥h+j+1
∃ ∧

(
κ≥h+j+1
∀ ⇒ T (Ψ)

))
By induction hypothesis we get:

(A[1,h], a[h+1,h+j]) |= Q[h+j+1,h+l]x[h+j+1,h+l] Ψ

Hence:
(A[1,h], a[h+1,h+j−1]) |= ∃xh+jQ[h+j+1,h+l]x[h+j+1,h+l] Ψ

• Case Qh+l = ∀. First assume that

(A[1,h], a[h+1,h+j−1]) |= ∀xh+jQ[h+j+1,h+l]x[h+j+1,h+l] Ψ (4.3)

and toward a contradiction, assume that

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
) 6|= ∀τDec

h+j∀τFolh+jT (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

This means there exists realisations ηDec and ηFol for τDec
h+j and τFolh+j such that

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
, ηDec, ηFol) 6|= T (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

We distinguish between two cases:

– Case (ηDec, ηFol) |= κ
{h+j}
∀ . This pair of strategy encodes an ordinal ah+j. Due

to assumption (4.3), it holds that:

(A[1,h], a[h+1,h+j−1], ah+j) |= Q[h+j+1,h+l]x[h+j+1,h+l] Ψ
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By induction hypothesis, we get:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j]
) |= T (Q[h+j+1,h+l]x[h+j+1,h+l])

(
κ≥h+j+1
∃ ∧

(
κ≥h+j+1
∀ ⇒ T (Ψ)

))
which implies

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
, ηDec, ηFol) |= T (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

Contradiction.

– Case (ηDec, ηFol) 6|= κ
{h+j}
∀ . This implies that:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
, ηDec, ηFol) 6|= T (Q[h+j+1,h+l]x[h+j+1,h+l]) (κ≥h+j

∃ )

which is meaningless since we can always find encodings of ordinals.

We conclude that the assumption was wrong, hence:

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
) |= ∀τDec

h+j∀τFolh+jT (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

Assume now that

(σSOA[1,h]
, σDec,Fol

a[h+1,h+j−1]
) |= ∀τDec

h+j∀τFolh+jT (Q[h+j+1,h+l]x[h+j+1,h+l])

{
κ≥h+j
∃ ∧
κ≥h+j
∀ ⇒ T (Ψ)

This holds in particular when τDec
h+j and τFolh+j encode an arbitrary ordinal, which

allows to conclude by induction hypothesis.

Getting rid of second-order quantifications is made using a bijection between strategies
of Agent SO and assignments of second-order variables (Lemma 4.19). This concludes
the proof.

By this reduction, we can deduce a procedure for the MSO(ωω, <) validity problem
from an algorithm for 1cSL[BG]’s model checking. The size of formula T (Φ) is linear in the
size of Φ, and the number of alternations is identical. Therefore, an algorithm that works
in time Tower(|φ|, k + c) for a 1cSL[BG] formula φ with k alternations of quantifications
(and c a fixed constant) will give a procedure in Tower(|Φ|, k + c) for a MSO formula Φ
with k alternations of quantifications. This concludes the proof of Theorem 4.16.

Remark 4.21. The current construction does not extend to ordinals higher than ωω since
there is no Cantor normal form based on ω for larger ordinals.
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4.2 With energies
In Minsky’s proof of undecidability for reachability in two-counter machines, two aspects
appear essential: having at least two counters and being able to test equality of each
counter with 0. To get around the undecidability, we have two main possibilities: working
with a single weight or simplifying the constraints which are allowed. In Section 4.1 we
studied the first option, we now focus on the second one. Energy constraints are a weaker
form of quantitative assertions, the idea is similar to counter constraints as it works on
weighted games but limits the constraints to upward-closed sets and their complements6.

In contrast with counters, reachability (or objectives characterised through ω-regular
conditions) is decidable in multi-dimensional energy games. In this section, we propose an
adaptation of SL with energy assertions and prove its multi-dimensional model checking
to be undecidable.

4.2.1 Adding energy constraints to SL[BG]

We reuse WCGS (see definition in Section 4.1.1) when working with energy assertions; in
particular, we keep a definition of path that forbid strictly negative weights7. We start by
defining energy constraints formally. For this, we recall that an upward-closed set S of Nn

is a set such that if (s1, . . . , sn) ∈ S then (s1 +i1, . . . , sn+in) ∈ S for any (i1, . . . , in) ∈ Nn.

Definition 4.22 (Energy Constraints).
An energy constraint on n weights is an upward-closed subset S of Nn.

By taking S = Nn we retrieve the constraint that all weights should be non-negative.
We can now update SL with the new constraints.

Definition 4.23 (Strategy logic with energies: eSL).
The logic eSL is built upon a dimension n, a set Agt of agents, a set AP of atomic
propositions and a set V of variables. Its formulas are to be evaluated on a n-WCGS
using Agt and AP respectively as their set of agents and atomic propositions. The eSL
formulas are constructed using the following grammar:

eSL ∈ φ ::= ∃x.φ | assign(A, x).φ | φ ∨ φ | ¬φ | φUφ | Xφ | p | cnt ∈ S

with S an energy constraint, p an atomic proposition, x a variable of V and A an agent
of Agt.

We recall the semantics of the cnt ∈ S operator, which is unchanged from the one
used for cSL (SL with counters constraints):

G, (q, c) |=χ cnt ∈ S ⇔ c ∈ S
6Many of the works in the literature ([4, 14, 13]) use constraints forbidding any of the weights to

become negative. We can however be more liberal and ask for the weights to belong to upward-closed
sets or complements of upward-closed sets without loss of generality. We can easily establish polynomial
reductions from one framework to the other.

7However, similarly to the previous sections, this has no impact on the results developed below.
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Remark 4.24. We draw a parallel between energy constraints, eSL[BG] and energy games
in the sense that we aim to keep all the energies above a given threshold in all our goals.
This type of constraints were the first ones studied in energy games. Research around
energy games has since then moved towards more complex questions (parameters, cost
minimisation. . . ). The parallel with energy games however stops there and it is unclear
whether the more advanced questions make sense when coupled with SL.

We also define the (flat) analogue eSL[BG][ of SL[BG][ by

eSL[BG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∧ ξ | ξ ∨ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p | cnt ∈ S

We get eSL[CG][, the enriched version of SL[CG][, by taking the grammar of eSL[BG] and
restraining ξ-type formulas to ξ ::= ξ ∧ ξ | β. As always, the full fragments allow closed
formulas at the atomic propositions’ level.

4.2.2 Model checking of eSL[BG]

As reachability is decidable in multi-dimensional energy games (see [14] for an algo-
rithm), we hoped that eSL[BG] would be decidable. The theorem below proves that we
were wrong and shows that the conjunctive fragment eSL[CG] is already sufficient to get
undecidability.

Theorem 4.25. The eSL[CG] model checking problem over 2-WCGS is undecidable

Proof. The proof consists in a reduction from the halting problem for deterministic two-
counter automata. We recall the definition below and remind the reader that the halting
problem for two-counter automata is undecidable (Minsky [37]).

Definition 3.3. A deterministic two-counter automaton is a tuple M = 〈S,E, s0, sh〉
where S is the state space, s0 is an initial state of QM and sh ∈ QM is a halting state.
E : S→ {c1, c2}×{S∪S×S} is the transition function. Transitions of form E(s) = (c, s′)
increment the counter c and go to s′, while transitions of form E(s) = (c, s′, s′′) either go
to s′ if the counter c equals 0 or decrement c and go to s′′ if c > 0.

Fix a two-counter automatonM := 〈S,E, s0, sh〉 with two counters c1 and c2. Without
loss of generality, we assumeM to have no self loop.

Building the game

We start by defining a 2-WCGS G := 〈AP,Agt,Q,Act,∆, labels〉. Figure 4.4 illustrates the
construction. Formally, we set

• There are two agents Decider (Dec) and Checker (Che) in Agt.
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q

q2 q3

M

=0
>0

q1
check

q1
check

G

q

q2 q3

(?, a1
check)

(?, a2
check)

(a=0, await)

(a>0, await)

Figure 4.4: The two-counter automatonM on the left and the concurrent game G on the
right.

• The state space Q is the union of S plus 2 new states: q1
check and q2

check.

• The actions set Act is made of five actions: a>0, a=0, await, a1
check and a2

check. The
first two actions belong to Agent Dec and the last three to Agent Che.

• There is no transition from q1
Check and q2

Check. For q ∈ S and a move vector m :
ActAgt, ∆(q,m) is defined as follows:

– if Che plays a1
check, resp. a2

check, then ∆(q,m) := q1
check, resp. ∆(q,m) := q2

check.

– if Che plays await then there is a unique transition leaving q (when viewing q
as a state ofM)

∗ if it is of the form E(q) = (c, q′), meaning it is an incrementing edge on
counter c, then we set ∆(q,m) := q′.
∗ if it is of the form E(q) = (c, q′, q′′), meaning it is a zero test or decremen-

tation on counter c, then either Dec plays a=0 and we set ∆(q,m) := q′ or
Dec plays a>0 then we set ∆(q,m) := q′′.

• The weights of the transitions in G follow the weights ofM. We also create a weight
(−1, 0), resp. (0,−1), on the edges going to q1

check, resp. q2
check.

• We label the states of G that are accepting in M by an atomic proposition pacc.
q1
check and q2

check are respectively labelled by p1
check and p2

check. We label each state
of S by an eponymous proposition, for example a state q will be labelled pq. For
any counter c and any transition of the form E(q) = (c, q′), we label both q and q′
by pE(q)=(c,q′). Similarly, for any transition of the form E(q) = (c, q′, q′′), we label q,
q′ and q′′ by pE(q)=(c,q′,q′′).

• We use the notation qini to talk about the starting state s0 ofM in the context of
G8.

8This is mostly a question of terminology: do we see the states of M in G as copies or as the same
entity? To avoid confusion and to make clear which structure we are working on, we choose the first
option and use the qini notation. For the partisans of the second approach, for all purposes s0 = qini.
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Building the formula

It remains to specify an eSL[CG] formula to complete the reduction. We give the fi-
nal formula so the reader can get a general idea before proving the correctness of the
reduction.

φ := ∃x1. ∀x2. ψ1 ∧ ψ2 ∧ ψ3

where

ψ1 := assign(Dec, x1;Che, x2). G (¬p1
check ∧ ¬p2

check)⇒ F pacc

ψ2 := assign(Dec, x1;Che, x2). G
∧

q,q,′,q′′∈S



pq ∧ pE(q)=(c1,q′,q′′)

∧ X (pq
′′ ∧ pE(q)=(c1,q′,q′′))

∧ X 2p1
check

⇒ cnt ∈ N\{0} × N

pq ∧ pE(q)=(c2,q′,q′′)

∧ X (pq
′′ ∧ pE(q)=(c2,q′,q′′))

∧ X 2p2
check

⇒ cnt ∈ N× N\{0}

ψ3 := assign(Dec, x1;Che, x2).



¬F


pq ∧ pE(q)=(c1,q′,q′′)

∧ X (pq
′ ∧ pE(q)=(c1,q′,q′′))

∧ X 2p1
check ∧ cnt ∈ N\{0} × N

∧

¬F


pq ∧ pE(q)=(c2,q′,q′′)

∧ X (pq
′ ∧ pE(q)=(c2,q′,q′′))

∧ X 2p2
check ∧ cnt ∈ N× N\{0}

Correctness of the reduction

Consider a strategy δDec for Dec. We associate with δDec a sequence ρ := (qi, c
i
1, c

i
2)i∈N

with ci1, c
i
2 ∈ Z of configurations of G defined by qi+1 = δDec(ρ≤i) and where the values

ci+1
1 and ci+1

2 are updated accordingly to the weights on the transition from qi to qi+1 (due
to the determinism of M, there can only be one transition from qi to qi+1). Note that
δDec does not have access to the two new states, it only decides between the two choices
offered by the branching (that corresponds to a zero test in M). This implies that the
sequence ρ always stays in the copy ofM, therefore δDec(ρ≤i) is always defined and ρ is
properly defined. Note that it may be the case that δDec does not follow zero tests. In
particular, if a value ci1 (or ci2) is in Z− N then ρ is not a (well-defined) path.

Because ρ never reaches q1
check and q2

check, we can see it as a sequence of configurations
inM. The proposition below characterises when ρ can be seen as a proper path inM.

Proposition 4.26. The sequence ρ is the unique path inM if and only if for any strategy
δChe, it holds {Dec→ δDec; Che→ δChe} satisfies ψ2 and ψ3
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Proof. First, assume that ρ is the proper path inM, meaning ρ takes the zero-test edges
appropriately:

∀j ∈ {1, 2} ∀i ∈ N
[
E(qi) = (cj, qi+1, q

′′) for some q′′ ∈ S
]
⇒ ci = 0 (4.4)

∀j ∈ {1, 2} ∀i ∈ N
[
E(qi) = (cj, q′, qi+1) for some q′ ∈ S

]
⇒ ci > 0 (4.5)

Then, for any strategy δChe and writing χ := {x1 → δDec;x2 → δChe}, it holds

G, (qini, (0, 0)) |=χ ψ2 ∧ ψ3 (4.6)

Indeed, consider an integer i where a zero test E(qi) = (cj, qi+1, q
′′) occurs on counter j.

If δChe plays to pjcheck after i + 1 steps, because the zero edges are taken accordingly, we
must have cji = 0 and therefore η can only reach pjcheck at step i + 2 with a null value
in the j counter and formula ψ3 must hold at step i. Also, X (pq

′′ ∧ pE(q)=(c2,q′,q′′)) is not
verified and ψ2 trivially holds, hence Formula (4.6) is satisfied at step i. If ρ(i+ 1) = q′′,
we can apply the inverse reasoning and Formula (4.6) still holds at step i.

Now, assume that ρ is not a proper path ofM. As said before, ρ always stays within
the copy of M and never reaches q1

check and q2
check. So, the first components of each

element of ρ form a sequence of states in M. The only way for ρ not to be a path
is to wrongly manage the counter, i.e. an error in the decisions of δDec. We treat the
case where ρ went by the non-zero first counter transition with a null first counter, the
inverse case and the ones with the second counter are similar. There is i0 ∈ N such that
E(qi0) = (c1, q

′, qi0+1) for some q′ ∈ S and with c1
i (c1) = 0. The path ρ is of the form

(considering the first counter)

(q1, 1, 1) . . . (qi0 , 1, c
2
i0

).(qi0+1, 0, ?).(q
1
Check, 0, ?) . . .

so G, (qini, 0, 0) 6|=χ ψ3 and G, (qini, 0, 0) 6|=χ ψ2 ∧ ψ3. This combined with the previous
paragraph gives us Proposition 4.26.

It remains to characterise when ρ is accepting, which is done in the proposition below.
The proof is straightforward hence omitted.

Proposition 4.27. Fix two strategies δDec and δChe such that, writing χ := {x1 →
δDec; x2 → δChe}, it holds

G, (qini, (0, 0)) |=χ ψ2 ∧ ψ3 ∧ assign(Dec, x1;Che, x2). G (¬p1
check ∧ ¬p2

check)

Write ρ for the sequence of configurations associated with δDec, then ρ sees an accepting
state if and only if G, (qini, (0, 0)) |=χ ψ1.

From there, by combining Propositions 4.26 and 4.27, we get that

The unique path inM is accepting ⇔

{
There exists a strategy δDec such that
G, (qini, (0, 0)) |={x1→δDec} ∀x2. ψ1 ∧ ψ2 ∧ ψ3

which concludes the proof of Theorem 4.25.
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Remark 4.28. The game used in Theorem 4.25 is concurrent. The same result holds on
weighted turn-based games. The proof would just decompose sequentially the choices of
Che and Dec by adding some extra states.

Theorem 4.25 does not rely on complex numerical constraints: each constraint asks for
one of the energies to be positive. This is enough to get an undecidable model checking
problem for eSL[CG]. The result holding for WCGS with only two agents shows that there
is little hope to regain decidability without restraining ourselves to a unique weight or
going for WCGS with one agent (which brings us back to closed systems). For the model
checking over WCGS with a single weight, we believe eSL[BG] to be decidable. Energy
constraints are (by definition) strictly less expressive than counter constraints and, as said
in Section 4.1, we believe 1cSL[BG] (the development of SL[BG] with counter constraints
on WCGS with a single weight) to be decidable.

One possibility is to force energy constraints to appear under the scope of an even
number of negation, still allowing constraints on upward-closed sets but forbidding their
negations. Without the complements of upward-closed sets, we can check (using the
technique developed to prove Theorem 4.25) that configurations of the form (q, 0, c2) and
(q, c1, 0) take the zero-test edges properly. We however cannot enforce proper behaviour
for configurations of other forms without the complements of upward-closed sets. What
happens to the undecidability of eSL[CG] is then unclear and worth investigating.

4.3 Conclusion
Like most temporal logics for multi-agents systems, SL can be enriched with quantitative
constraints. These constraints can be of many kinds. We have proposed two versions:
one with counter constraints (cSL) and the other with energy constraints (eSL).

The model checking of cSL on WCGS with more than two counters is trivially unde-
cidable. We tried in Section 4.1.2 to get a decidability result for cSL on 1-WCGS (WCGS
with a single counter) but failed to design an algorithm. We however managed to prove
a periodicity property for the satisfaction relation. This gives us hope to find in the near
future a working algorithm.

We have also shown in Section 4.1.3 a potential application of cSL on 1-WCGS by
forging a correspondence with MSO on ordinals. While the lack of algorithm for cSL
makes this correspondence only theoretical, it highlights the large expressive power of
cSL, even on 1-WCGS: without much difficulty, cSL can encode well-ordered sets, and
especially ωω which cannot be encoded through tree automata.

With the decidability of reachability in multi-dimensional energy games, we had hope
that the eSL[BG] model checking problem would be decidable. Our aspirations however
died in Section 4.2.2 when we found eSL[CG] (the conjunctive fragment of eSL[BG]) to
be undecidable. It seems that not much can be done for eSL and its expressiveness is too
powerful to ever regain decidability. The only three options would be to restrict ourselves
to a single objective (some eSL[1G] type of logic), to restrict ourselves to a single weight
or to force energy constraints to be under a even number of negation (i.e. forbidding the
complements of upward-closed sets).
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4.A Annex
We give the full proof of the intermediary results (Lemma 4.10, Lemma 4.11 and Lemma 4.12)
used to prove the periodicity theorem of Section 4.1.2 (page 85) which we recall below

Theorem 4.7. Let G be a 1-WCGS, and φ be a 1cSL[BG] formula. Then there exists
a threshold ∆ ≥ 0 and a period Λ ≥ 0 for the truth value of φ over G. That is, for
every configuration (q, c) of G with c ≥ ∆, for every k ∈ N, G, (q, c) |= φ if and only if
G, (q, c+ k · Λ) |= φ.

Furthermore the order of magnitude for ∆ + Λ is bounded by

Tower
(

max
θ∈SubForm(φ)

nθ, max
θ∈SubForm(φ)

kθ + 1
)|Q|·22|φ|

where Q is the state space of G, SubForm(φ) is the set of 1cSL[BG] sub-formulas of φ, kθ is
the number of quantifier alternations in θ, and nθ is the number of different assignments
used in θ.

Lemma 4.10. Fix 0 ≤ j < k, and assume that RD,j
(γ,γ′)(χj, χ

′
j) holds true. Then:

1. for every strategy v for xj+1 from γ, one can build a strategy T (v) for xj+1 from γ′

such that RD,j+1
(γ,γ′) (χj ∪ {v}, χ′j ∪ {T (v)}) holds true;

2. for every strategy v′ for xj+1 from γ′, one can build a strategy T −1(v′) for xj+1

from γ such that RD,j+1
(γ,γ′) (χj ∪ {T −1(v′)}, χ′j ∪ {v′}) holds true.

Proof. We prove the first property. The second property is proven similarly by replacing
Shift−Λ with Shift+Λ.

We fix a new strategy v for variable xj+1 from γ. We define the lifted strategy T (v)
for variable xj+1 (which we will add to valuation χ′j) from γ′ as follows:

• for every (finite) ρ′ from γ′ that is a prefix along which the counter is always larger
than ∆′, we define T (v)(ρ′) = v(ρ), where ρ = Shift−Λ(ρ′) (note that in that case,
the counter is always larger than ∆ along ρ, and ρ starts at configuration γ), so
this is well-defined;

• if ρ′ hits value ∆′, then decompose ρ′ w.r.t. ∆′ as ρ′%∆′ · ρ′. Similarly, decompose
ρ = Shift−Λ(ρ′) w.r.t. ∆, yielding ρ = ρ%∆ · ρ. It is not difficult to see that ρ%∆ =
Shift−Λ(ρ′%∆′). By hypothesis, it holds

Idχj−−→ρ%∆
(lst(ρ%∆), D̃) = Idχ′j−−−→ρ′%∆′

(lst(ρ′%∆′), D̃))

(with D̃ = D+ρ%∆
= D+ρ′%∆′

).

By Lemma 4.8 we find a strategy v′ from lst(ρ′%∆′) for variable xj+1 such that

Id(χj∪{v})−−→ρ%∆
(lst(ρ%∆), D̃) = Idχ′j−−→ρ%∆

∪{v′}(lst(ρ′%∆′), D̃).

We then define T (v)(ρ′) = v′(ρ′). The property RD,j+1
(γ,γ′) (χj∪{v}, χ′j∪{T (v)}) holds.
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The construction made in the above lemma is illustrated in Figure 4.5.

∆′

∆
Λ

•
γ

•
γ′= ShiftΛ(γ)

Λ

•

•
identical (but shifted) strategies

equivalent strategies (∆ ∼ ∆′)

Figure 4.5: Construction in Lemma 4.10 (case (ii))

Lemma 4.11. Fix D0 for the tuple of initial states of the Di’s. Assume that RD0,k
(γ,γ′)(χ, χ

′)

holds (for full valuations χ and χ′). Let 1 ≤ i ≤ n, and write ρ = out(βi(χ), γ) and
ρ′ = out(βi(χ′), γ′). Then ρ |= ϕi if and only if ρ′ |= ϕi. In particular, γ |=χ ξ(βiϕi)1≤i≤n
if and only if γ′ |=χ′ ξ(βiϕi)1≤i≤n.

Proof. We distinguish between two cases:

• Assume that ρ is fully above ∆. By definition of property RD0,k
(γ,γ′)(χ, χ

′), it holds
that ρ′ = Shift+Λ(ρ). Applying Lemma 4.9 to all prefixes of ρ and ρ′ (which are all
above ∆, resp. ∆′), we get that they follow the same paths in all automata Di’s,
hence for each 1 ≤ i ≤ n, ρ |= ψi iff ρ′ |= ψi.

• Assume that ρ is not fully above ∆. Then, by definition of property RD0,k
(γ,γ′)(χ, χ

′),
ρ′ is not fully above either, and ρ′%∆′ = Shift+Λ(ρ%∆). Also,

Idχ−−→ρ%∆
(lst(ρ%∆), D) = Idχ′−−−→

ρ′%∆′
(lst(ρ′%∆′), D)

with D = D0
+ρ%∆

= D0
+ρ′%∆′

(by Lemma 4.9).

There exists some location q̂ such that lst(ρ%∆) = (q̂,∆) and lst(ρ′%∆′) = (q̂,∆′),
and by definition of the id, this means that for every 1 ≤ i ≤ n, the two following
properties are equivalent:

– ρ = out
(
βi(χ−−→ρ%∆

), (q̂,∆)
)
is accepted by Di from di

– ρ′ = out
(
β′i(χ

′−−−→
ρ′%∆′

), (q̂,∆′)
)
is accepted by Di from di

We conclude by noticing that ρ = ρ%∆ · ρ and ρ′ = ρ′%∆′ · ρ′, which are then equiva-
lently accepted or rejected by each of the Di.
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Lemma 4.12. γ |=∅ φ if and only if γ′ |=∅ φ.

Proof. For every 0 ≤ j ≤ k, we write φj = Qj+1xj+1 . . . Qlxl ξ(βiψi)1≤i≤n.
We show by induction that if χj and χ′j are valuations such that RD0,j

(γ,γ′)(χj, χ
′
j) holds,

then γ |=χj φj if and only if γ′ |=χ′j
φj.

This holds for full valuations χk and χ′k by applying Lemma 4.11. Assume it holds at
rank j + 1 with 1 ≤ j < k; we show it for j. Assume χj and χ′j are valuations such that
RD0,j

(γ,γ′)(χj, χ
′
j) holds and γ |=χj φj. We distinguish two cases:

• Case Qj+1 = ∃. Pick a strategy vj+1 for variable xj+1 such that γ |=χj∪{vj+1} φj+1.
Applying Lemma 4.10, choose strategy v′j+1 such that RD0,j+1

(γ,γ′) (χj ∪ {vj+1}, χ′j ∪
{v′j+1}) holds. Applying the induction hypothesis, we deduce that γ′ |=χ′j∪{v′j+1}
φj+1.

• Case Qj+1 = ∀. Pick a strategy v′j+1 for variable xj+1 from γ′. Applying Lemma 4.10,
choose strategy vj+1 such that RD0,j+1

(γ,γ′) (χj ∪ {vj+1}, χ′j ∪ {v′j+1}) holds. Applying
the induction hypothesis, we deduce that γ′ |=χ′j∪{v′j+1} φj+1 iff γ |=χj∪{vj+1} φj+1.
The last relation is valid, hence γ′ |=χ′j∪{v′j+1} φj+1.

We conclude the proof by noticing that RD0,0
(γ,γ′)(∅, ∅) holds since ∆ ∼ ∆′.



Part II

The dependency problem in SL[BG]
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Chapter 5

Introduction to the dependency
problem

In the quantifiers’ semantics, the strategy assigned to a variable x on a history ρ depends
on all the other strategies quantified before it in their entirety. These dependencies are
rather unusual, make the semantic of the quantifiers counter-intuitive and prevent us
from making local decisions. The example below illustrates the issue.

Fix two agents and , two atomic propositions p1 and p2 and four variables xA ,
xB , yA and yB . Consider the game G on Figure 5.1. We define a SL[BG] formula φ0

below.

qini

a b

p1 p2 p1 p2

Figure 5.1: A game G.

φ0 := ∀xA .∀yA .∃xB .∃yB .



(
assign( , xA ; , yA )F p1

⇔ assign( , xB ; , yB )F p2

)
∧
assign( , xB ; , yB )F b

φ1

One can see that using the intuitive semantic given in Chapter 1, φ0 holds on G from qini.
For example, using the name of a variable for the strategy assigned to it, if xA (qini) = a

and yA (qini.a) = p2 then we can set xB (qini) = b and yB (qini.b) = p1. The outcome of
{xA , yA } does not see p1 so the first goal is not satisfied and the outcome of {xB , yB }
eventually sees b but not p2 so the second goal is not satisfied but the third is. This makes
the equivalence between the first two goals hold as well as the third goal, satisfying φ1.
Now, assume xA (qini) = a and yA (qini.a) = p1, we can take xB (qini) = b and yB (qini.b) =
p2. Unlike previously, all three goals are satisfied and both the equivalence and the
conjunction hold, making φ1 true. A similar reasoning can be done when xA (qini) = b.
In the end, the overall formula φ0 is satisfied by G.

In the reasoning above, one can notice that the choice of yB on the history qini.b

depends on what yA decided to play on qini.a. In particular, the choice of yB on a history
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∀xA

p1

∀yA

p1

?

∃xB ∃yB

p2p1

?

dependency on a
different history

Figure 5.2: Dependencies from the existential variable yB on the universal variable yA .

depends on the choice of yA on another history. Figure 5.2 illustrates the situation: there
is an unnatural influence of yA on yB . Indeed, in some practical cases, the strategy yA can
be only partially revealed and we may therefore wish not only that yB exists but also to
build it using a limited amount of information from yA . Finding when these dependencies
appear is what Mogavero, Murano, Perelli and Vardi refer as finding elementary witnesses
in [39].

Consider a formula φ := Q1x1, . . . Qlxl. ξ(βjϕj)1≤j≤n. A strategy δ stored in a variable
xj is said local when it depends only on the current history and the choices of the variables
quantified before xj on said history. The question of elementary witnesses formally asks
which SL[BG] formulas can be solved using only strategies with local choices for the
existentially quantified variables1. In other words, we aim to find formulas where the
situation illustrated on Figure 5.2 does not happen.

In this chapter, we give a layout of the situation, propose a framework (adapted
from [39]) and highlight a few results. As we will see, the notion of elementary witness
developed in [39] is not sufficient for a thorough study of the problem. In later chapters,
we will study the dependency problem in a broader sense.

5.1 A partial classification of the dependencies

We start by formally defining the notions at the heart of the dependency problem. Given
a history ρ = (qi)i≤L where L ∈ N, we recall that a prefix of ρ is a history of the form
ρ′ := (qi)i≤L′ where L′ < L. We also recall that an extension of ρ is any history of the
form ρ′′ := (qi)i<L′′ where L′′ > L. We write Pref≤ρ for the set of all prefixes of ρ including
ρ and Pref<ρ for the set of strict prefixes of ρ. We also regroup all the other histories
within the notion of counter-factual history:

Definition 5.1 (Counter-factual history).
Given two different histories ρ and π, we say that π is counter-factual of ρ whenever π
is neither a prefix nor an extension of ρ.

1Initially introduced in [39], the authors formulate the problem in a different manner through the use
of mathematical objects. We will explain and refine their idea in Section 5.2 later on.
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∀ x1
Local

dependencies

p q

∃ x2

p q

∀ x3

p q

∃ x4

p q

∀ x1
Side

dependencies

p q

∃ x2

p q

∀ x3

p q

∃ x4

p q

∀ x1
Future

dependencies

p q

∃ x2

p q

∀ x3

p q

∃ x4

p q

∃ x2

Figure 5.4: The three kinds of dependencies

We highlight three kinds of possible dependencies and explore their usage to model
open and multi-agents systems. More kinds are possible, we restrict ourselves to the ones
we believe are the most interesting.

qini

p∅

(1, 0)

(0, 1)

(0, 0)

(1, 1)

Figure 5.3: A game G with two
agents and two actions (0 and
1)

The first kind is called local dependency : it happens
when a strategy y on a history ρ requires knowledge of
the choices from strategies quantified before y on prefixes
of ρ or on ρ itself. Local dependencies are rather common
with CGS, they order who has knowledge of what within
a state or a history. For example, consider the game of
Figure 5.3 with two actions 0 and 1, and two agents A
and B. From qini, A aims to reach a p-labelled state
while B tries to avoid it. The agent who announces his
strategy first loses: if A talks first, B may play the same
action as A, forcing a transition towards the state not
labelled by p. On the other hand if B is the first notifying his choice, A can choose the
opposite action, ensuring that the transition results in the p-labelled state. Which agent
(or in SL[BG] which strategy) discloses his choice first can be modelled by choosing an
appropriate quantification order, thus creating local dependencies. Note however that,
due to the quantifier alternation, SL[BG] is not the best logic to deal with simultaneous
decision makings.
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The second kind of dependency is the one described in the introduction of this chapter:
a strategy on a given history that depends on choices made by previously quantified
strategies on counter-factual histories. We call it side dependency. Such dependencies
may represent some knowledge from one component behaviour (in counter-factual plays)
that is accessible to another component (the play under consideration). They may also
represent some weak form of concurrency (a side thread can be executed before the
current one and therefore we can assume some knowledge about how such thread went),
but there exist better models for this. In most multi-agents systems, these dependencies
cannot happen and therefore these systems cannot be modelled through CGS and SL[BG]
formulas. Therefore, the main interest in studying these dependencies is to know when
they appear to expand the class of practical problems that can effectively be solved
through SL[BG] model checking. It may also give some information about the intrinsic
difficulty of certain formulas.

The third kind of dependency is when an existential strategy y on history π depends
on the choice made by a previously quantified strategy x on an extension π.π′ of π, we
call it future dependency. Future dependencies, like local ones, represent some knowledge
accessible to an agent at a given time, here about future decision. They may appear
when the system we aim to model has some intrinsic limitations, or when there are some
formal and predetermined protocols interspersed in the system. More often than not and
unlike local influences, future dependencies are a burden preventing many problems to
be solved through SL[BG] model checking procedure. Unfortunately we will see that they
appear frequently. These three kinds are illustrated in Figure 5.4.

5.2 Formal framework

A framework proposed to investigate this issue is to represent the existential choices
through mathematical objects that we call maps. We rediscover and extend the concept
of dependence maps introduced in [38, 39] into a more general framework adapted to the
three kinds of dependencies we highlighted before. The idea is similar to the Skolemisation
of first-order formulas [17]: representing the existentially quantified variables as functions
of the universally quantified variables. The notion of “there exists a strategy such that
for all strategy. . . , it holds ξ” where ξ is a boolean combination of goals is transformed in
“there exists a map satisfying ξ”. We can then apply adequate restrictions on the maps
to model the dependencies.

Choosing to work with dependence maps allows us to treat the strategy quantifications
as a bloc, in a somewhat global fashion. Other frameworks are possible and we could
have worked with one similar to what we used in Chapter 1 to define SL; however such
framework conveys the idea that strategies are individual elements and does not simplify
the notations.

Treating the dependency problem for the full SL[BG] greatly complexifies definitions;
we therefore focus exclusively on (the flat fragment) SL[BG][ and recall its grammar below.
To ease the reading of Chapters 5 to 7, we remove the flat symbol.
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SL[BG] 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∨ ξ | ξ ∧ ξ | β
β ::= assign(A, x).β | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ϕUϕ | Xϕ | p

As we have seen with the definition in Chapter 1, all SL[BG] formulas have their quan-
tifications grouped together at the beginning and can be written in the following form2

φ := (Qixi)i≤l ξ
(
βjϕj

)
j≤n

where for any i ≤ l, Qi ∈ {∃,∀} and xi ∈ V (with xi 6= xi′ for any i 6= i′), ξ is a boolean
combination, for any j ≤ n, βj is a sequence of assignments and ϕj is an LTL formula
over AP. We write ℘ := (Qixi)1≤i≤l and, to simplify the notations, we assume without
loss of generality that V = {xi | 1 ≤ i ≤ l}. We also write V∀ := {xi | Qi = ∀} and
V∃ := {xi | Qi = ∃} respectively for the universally and existentially quantified variables
of ℘.

5.2.1 Maps

We refer to a function θ as a ℘-map (or simply map when ℘ is clear of context) if it is of
form

θ : (Hist→ Act)V
∀ → (Hist→ Act)V or equivalently θ : (V∀ → Strat)→ (V → Strat)

and satisfies θ(w)(xi)(ρ) = w(xi)(ρ) for any w : (Hist→ Act)V∀ , any universally quantified
variable xi ∈ V∀ and any history ρ. A map therefore defines the strategies existentially
quantified in function of the universally quantified strategies.

We can forcibly remove certain influences by applying adequate restrictions on the
maps. Local dependencies are allowed in all cases: the use of CGS makes it mandatory
to handle who has which information within a state and, as explained in Section 5.1, not
much can be done in CGS without them. We define two parameters: S, F respectively for
the side and future dependencies. We can then draw four sub-types of maps by choosing
parameters among S and F : {M(♠,♥) | ♠ ∈ {∅, S}, ♥ ∈ {∅, F}} where a M(♠,♥)
map has the additional restriction:

∀ρ ∈ Hist, ∀xi ∈ V
∀w1, w2 : (V∀ → Strat)

}(
C(Local) ∧ C(♠) ∧ C(♥)

)
⇒
(
θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)

)
with

2Without loss of generality, we assume the variables to be used in at most a single quantification. We
further assume them to be ordered: x1 is quantified before x2 which is itself quantified before x3 and so
on.



116

• C(∅): empty condition (always satisfied)

• C(Local): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on ρ, i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ ≤ ρ w1(y)(µ) = w2(y)(µ)

• C(S): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on side histories of ρ (side), i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ counter-factual of ρ w1(y)(µ) = w2(y)(µ)

• C(F ): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on extensions of ρ (future), i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ extension of ρ w1(y)(µ) = w2(y)(µ)

The case ofM(S, F ) maps can be simplified by asking that for any xi ∈ V and any
two valuations w1, w2 : (V∀ → Strat) that coincide on variables (xi′)i′<i, it holds that
θ(w1)(xi) = θ(w2)(xi). The semantics of Chapter 1 then corresponds to the existence of
aM(S, F ) map.

The framework may seem technical but is rather intuitive when referring to Figure 5.4.
By definition, aM(S, ∅) orM(∅, F ) map will also be of typeM(S, F ) and a cardinality
argument suffices to show that these inclusions are strict3.

Example 5.2. A M(S, F ) map θ for a formula ∀x1.∃x2.∀x3.∃x4. ζ is a function that
maps pairs of strategies (for universally-quantified variables x1 and x3) to pairs of strate-
gies (for existentially-quantified variables x2 and x4) and that respects the order of quan-
tifiers: here x2 is only allowed to depend on x1, but may depend on its entirety.

Example 5.3. AM(∅, ∅) map θ for ∀x1.∃x2.∀x3.∃x4. ζ can be seen as a function making
local choices. The strategy stored in x2 on a history π may only depend on the value of
x1 on π and its prefixes. Similarly, the choice of x4 on π may only depend on the values
of x1 and x3 on π and its prefixes.

5.2.2 Satisfaction relations

We can then define four satisfaction relations (|=M(♠,♥))♠∈{∅,S}, ♥∈{∅,F} using the concept
of maps. First, consider a map θ and a function w : (V∀ → Strat). The image θ(w)
of θ by w defines a valuation. In the following, when writing |=θ(w), we simply mean
the satisfaction relation (|=χ) of Chapter 1 on valuation θ(w). To define the four new
satisfaction relations, we treat the quantifications as blocks and given a (closed) SL[BG]
formula (Qixi)i≤l ξ

(
βjϕj

)
j≤n, we set

G, q |=M(♠,♥) (Qixi)i≤l ξ
(
βjϕj

)
j≤n ⇔


∃θ ∈M(♠,♥)

∀w : (V∀ → Strat)
G, q |=θ(w) ξ

(
βjϕj

)
j≤n

For a fixed game G and a SL[BG] formula φ := (Qixi)i≤l ξ
(
βjϕj

)
j≤n, a M(♠,♥) map

θ relative to (Qixi)i≤l for some given parameters ♠,♥ is called aM(♠,♥) witness of φ
3Equivalently, one can build aM(S, F ) map that is notM(S, ∅).
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holding true on G whenever

∀w : (V∀ → Strat) G, q |=θ(w) ξ
(
βjϕj

)
j≤n

The satisfaction relation |=M(S,F ) then redefines the satisfaction relation |= of Chap-
ter 1 in terms of maps. This equivalence between |=M(S,F ) and |= corresponds to the work
done by Mogavero, Murano, Perelli and Vardi in [39] (though we formalise it slightly dif-
ferently).

Remark 5.4. It is important to notice that only the quantifier operators have multiple
possible semantics. The semantics of the assignments, of the boolean and of temporal
operators are unchanged.

5.2.3 Can a formula and its syntactic negation both hold on a
game ?

Notations. We write Qi := ∀ if Qi = ∃ and Qi := ∃ if Qi = ∀. Given a SL[BG] formula
φ = (Qixi)i≤l ξ(βjϕj)j≤n, we then define ¬φ := (Qixi)i≤l ¬ξ(βjϕj)j≤n.

The use of maps to define the four relations (|=M(♠,♥), with ♠ ∈ {∅, S} and ♥ ∈
{∅, F}) allows us to properly monitor the different influences. There is however a draw-
back: consider a SL[BG] formula φ = (Qixi)i≤lξ(βjϕj)j≤n and two parameters ♠,♥ re-
spectively in {∅, S} and {∅, F}; from the definition, nothing prevents φ and ¬φ to both
hold on a game. Indeed, there may well be two M(♠,♥) maps θ relative to (Qixi)i≤l
and θ relative to (Qixi)i≤l such that

∀w : (V∀ → Strat) G, q |=θ(w) ξ
(
βjϕj

)
j≤n

∀w : (V∃ → Strat) G, q |=θ(w) ¬ξ
(
βjϕj

)
j≤n

The theorem below shows that this cannot happen.

Theorem 5.5. For any formula φ in SL[BG], any game G, any initial state qini and any
two parameters ♠,♥ respectively in {∅, S} and {∅, F}, it holds that

G, qini |=M(♠,♥) φ ⇒ G, qini 6|=M(♠,♥) ¬φ

Proof. Consider the original satisfaction relation |= defined in Chapter 1. By definition
of the ¬ operator, if G, qini |= φ holds, then G, qini 6|= ¬φ. As said before, |= corresponds
to |=M(S,F ) and therefore

G, qini |=M(S,F ) φ ⇒ G, qini 6|=M(S,F ) ¬φ (5.1)

Toward a contradiction, assume that Theorem 5.5 does not hold. There must exist two
parameters ♠ ∈ {∅, S} and ♥ ∈ {∅, F} such that

G, qini |=M(♠,♥) φ and G, qini |=M(♠,♥) ¬φ (5.2)
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∃x1

θ(x1)

No influence

∀x2

θ(x2)

Only x1

impacts
x2

∃x3

θ(x3)

Only x2

impacts
x3

∀x4

θ(x4)

Both x1 and
x3 impact x4

We get χ(x1) then, using χ(x1), we create χ(x2) . . .

Figure 5.5: The idea behind Theorem 5.5 for φ := ∃x1.∀x2.∃x3.∀x4. ξ
(
βjϕj

)
j≤n.

Now, aM(♠,♥) map can be seen as aM(S, F ) map, hence

G, qini |=M(♠,♥) φ and G, qini |=M(♠,♥) ¬φ
⇓ ⇓

G, qini |=M(S,F ) φ and G, qini |=M(S,F ) ¬φ

The last line is in contradiction with Equation (5.1), therefore Equation (5.2) must be
false and Theorem 5.5 must hold.

There is another way, more intuitive, to understand Theorem 5.5. Consider a formula
φ := (Qixi)i≤l ξ

(
βjϕj

)
j≤n and suppose that both G, qini |=M(♠,♥) φ and G, qini |=M(♠,♥)

¬φ. Then there are two M(♠,♥) maps θ and θ relative respectively to (Qixi)i≤l and
(Qixi)i≤l witnessing respectively that G, qini |=M(♠,♥) φ and G, qini |=M(♠,♥) ¬φ, i.e.

∀w : (V∀ → Strat) G, q |=θ(w) ξ
(
βjϕj

)
j≤n

and ∀w : (V∃ → Strat) G, q |=θ(w) ¬ξ
(
βjϕj

)
j≤n

We can then confront θ and θ to get a valuation χ of domain dom(χ) = {xi | i ≤ l}
such that θ(χ|V∀) = χ and θ(χ|V∃) = χ. This means that χ must satisfy both ξ

(
βjϕj

)
j≤n

and ¬ξ
(
βjϕj

)
j≤n, this is impossible (Remark 5.4). An intuition of this can be found

in Figure 5.5. This idea of confronting maps for a formula and its negation will be
particularly interesting in later chapters.

5.2.4 Can a formula and its negation both fail to hold on a game ?

One can also wonder if it is possible for neither a formula nor its negation to hold on a
game. The correspondence between |= and |=M(S,F ) gives us the following lemma.

Lemma 5.6. For any formula φ in SL[BG], any game G and any initial state qini, it
holds that

G, qini 6|=M(S,F ) φ ⇒ G, qini |=M(S,F ) ¬φ
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qini

A

p1 p2

B

p1 p2

qini

A

p1 ∅

p2

Figure 5.6: The games of Lemma 5.7 on the left and of Lemma 5.8 on the right.

The situation is however more complex for the other three relations, as illustrated by
the two lemmas below.

Lemma 5.7. There exists a formula φ in SL[BG], a game G and an initial state qini such
that for any ♥ ∈ {∅, F}, it holds that

G, qini 6|=M(∅,♥) φ and G, qini 6|=M(∅,♥) ¬φ

Proof. Fix a parameter ♥ ∈ {∅, F}. Consider the formula below and the one-player game
on the left of Figure 5.6.

φ := ∀x.∃y


assign( , x). F p1 ⇔ assign( , y). F p1

∧
assign( , y). FB

We start by proving that G, qini 6|=M(∅,♥) φ. Trivially, the strategy y(qini) must play to
B for φ to be satisfied. Now, if x(qini) plays to A, the strategy y needs side dependencies
of x(qini.A) to play adequately on qini.B, and this dependency is not allowed inM(∅,♥)
maps.

On the other hand, G, qini 6|=M(∅,♥) ¬φ. Indeed, whatever the choice of x we can
find a strategy y such that φ holds. So whatever theM(∅,♥) map θ for ¬φ, there will
always exist a function w such that θ(w) fails to satisfy the conjunction of equivalences
of goals.

Lemma 5.8. There exists a formula φ in SL[BG], a game G and an initial state qini such
that for any ♠ ∈ {∅, S}, it holds

G, qini 6|=M(♠,∅) φ and G, qini 6|=M(♠,∅) ¬φ

Sketch of proof. The proof works in a fashion similar to the one of Lemma 5.7, this time
using the game on the right of Figure 5.6 and the formula below.

φ := ∀x.∃y. (assign( , x). F p1 ⇔ assign( , y). F p2)
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M(S, F )

M(∅, F )M(S, ∅)

M(∅, ∅)

If a formula fails to hold on a

game, its negation must hold.

Both a formula and its negation

can fail to hold on the same game.

This situation (where
neither a formula nor
its negation hold) occurs
whenever an existential
strategy can make a lucky
guess in order to success-
fully satisfy the formula
but lacks some dependen-
cies in order to ensure
success.

5.2.5 What do these relations represent ?

The previous section raises an obvious question: are the relations poorly defined ? We
recall that

G, q |=M(♠,♥) (Qixi)i≤l ξ
(
βjϕj

)
j≤n ⇔


∃θ ∈M(♠,♥)

∀w : (V∀ → Strat)
G, q |=θ(w) ξ

(
βjϕj

)
j≤n

This definition entails two important things. The first one is obvious, the existentially
quantified strategies are allowed the dependencies given by the parameters ♠ and ♥.
Second, the universally quantified strategies are allowed a complete knowledge of the
map through the universal quantification over w. Indeed, consider a quantification block
∀x1 ∃x2. In the satisfaction relation, the universal quantification over the functions of
the form (Hist → Act){x1} creates an omniscience of x1 about the way x2 will answer x1

choices. In other words, x1 has knowledge that “If x1 plays such that. . . , then x2 will
play such that. . . ”. Note however that x2 still depends on x1.

In this chapter and the followings, it will be important not to overinterpret what a
formula holding onto a game means for a given relation. For example, “G, qini |=M(∅,F )

(Qixi)i≤lξ(βjϕj)j≤n” states that there exists a behaviour for the existentially quantified
strategies of (Qixi)i≤l that uses only (local and) future dependencies and that satisfies
ξ(βjϕj)j≤n no matter what the universally quantified strategies play. On the other hand,
“G, qini |=M(∅,F ) (Qixi)i≤l¬ξ(βjϕj)j≤n” does not means that the universally quantified
strategies of (Qixi)i≤l have an (omniscient) answer for all M(∅, F ) behaviour of the
existentially strategies. It states the existence of aM(∅, F ) behaviour for the universally
quantified strategies of (Qixi)i≤l to avoid ξ(βjϕj)j≤n against all (omniscient) behaviour
of the existentially quantified strategy of (Qixi)i≤l. The syntactic negation of a formula
reverses the roles of the quantifiers but also the knowledge associated with them. This
implies that the syntactic and semantic negations differ and gives us results such as the
ones of Section 5.2.4.

To cope with the possibility for neither a formula nor its syntactic negation to hold,
it is important to understand that inputs are two dimensional. The first dimension is the
quantification block while the second is the set of dependency parameters (∅, S, F ). What
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a negation means is therefore ambiguous: should we consider negation of the quantifiers,
negation of the dependencies or negation of both? We opt for the first option. More
precisely, we choose to give the universally quantified strategies the knowledge of the
map to echo the implicit universal quantification in ATL∗. This choice is reminiscent
of the (usually implicit) omniscience of the environment in worst-case analysis of open-
systems. The framework is adapted to our goal, a worst-case verification of multi-agents
systems, but also incomplete. Other approaches are possible; for example, we could have
add other parameters to handle the dependencies of the universal strategies. In such a
framework, the negation would be on both the quantifiers and the parameters.

5.3 Narrowing SL[BG]

The subject of dependencies was studied in [40, 41]; the authors showed that side and
future dependencies can be removed from SL[BG] formulas based on conjunctions and
disjunctions of goals. They however forgot to take into account the lack of knowledge
that strategies have on prefixes of the current history4. As we will see later on, this
impacts significantly the results. The ideas and ways of restricting SL[BG][ however
look promising. They introduced four fragments of SL[BG] by restricting the boolean
combination of goals after the quantifiers block.

• SL[1G], introduced in [38], restrict SL[BG] to a unique goal. (The flat fragment)
SL[1G][ is defined from the grammar of SL[BG][ by skipping the ξ line. More pre-
cisely, ξ’s type sub-formulas must avoid any boolean operator, i.e. must be of form
ξ ::= β.

SL[1G][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= β

β ::= assign(A, x). β | ϕ
ϕ ::= ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | p

• SL[CG], introduced in [40], is the fragment where only conjunctions of goals are
allowed. Formally, (the flat fragment) SL[CG][ is defined from the grammar of
SL[BG][ with the restriction below on the ξ’s type sub-formulas ξ ::= ξ ∧ ξ | β.

• Similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | β.

• SL[CG] and SL[DG] have been further extended into SL[AG] [41], where limited
alternation of goals are allowed. Formally, (the flat fragment of) this logic is defined

4More precisely, a strategy x on a history ρ does not have knowledge of what strategies quantified
after x played on prefixes of ρ. This implies that x(ρ) does not have knowledge of which goals are still
active on ρ and which goals have deviated on other histories.
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as follows:

SL[AG][ 3 φ ::= ∃x.φ | ∀x.φ | ξ
ξ ::= ξ ∧ β | ξ ∨ β | β
β ::= assign(A, x). β | ϕ
ϕ ::= ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | p

Notice that the formula (that we recall below) used to characterise qualitative Nash
equilibrium in Section 1.5.4 is not (syntactically) in SL[AG]. Indeed, its boolean combi-
nation of goals is a conjunctions of implication (i.e. a conjunctions of disjunctions) and
therefore cannot be expressed linearly, as required in SL[AG].

∃x1, . . . xn. ∀y1, . . . , yn.
∧

1≤i≤n

assign(Aj, xj)j 6=i
(
assign(Ai, yi)ϕi ⇒ assign(Ai, xi)ϕi

)
,

5.4 Needed dependencies
As exposed in the introduction of this chapter, there are unnatural and unexpected
dependencies between strategies in the same quantifier block of a SL[BG] formula. In
this section, we study the cases where certain dependencies are needed in order to satisfy
SL[BG] formulas. For this, we consider the different logics exposed in Section 5.3 and
prove that the four satisfaction relations are distinct from one another with respect to
these logics. We will also see later cases where we can suppress some of the dependencies.

5.4.1 Future dependencies

We start by showing that some formulas require future dependencies to be satisfied. The
condition for them to appear is rather thin as even the most simple formulas have them.

Lemma 5.9. There exist a formula φ ∈ SL[DG], a turn-based game G and one of its
states qini such that

• G, qini 6|=M(∅,∅) φ and G, qini |=M(∅,F ) φ

• G, qini 6|=M(S,∅) φ and G, qini |=M(S,F ) φ

Proof. Take the game of Figure 5.7a on two agents and , and the following formula

φ := ∀y.∃xA.∀xB


assign( , y; , xA). F p1

∨
assign( , y; , xB). F p2

First, note that by construction of φ and G, no side dependency is possible. Indeed,
only the variable xA is existentially quantified and may have side dependencies. xA is
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however only relevant on the state qini, and due to the acyclic nature of G, qini can only
appear at the root of a history. At the root there is no possible counter-factual play and
therefore no side dependency.

Take ♠ ∈ {∅, S}, we start by proving G, q |=M(♠,F ) φ. By definition ofM(♠, F ), xA
has knowledge of what y would play on suffixes after qini. So, if y goes from a to p1 then
xA goes from qini to a and the first goal is satisfied, making φ hold. If y goes from a to
p2 and from b to p1, xA goes from qini to b and the first goal is satisfied. There remains
the last case where y goes from both a and b to p2, then no matter the universal choice
of xB, the second goal will be satisfied and φ will hold true (we can take any choice for
xA).

Next in order is to prove that G, qini 6|=M(♠,∅) φ. As no future dependency is permitted,
xA does not have any knowledge of y choices. If xA decides to play from qini to a, then
for y going from a to p2 and from b to p1 and xB going to b, neither objective will be
satisfied; if xA decides to play from qini to b then for y going from a to p1 and from b to
p2 and xB going to a, again neither objective will be satisfied. So the choice of xA on qini
needs knowledge of what y plays on suffixes after qini and G, qini 6|=M(♠,∅) φ.

qini

a

b

p1

p2

(a) A turn-based game with two agents.

qini

a

b

p1

p2

(b) Another turn-based game but with
three agents.

Figure 5.7: Different games used in Lemmas 5.9, 5.10 and 5.12

Lemma 5.10. There exist a formula φ ∈ SL[CG], a turn based game G and one of its
states qini such that

• G, qini 6|=M(S,∅) φ and G, qini |=M(S,F ) φ

• G, qini 6|=M(∅,F ) φ and G, qini |=M(S,F ) φ

Proof. Consider the game on Figure 5.7b with three agents , and , and the
SL[CG] formula

φ := ∀y.∃z.∃xA.∃xB


assign( , y; , xA; , z). F p1

∧
assign( , y; , xB; , z). F p2

We start by proving that G, qini |=M(S,F ) φ. Note that as both future and side depen-
dencies are allowed, both xA and xB but also z may depend on the choices of y(qini.a). If
y(qini.a) = p1 then we set xA(qini) := a, xB(qini) := b and z(qini.b) := p2, in the end both
goals are satisfied. On the other hand if y(qini.a) = p2, we set xA(qini) := b, xB(qini) := a
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qini

p1

p2

(0, 0, ?)

(1, 1, ?)

a

p1

p2

(0, 1, ?)

(1, 0, ?)

(?, ?, 1)

(?, ?, 0)

Figure 5.8: A concurrent game G where Agt := {AA , BB , } and Act = {0, 1}.

and z(qini.b) := p1. Again both goals are satisfied. From this we can build a M(S, F )
witness of G, qini |=M(S,F ) φ.

We then prove that G, qini 6|=M(S,∅) φ. This time, xA and xB cannot depend on the
value of y(qini.a); only z can. First if xA(qini) = xB(qini), one of the goals will not
be satisfied (no matter y and z). Now, if xA(qini) = a and xB(qini) = b then having
y(qini.a) = p2 means that the first goal does not hold. Finally, if xA(qini) = b and
xB(qini) = a, for y(qini.a) = p1, the second goal will not hold. This ensures that xA and
xB need knowledge for qini on what y plays on qini.a and therefore G, qini 6|=M(S,∅) φ and
the first point of Lemma 5.10 holds.

We show now that G, qini 6|=M(∅,F ) φ. Here, xA and xB may depend on y but z may
not. Assuming z(qini.b) = p1 then if y(qini.a) = p1, the second goal cannot hold no matter
xA and xB. On the contrary, if z(qini.b) = p2 then with y(qini.a) = p2, we get that the
first goal cannot hold. Hence, side dependencies are mandatory and G, qini 6|=M(∅,F ) φ.
Combining this with G, qini |=M(S,F ) φ (proved for the first point) gives us the second
point of Lemma 5.10.

Lemma 5.11. There exist a formula φ ∈ SL[CG], a concurrent game G and one of its
states qini such that G, qini 6|=M(∅,∅) φ and G, qini |=M(∅,F ) φ.

Proof. Consider the game on Figure 5.8 with three agents AA , BB and , and two actions
1 and 0. Agents AA and BB play concurrently in state qini while agent controls the
circle state. Consider also the SL[CG] formula

φ := ∀y.∃xA.∃xB1 .∃xB2


assign(AA , xA; BB , xB1 ; , y). F p1

∧
assign(AA , xA; BB , xB2 ; , y). F p2

We start by proving that G, qini |=M(∅,F ) φ. As future dependencies are allowed,
knowledge of y(qini.a) can be assumed when building xA, xB1 , xB2 . If y(qini.a) = 1, then
we set xA(qini) = 1, xB1 (qini) = 0 and xB2 (qini) = 1. The first goal goes to a and p1

while the second goes to p2 thus making the conjunction holds. If y(qini.a) = 0, we set
xA(qini) := 0, xB1 (qini) := 0 and xB2 (qini) := 1. The first goal goes to p1 and the second to
a and p2. Whatever the choice made by y, we have a solution hence we have aM(∅, F )
witness that G, qini |=M(∅,F ) φ.

It remains to show that G, qini 6|=M(∅,∅) φ. We proceed by contradiction. Assume
there is aM(∅, ∅) map ∆ witnessing φ on G. By nature of ∆, ∆(xA) is independent of
y choices. If xA(qini) = 1 then with y(qini.a) = 0 there is no way to ensure the first goal.
Similarly, if xA(qini) = 0 then with y(qini.a) = 1 we cannot ensure the second goal. So
the hypothesis must be false and G, qini 6|=M(∅,∅) φ.
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5.4.2 Side dependencies

We then tackle the cases where side dependencies are needed.

Lemma 5.12. There exist a formula φ ∈ SL[DG], a turn-based game G and one of its
states qini such that

• G, qini 6|=M(∅,∅) φ and G, qini |=M(S,∅) φ

• G, qini 6|=M(∅,F ) φ and G, qini |=M(S,F ) φ

Proof. Consider the game of Figure 5.7b and the formula

φ := ∀y.∃z.∀xA.∀xB


assign( , xA; , y; , z)F p1

∨
assign( , xB; , y; , z)F p2

First, note that in Figure 5.7b and φ there can be no future dependencies; hence proving
the first point will immediately imply the second. We begin by showing that G, qini |=M(S,∅)

φ. Side dependencies are allowed, hence z may depend on the choice of y. If y(qini.a) = p1,
then we set z(qini.b) := p1; whatever the choice of xA, the first goal holds. On the
other hand, if y(qini.a) = p2, we set z(qini.b) := p2 and for any choice of xB, the sec-
ond goal holds. We can then combine these two cases to build a M(S, ∅) witness that
G, qini |=M(S,∅) φ.

It remains to prove that G, qini 6|=M(∅,∅) φ. In the present case, z cannot depend on the
choices of y. Assume z(qini.b) = p1 then for y(qini.a) = p2, xA(qini) = a and xB(qini) = b,
neither of the objectives holds. Similarly, if z(qini.b) = p2 then with y(qini.a) = p1,
xA(qini) = b and xB(qini) = a, neither of the objectives holds. This means that z needs
knowledge of y choices and that G, qini 6|=M(∅,∅) φ.

5.5 Removable dependencies

5.5.1 M(S, ∅) and M(∅, ∅) coincide on SL[CG]

Lemma 5.12 shows that there are some SL[DG] formulas on which adequate behaviours
must rely on side dependencies. The case of SL[CG] is however different.

Theorem 5.13. For any concurrent game G, any state qini of G and any formula φ ∈
SL[CG],

G, qini |=M(S,∅) φ ⇔ G, qini |=M(∅,∅) φ

Proof. Fix any game G, any state qini of G and any SL[CG] formula φ of the form

φ := (Qixi)i≤l
∧
j≤n

βjϕj
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with Qixi a quantification, βj an assignment and ϕj an LTL formula. Assuming that
G, qini |=M(S,∅) φ, there exists ∆ aM(S, ∅) witness of φ holding on G from qini, i.e.

∀w : (HistG → Act)V
∀ G, qini |=∆(w)

∧
j≤n

βjϕj (5.3)

We create a M(∅, ∅) map ∆′ and prove it is a M(∅, ∅) witness of φ on G. For this,
choose any fixed function w0 : (HistG → Act)V∀ . Given another function w′ : (HistG →
Act)V∀ and a history ρ, we write w′0 for the function equal to w′ on ρ and its prefixes and
equal to w0 elsewhere (i.e on extensions and counter-factual histories of ρ). We then set,
for any variable xi ∈ V ,

∆′(w′)(xj)(ρ) := ∆(w′0)(xj)(ρ)

∆′ is indeed a M(∅, ∅) map: on a history ρ, we fixed universal choices on counter-
factual histories of ρ to be “as in” w0 before using ∆ (on input made of w′, xj, ρ, the
values of w′ on counter-factual play do not influence the definition of w′0) hence we do
not import the side dependencies from ∆.

It remains to prove that ∆′ is a witness for G, qini |=M(∅,∅) φ. Toward a contra-
diction, assume this is not the case. Then there exists some w1 : (HistG → Act)V∀

such that G, qini 6|=∆′(w1)

∧
j≤n βjϕj. In particular there is some j0 ∈ [1, . . . n] such

that G, qini 6|=∆′(w1) βj0ϕj0 . Let πj0 := out(βj0(∆′(w1)), qini) be the outcome obtained
when applying the assignments of βj0 to the valuation ∆′(w1). We build another func-
tion w2 : (HistG → Act)V∀ equal to w1 (for any variable) on any prefix of πj0 and
equal to w0 on any other history. By construction, for any prefix πpj0 of πj0 we have
that ∆′(w1)(xi)(π

p
j0

) = ∆(w2)(xi)(π
p
j0

) hence πj0 is also equal to out(βj0(∆(w2)), qini),
the outcome obtained when applying βj0 on ∆(w2). This immediately implies that
G, qini 6|=∆(w2) βj0ϕj0 thus G, qini 6|=∆(w2)

∧
j≤n βjϕj which is a contradiction with For-

mula (5.3). So, ∆′ is a M(∅, ∅) witness of φ on G and therefore G, qini |=M(∅,∅) φ and
Theorem 5.13 holds.

5.5.2 The case of SL[1G]

SL[1G] formulas are in many ways similar to ATL∗, the main differences are the ability
to share strategies among multiple agents and having multiple quantifier alternations (as
opposed to only one in ATL∗). The ability to share strategies does not amount to much:
we can always merge agents sharing a common strategy in a new game, slightly modify
the formula to suppress the strategy-sharing aspects, then solve the new game with the
modified formula in order to deduce whether the original formula holds on the original
game5. The expressive powers of both logics are closely related though not equal, and
allowing more than one quantifier alternation does not seem to impact the complexity
results (though there may be differences in the refined complexity). For example, SL[1G]

5The fact that we only have one goal is essential as it means that within a formula, an agent can only
have one strategy (or more precisely only one strategy that is not overridden by some other strategy).
With multiple goals, two agents may share strategies within one goal but not within the other, then the
correctness of the reduction collapses.
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satisfiability was proven 2 -EXPTIME-complete in [38], the same as ATL∗ satisfiability
(relatively to the |= satisfaction relation, or equivalently –see Section 5.2– the |=M(S,F )

satisfaction relation).
We prove that, as for6 ATL∗, to build a correct behaviour for a SL[1G] formula we do

not need any side or future information. Due to the similar expressive power of SL[1G]
and ATL∗, this is not surprising. For the theorem below, we could have adapted to
the model checking problem the techniques developed in [38] and used to solve SL[1G]
satisfiability. We however chose to develop a new proof: the method presented below will
become useful later on.

Theorem 5.14. For any SL[1G] formula φ, any concurrent game G and any state qini of
G,

∀♠ ∈ {∅, S} ∀♥ ∈ {∅, F} G, qini |=M(∅,∅) φ ⇔ G, qini |=M(♠,♥) φ

Proof. Consider a game G, one of its state qini and let φ := (Qixi)i≤l βϕ be a SL[1G]
formula where Qi is a quantification and βϕ forms a goal with β a total assignment and
ϕ an LTL objective. We prove the following equivalence:

G, qini |=M(S,F ) φ ⇔ G, qini |=M(∅,∅) φ (5.4)

The other cases will be inferred from it: equivalences involving other kind of maps can
all be deduced from Equivalence (5.4) simply by seeing a M(♠,♥) map as a M(S, F )
map, then applying the equivalences above. For the same reason, we have the right-to-
left implication for free, hence to prove Theorem 5.14 it remains to show the left-to-right
implication of Equivalence (5.4).

Specifying a turn-based parity game H

We start by defining some specific turn-based arenas that in some way will “flatten” the
game and formula. Figure 5.9 illustrates the construction. First, relatively to G and φ
we define the following turn-based finite tree-like arena, which we call cluster :

• there are two players P∃ and P∀.

• the set of states is Scluster := {m ∈ Act∗ | 0 ≤ |m| ≤ l}, thereby defining a tree of
depth l + 1 with directions Act. A state m in Scluster with |m| < l belongs to P∃ if
and only if Q|m|+1 = ∃. To whom the states with |m| = l belong does not matter.

• there is a transition from each m of size strictly less than l to all m ·a for all a ∈ Act.
In particular, the empty word ε ∈ Scluster is the starting node of the cluster, and it
has no incoming transitions, while all words of length l have no outgoing transitions;

A leaf in such a cluster represents a move vector of domain V = {xi | 1 ≤ i ≤ l}: the
leaf m represents the move vector m where m(xi) = m(i).

6There exists no formal proof of it but it can be derived from the standard algorithm for ATL∗ model
checking.
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Two actions a and b

φ := ∃x1. ∀x2. ∃x3. βϕ
©: ∃ quantification and �: ∀ quantification

ε

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

cluster

Transition
of the
original
game

Figure 5.9: On the left: representation of a cluster. On the right: the overall shape of H.

We denote by D a deterministic parity automaton over 2AP associated with ϕ. We
also write dini for the initial state of D. We let succ(d, q) be the function associating
with each d ∈ D its successor upon reading the labelling labels(q) where q is a state of G.
Using the notion of clusters, we define a turn-based parity game H as follows:

• the players are the same as before: P∃, P∀.

• for each state q of G and each state d of D, H contains a copy of a cluster which
we call the (q, d) cluster. For any m ∈ Act∗ with |m| ≤ l, we refer to the state m of
the (q, d) cluster as the (q, d,m) state.

• the transitions in H are of two types:

– internal transitions in the clusters are preserved;

– consider a state (q, d,m) where m is a leaf. If there exists a state q′ such that
q′ = ∆(q,mβ) where mβ : Agt → Act is the move vector over Agt defined by
mβ(A) = m(i−1) where xi = β(A) (i.e. applying the choices of m according to
β in G leads from q to q′), then we add a transition from (q, d,m) to (q′, d′, ε)
where d′ = succ(d, q′).

• the set of priorities are the same as in D and each (q, d,m) state has the same
priority as d.

Correspondence between paths in G and in H

There is not a clear one-to-one correspondence between the histories in H and the ones in
G, however there exists nevertheless some degree of connection. We introduce the notion
of lanes before going into the details.

Definition 5.15. A lane in G is a tuple (ρ, u, i, t) made of a history ρ := (qj)j≤a (for
some integer a); a function u : V × Pref<ρ → Act; an integer i ∈ [0; l]; a function
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t : [x1;xi]→ Act (with the convention that t = ∅ if i = 0); and such that

∀j < a T (qj, β(mj)) = qj+1

{
where mj : V → Act is the move vector over V
with mj(x) := u(x)(ρ≤j)

We can build a one-to-one application HtoGpth between histories in H and lanes in
G. On a history π in H, of shape

π := Πj<a(Π0≤i≤l(qj, dj,mj,i)).Π0≤i≤b(qa, da,ma,i)

of length a.(l + 1) + b with 0 ≤ b < l + 1, we define HtoGpth(π) by

HtoGpth(π) := ((qj)j≤a, u, b, t)

with u : V × Pref<ρ → Act
∀a′ < a (xi, (qj)j≤a′) 7→ mj,i

t : V ∩ [x1;xb] → Act
∀i ≤ b xi 7→ ma,i

The application HtoGpth is clearly injective (two different histories will correspond to two
different lanes), but also surjective. To prove it, we build the reciprocal function GtoHpth:
from a lane ((qj)j≤a, u, i, t), we set GtoHpth((qj)j≤a, u, i, t) := π where π is a history in H
of length a.(l + 1) + |dom(t)|+ 1 of shape

π := Πj<a

(
Π0≤i≤l

(
qj, dj, u(xi, (qj′)j′≤j)

))
.Π0≤i≤b

(
qa, da, t(xi, (qj)j≤a)

)
where dj is the vector of states reachable through (qj′)j′≤j

Because of the coherence condition imposed on lanes (see their definition), we get
that the transition between clusters of GtoHpth((qj)j≤a, u, i, t) are valid relatively to the
transition table ofH. GtoHpth((qj)j≤a, u, i, t) is therefore a valid history inH and GtoHpth

is well defined. From the definitions, one can easily check that

∀π ∈ HistH GtoHpth(HtoGpth(π)) = π

and deduce that GtoHpth is the inverse function of HtoGpth; therefore

Proposition 5.16. The application HtoGpth is a bijection between lanes of G and histo-
ries in H, and GtoHpth is its inverse function.

Extending the correspondence to strategies

We can use the HtoGpth correspondence to describe another correspondence HtoG be-
tween positional strategies for P∃ in H and M(∅, ∅) maps in G. We recall that a map
θ is a function (HistG → Act)V∀ → (HistG → Act)V taking three inputs: a function
w : (HistG → Act)V∀ , a variable xi and a history π. We also recall that if Qj = ∀, then
θ(w)(xi)(ρ) = w(xi)(ρ), hence we will only define HtoG for the existentially quantified
variables. Moreover, by the nature of M(∅, ∅) maps (see Section 5.2), if we consider a
variable xi for the second argument of θ, the first entry of θ can be simplified to a function
of type w : Pref≤ρ × V∀ ∩ [x1;xi]→ Act. This simplifies the definition of HtoG.

Formally, the application HtoG takes as input a positional strategy δ for player P∃ in
H and returns aM(∅, ∅) map. The value of HtoG(δ)(w)(xi)(π) is defined by induction:
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• initial step (empty history):

– initial step (x1 assuming x1 ∈ V∃): We set HtoG(δ)(w)(x1)(ε) = δ(ε).

– induction step (xi assuming xi ∈ V∃): As the history and the variable
are fixed, the only variable part of the input for the map we are building is
a function w : {ε} × (V∀ ∩ [x1;xi−1]) → Act. From xi and w we create a
function ti,w : [x1;xi−1] → Act that associates to x ∈ V∀ the action w(x)(ε)
and to x ∈ V∃ the action θ(w)(x)(ε). We can then create the lane lanei,w =
(ε, ∅, i− 1, ti,w) and define

HtoG(δ)(w)(xi)(ε) := δ(GtoHpth(lanei,w))

• induction step (non empty history): we work on a history π assuming we have
define HtoG(δ) on prefixes of π. Like before, the history and the variable are fixed
and the only changing part of the input is a function w of type Pref≤ρ × (V∀ ∩
[x1;xi−1])→ Act.

– initial step (x1 assuming x1 ∈ V∃): We set HtoG(δ)(w)(x1)(π) = δ(q)
where q = (lst(π), dπ, ε) is the state of H with dπ the state reached by π in D
(the deterministic parity automaton associated with the goal of φ).

– induction step (xi assuming xi ∈ V∃): From xi and w, we create a function
ti,w : V ∩ [x1;xi−1] → Act where ti,w associate to x ∈ V∀ the action w(x) and
to x ∈ V∃ the action θ(w)(x)(π). We can then create the lane lanei,w =
(π, ∅, i− 1, ti,w) and define

HtoG(δ)(w)(xi)(π) := δ(GtoHpth(lanei,w))

Because δ is positional, feeding the empty function in lanei,w for the second
component of the input is without consequence. Indeed, the second component
of lanei,w in GtoHpth(lanei,w) only describes the actions played on π until the
last state and these actions have no influences (because δ is positional).

At the end of the induction, we get a map that by construction has no side nor future
dependency. Figure 5.10 illustrates the construction.

Concluding the proof

The winner of the parity game H gives us informations about G.

Proposition 5.17. Assume that P∃ is winning in H and let δ be a positional winning
strategy, then theM(∅, ∅) map HtoG(δ) is a witness that G, qini |=M(∅,∅) φ.

Proof. Assume that P∃ is winning in H. Toward a contradiction, assume further that
HtoG(δ) is not a witness of G, qini |=M(∅,∅) φ; then

There is w0 : (HistG → Act)V
∀
such that G, qini 6|=M(∅,∅)

HtoG(δ)(w0) βϕ (5.5)
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ε

qini

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

ε

q2

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

ε

q3

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

Part of G

qini

q2

q3

aba

bba

The input is (w, x3, qini.q2.q3) with
w : (HistG → Act)V∀ such that

w(x2)(ε) = b
w(x2)(qini.q2) = b
w(x2)(qini.q2.q3) = a

From HtoG(δ) on prefixes
of qini, q2.q3, we build a lane
lane = (qini.q2.q3, u, 2, t)

δ(GtoHpth(lane))

HtoG(δ)(w)(x3)(qini.q2.q3) = δ(GtoHpth(lane))

u

t

On H On G

Figure 5.10: From H to G on the formula ∃x1. ∀x2. ∃x3. assign(A1, x1;A2, x2;A3, x3) ϕ0.

We use w0 to build a strategy δ for P∀ in H. Given a history ρ in H of the form

ρ := Πj<a(Π0≤i≤l(qj, dj,mj,i)).Π0≤i≤b(qa, da,ma,i)

we define π = Πj≤a(qj) and set δ(ρ) := w0(xb+1)(η).
Write η = (qj)j∈N for the outcome of β(HtoG(δ)(w0)) in G. Then, by construction

of δ, the outcome of δ and δ in H will pass through the clusters (qj, dj)j∈N, with dj the
state reached by (qj′)j′≤j in the automaton D associated with the LTL formula ϕ. Now,
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because of Formula (5.5), we get that η does not satisfy ϕ and therefore the outcome of
δ and δ does not satisfy the parity condition. This is in contradiction with δ being the
winning strategy of P∃. In the end, HtoG(δ) must be a witness that G, qini |=M(∅,∅) φ.

We are now ready to prove the left-to-right implication of Equation (5.4), that we
recall below

G, qini |=M(S,F ) φ ⇔ G, qini |=M(∅,∅) φ (5.4)

We assume that G, qini |=M(S,F ) φ. Turn-based parity games are positionally deter-
mined, meaning that one of the players is winning and that this player has a positional
winning strategy. First of two possibilities, P∃ is winning. We then let δ be his positional
winning strategy. By Proposition 5.17, HtoG(δ) is a witness that G, qini |=M(∅,∅) φ and
therefore the left-to-right implication of Equation (5.4) must hold. Second possibility, P∀
is winning. Then we do a similar reasoning with P∀ and ¬φ as we did with P∃ and φ.
We get that G, qini |=M(∅,∅) ¬φ, therefore G, qini |=M(S,F ) ¬φ. Now combining this with
Theorem 5.5, we get a contradiction with the hypothesis G, qini |=M(S,F ) φ. Therefore P∀
cannot be winning and the left-to-right implication of Equation (5.4) must hold.

As said at the beginning of the proof, the right-to-left implication is given by definition
and from Equation (5.4) we deduce Theorem 5.14.

Corollary 5.18. SL[1G] model checking is 2 -EXPTIME-complete for any of the four
satisfaction relations (|=M(♠,♥) with ♠ ∈ {∅, S} and ♥ ∈ {∅, F}).

Proof. Given a formula φ, we can build the parity game H in time 22|P (φ)| for some
polynomial P . The game H has 22|P (φ)| × |G| states and 2Q(|φ|) indexes for some other
polynomial Q. It can then be solved in time polynomial in the number of states and
exponential in the number of indexes [56] which gives us a 2 -EXPTIME algorithm.

5.6 Conclusion
In this chapter, we highlighted problems about dependencies in SL[BG], proposed a frame-
work to study them and presented a few results. The work developed in this chapter
draws similarities in spirit with the independence-friendly logic [35] and the dependence
logic [58] (two extensions of FO to handle dependency problems). The temporal aspects
of SL[BG] however pushed us toward a different framework.

As shown in Section 5.4.1, future dependencies are needed even for simple SL[CG] or
SL[DG] formulas. The case of side dependencies is however different and we can remove
side dependencies when we forbid future ones with SL[CG] formulas. A compilation of
our results obtained so far can be found in Figure 5.11.
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|=M(S,F )

|=M(S,∅) |=M(∅,F )

|=M(∅,∅)

6= SL[CG] (lem 5.10)
6= SL[DG] (lem 5.9)
= SL[1G] (thm 5.14)

6= SL[CG] (lem 5.10)
6= SL[DG] (lem 5.12)
= SL[1G] (thm 5.14)

= SL[CG] (thm 5.13)
6= SL[DG] (lem 5.12)

6= SL[CG] (lem 5.11)∗
6= SL[DG] (lem 5.9)
= SL[1G] (thm 5.14)

∗ : Only on concurrent games
Unknown on turn-based games

Figure 5.11: The inclusion graph of the four satisfaction relations.
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Chapter 6

Unordered prefix dependencies

As we have seen in the previous chapter, when we consider formulas outside SL[1G], we
can remove side dependencies in a single case and future dependencies are needed. The
proofs of Lemmas 5.9, 5.10 and 5.11 (pages 122 to 124) leave us little hope to improve
our results: the quantifier block is simple (2 alternations at most), the goals are trivial
(reachability), the boolean combination is a simple disjunction of two elements and the
games are turn-based (with the exception of Lemma 5.11).

Nonetheless, Theorem 5.13 (stating that |=M(S,∅) and |=M(∅,∅) are equivalent on SL[CG])
suggests that side dependencies are easier to remove than future ones. Moreover, in
Lemma 5.12 (showing that |=M(S,∅) and |=M(∅,∅) are not equivalent on SL[DG]), there
exists a potential improvement. We recall the game and formula on Figure 6.1.

qini

a

b

p1

p2

φ := ∀y.∃z.∀xA.∀xB.


assign( , xA; , y; , z)F p1

∨
assign( , xB; , y; , z)F p2

Figure 6.1: The game and formula of Lemma 5.12’s proof.

Consider a valuation χ where the strategies δy, δz, δxA and δxB are assigned respectively
to the variables y, z, xA and xB. In the proof, δz must rely on the choices of δy(qini.a)
because it does not know which goal will reach qini.b. This incapacity for a strategy to
know which goal is active when making a choice is not without consequences. If we add
to δz the information (through some sort of black box/oracle) about the choices of xA
and xB, the formula becomes true. In this case, this corresponds to a change in the
quantification order and we can rewrite the formula as

∀y.∀xA.∀xB.∃z


assign( , xA; , y; , z)F p1

∨
assign( , xB; , y; , z)F p2

There are however cases where we could want to add this information but cannot
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rewrite the formula. For example take the game and formula of Figure 6.2. One can see
that

• the formula φ does not hold (for all four satisfaction relations |=M(S,∅), |=M(S,F ),
|=M(∅,F ) and |=M(∅,∅)).

• the formula is still false for |=M(S,∅) when we add an (intuitive and informal) notion
of oracle giving to y the choices of xA(qini) and xB(qini).

• the modified formula with quantifiers ∀xA. ∀xB. ∃y, where ∃y is moved at the end of
the quantifier block, is however true for |=M(S,∅). This is due to y having knowledge
of xA(qini.a) and xB(qini.a).

qini

a

b p1

p2

φ := ∃y.∀xA.∀xB




assign( , xA; , y)X a

⇔
assign( , xB; , y)X a

∨
assign( , xA; , y)F p2

⇔
assign( , xB; , y)F p2

Figure 6.2: A game and formula where we cannot reorder the quantifications

Rewriting the formula adds more information to y than what we want. The quantification
order does not take into account the temporality that a strategy has relatively to the game:
xA and xB are not only interesting on qini but also on qini.a, and modifying the order of
the quantifiers means modifying the order on both qini and qini.a. Therefore, reordering
the quantifications is not a sufficient solution.

For a strategy δ trying to make a choice on a history ρ, the information about which
goals are still active on ρ can be added by making available the actions played by all
the active strategies on prefixes of ρ. The present chapter explores this idea; for this
we extend the previous framework and find when we can remove the dependencies in a
similar fashion to the previous chapter.

6.1 Extending the current framework

We proceed by adding a new kind of influence: unordered prefix 1. It appears when a
strategy y on history π wishes to have information on the choices made on any strict
prefix of π by strategies quantified before y but also from strategies quantified after y.

1“Unordered prefix” as we add the knowledge of all strategies on all prefixes of the current history ,
no matter the order of the quantifications
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Remark 6.1. The knowledge of the actions played by all strategies on prefixes of the
current history π is equivalent to adding informations about which objectives are on π and
which ones have deviated from the expected behaviour. Indeed, consider a full valuation
χ and a SL[BG] formula φ. With the knowledge of χ|Pref<ρ, for each assignment β we can
check by a step by step procedure that π is a prefix of out(β(χ), π(1)). Note however that
what happens to the objectives that deviated is not known (see Figure 6.3).

Expected behaviour

common to all components

Possible failure C1

Possible failure C2

Correction C3

Figure 6.3: The component C3 has knowledge of C1 and C2 failures and acts accordingly.

In a way, unordered prefix dependencies make the timeline of the game more impor-
tant than the timeline of the quantifications: as we move through the game, knowledge
of previous steps must be available in their entirety (whatever the order of the quan-
tifications) to the system so it can make its choice. This adds up to side and future
dependencies.

We update the notion of maps presented in Section 5.2. We reuse the notations ℘ for
the block of quantifiers under consideration, V for the variables of ℘, V∀ for the variables
of V universally quantified in ℘ and V∃ for the ones existentially quantified. We recall
that a ℘-map (or simply map when ℘ is clear of context) is a function

θ : (Hist→ Act)V
∀ → (Hist→ Act)V or equivalently θ : (V∀ → Strat)→ (V → Strat)

with θ(w)(xi)(ρ) = w(xi)(ρ) for any w : (Hist → Act)V∀ , any universally quantified
variable xi ∈ V∀ and any history ρ.

As we did in Section 5.2, we can forcibly remove some given dependencies by applying
restrictions on the maps. We reuse the four conditions C(Local), C(∅), C(S) and C(F )
defined in Section 5.2 and define an additional one C(P ) for unordered prefix dependen-
cies.

• C(∅): empty condition (always satisfied)

• C(Local): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on ρ, i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ ≤ ρ w1(y)(µ) = w2(y)(µ)

• C(S): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on side histories of ρ (side), i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ counter-factual of ρ w1(y)(µ) = w2(y)(µ)

• C(F ): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on extensions of ρ (future), i.e.
∀y ∈ V∀ ∩ [x1;xi−1]. ∀µ extension of ρ w1(y)(µ) = w2(y)(µ)



138

∀ x1
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dependencies
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dependencies

p q
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∃ x4
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dependencies

p q

∃ x2

p q

∀ x3

p q

∃ x4

p q

Figure 6.4: The four kinds of dependencies
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• C(P ): θ(w1) and θ(w2) coincide on strict prefixes of ρ (unordered prefix), i.e.
∀µ < ρ. ∀y ∈ V θ(w1)(y)(µ) = θ(w2)(y)(µ)

We can redefine the type of maps of Section 5.2, to which we add the parameter P to
signify the addition of unordered prefix dependencies. Formally aM(♠,♥, P ) map is a
map such that

∀ρ ∈ Hist, ∀xi ∈ V
∀w1, w2 : (V∀ → Strat)

} ( C(Local) ∧ C(♠)
∧ C(♥) ∧ C(P )

)
⇒ θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)

To avoid confusion, we also rename the four maps (M(♠,♥))♠∈{∅,S},♥∈{∅,F} of Sec-
tion 5.2 by (M(♠,♥, ∅))♠∈{∅,S},♥∈{∅,F} to make explicit the lack of unordered prefix de-
pendencies.

The new condition to handle unordered prefix dependencies

∀µ < ρ. ∀y ∈ V θ(w1)(y)(µ) = θ(w2)(y)(µ)

is a formal way to indicate the knowledge of what all strategies played on prefixes of ρ:
upon two entries w1, w2, the choices of an existentially quantified strategy xj can differ
between θ(w1)(xj)(ρ) and θ(w2)(xj)(ρ) only if at some prefix µ of ρ, θ(w1) and θ(w2) give
two different outputs.

As we did in Section 5.2, we define a new satisfaction relation per kind of map. Given
a closed formula (Qixi)i≤l ξ

(
βjϕj

)
j≤n in SL[BG], we set

G, q |=M(♠,♥,♣) (Qixi)i≤l ξ
(
βjϕj

)
j≤n ⇔


∃θ ∈M(♠,♥,♣)

∀w : (V∀ → StratV)

G, q |=θ(w) ξ
(
βjϕj

)
j≤n

A note on other frameworks

In Section 5.2.5, we explained why we chose to use maps. Another reason for maps
is that they naturally adapt to the addition of actions on the paths. This is not the
case of all frameworks; consider one where the universal and existential strategies are
treated one after the other (as in the original semantic presented in Chapter 1). This
framework could not handle more than one quantifier alternation without running into
a paradox. Figure 6.5 presents the problem: to define x2(qini.a) we need x1(qini.a.p), to
define x1(qini.a.p) we need x4(qini.a) thus also x3(qini.a) and x2(qini.a); we loop indefinitely.
This is due to the two timelines: game and formula. The framework therefore must follow
one of three options:

• the universal strategies are not treated equally to the existential ones.

• privilege the timeline of quantifications: in case of loop, suppress unordered prefix
dependencies

• privilege the timeline of the game: in case of loop, suppress side and future depen-
dencies.



140

∀ x1

a

p q

∃ x2

a

p q

∀ x3

a

p q

∃ x4

a

p qp

a a afuture
local local

unordered prefix

Figure 6.5: Why can’t both universal and existential strategies be treated equally when
making available all the actions.

Our framework (maps) follow the first choice: the universal strategies are all quantified
at the same time, as a bloc. In Figure 6.5, we ask for a map θ that receive both x1 and
x3 at the same time; the local dependency of x3 on x2 disappears thus breaking the loop.

6.2 The negation problem

6.2.1 Can a formula and its syntactic negation both hold on a
game ?

qini

q2 q3

p1 p2 p3 p4

Figure 6.6: A game G

Side and future dependencies both follow the order of quan-
tifications and override the timeline of the game (omni-
science about the future); on the other hand unordered
prefix dependencies follow the timeline of the game but
override by definition the order of the quantifications (once
again see Figure 6.4). This difference (about which timeline
to override) between side/future and unordered prefix in-
fluences is not without consequences. We find ourselves in
a situation similar to the one described along Sections 5.2.4
and 5.2.5 (pages 118 and 120). We recall that the odd behaviour of the (syntactic) nega-
tion results from the two dimensions of the inputs (in the quantifier block and in the
dependency parameters).

Lemma 6.2. There exists a game G, a state q of G and a SL[BG] formula φ such that

G, qini |=M(S,F,P ) φ and G, qini |=M(S,F,P ) ¬φ

Proof. Consider the turn-based game on Figure 6.6 with two agents and , and φ
the SL[BG] formula below.

φ := ∀x1.∃y1.∃y2.∃x2


assign( , y1; , x1)F p2 ⇒ assign( , y2; , x2)F p1

∧
assign( , y1; , x1)F p3 ⇒ assign( , y2; , x2)F p4
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In the following, we regroup the four quantifications in the usual notation ℘. We also
write ψ1 for the first implication and ψ2 for the second one. We first prove that

∃θ ∈M(S, F, P ) ∀w : (HistG → Act)V
∀ G, qini |=θ(w) ψ1 ∧ ψ2 (6.1)

Consider a function w : (HistG → Act){x1} as input. To build θ, we decompose by
cases based upon the choice of x1 on the history qini.q2.

• If w(x1)(qini.q2) = p2 then both y1(qini) and y2(qini) play to q2 while x2(qini.q2) plays
to p1. This ensures that the outcomes of { → x1; → y1} and { → x2; →
y2} will respectively see p2 and p1, ensuring G, qini |=θ(w) ψ1 ∧ ψ2. Note that y1 and
y2 use future dependencies to gather knowledge of w(x1)(qini.q2).

• If w(x1)(qini.q2) = p3 then y1(qini) plays to q2, y2(qini) play to q3 and x2(qini.q3)
plays to p4. The outcomes of { → x1; → y1} and { → x2; →
y2} will respectively see p3 and p4, ensuring G, qini |=θ(w) ψ1 ∧ ψ2. Beside future
dependencies from y1 and y2 on w(x1)(qini.q2), we also have a side dependency from
x2 on w(x1)(qini.q2).

• If w(x1)(qini.q2) = p1 then no matter what x2, y1, y2 play, the outcome of { →
x1; → y1} will see neither p2 nor p3, ensuring G, qini |=θ(w) ψ1 ∧ ψ2.

We can then merge all three cases into a singleM(S, F, ∅) map to ensure that (6.1)
holds.

It remains to show that, writing ℘ := ∃x1. ∀y1. ∀y2. ∀x2,

∃θ ∈M(S, F, P ) ∀w : (HistG → Act){y1,y2,x2} G, qini |=θ(w) ¬ψ1 ∨ ¬ψ2 (6.2)

As we are looking for aM(S, F, P ) map, to decide the action of x1 on qini.q2 or qini.q3,
we may assume knowledge of what y1, y2 played on qini. Again we proceed by cases.

• If y2 plays to q2 then x1(qini.q2) = x1(qini.q3) := p3, this makes the outcome of
{ → x1; → y1} see p3 while the choices of y2 ensure that { → x2; → y2}
will not see p4 thus G, qini |=θ(w) ¬ψ1 ∨ ¬ψ2.

• Similarly, if y2 plays to q3 then choosing x1(qini.q2) = x1(qini.q3) = p2 ensures
G, qini |=θ(w) ¬ψ1 ∨ ¬ψ2.

Again, merging the cases into a singleM(∅, ∅, P ) map we get that (6.2) holds.

In a sense, the first among {x1} and {x2, y1, y2} to declare its choices will lose. In the
spirit of Section 5.2.4, Lemma 6.2 shows that what we could expect to be the syntactic
negation does not correspond to the semantic negation. This discrepancy between a
formula and its negation raises an obvious question: for which formulas φ ∈ SL[BG] can
we ensure that, whatever the game G,

G, qini |=M(♠,♥,♣) (Qixi)i≤l ξ(βjϕj)j≤n ⇒ G, qini 6|=M(♠,♥,♣) (Qixi)i≤l ¬ξ(βjϕj)j≤n
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where ♠ ∈ {∅, S}, ♥ ∈ {∅, F} and ♣ ∈ {∅, P}?
As we have seen in Section 5.2, this is already the case for M(∅, ∅, ∅), M(∅, F, ∅),

M(S, ∅, ∅) and M(S, F, ∅). The two lemmas and theorem below complete the answer.
We provide only a sketch of proof for Lemma 6.3 and move the proof of Lemma 6.4 in
annex 6.A (page 153).

Lemma 6.3. There exists a game G, one of its states qini and a SL[BG] formula φ such
that

G, qini |=M(∅,F,P ) φ and G, qini |=M(∅,F,P ) ¬φ

Sketch of proof. The proof consists in taking the formula φ defined below and use it over
the game of Figure 5.7a (page 123).

φ := ∀y. ∃xA. ∀xB.
(
assign( , y; , xA). F p1 ∨ assign( , y; , xB). F p2

)
Then one can easily build two witnesses to ensure that both G, qini |=M(∅,F,P ) φ and
G, qini |=M(∅,F,P ) ¬φ.

Lemma 6.4. There exists a game G, one of its states qini and a SL[BG] formula φ such
that

G, qini |=M(S,∅,P ) φ and G, qini |=M(S,∅,P ) ¬φ

Note that while both Lemmas 6.3 and 6.4 imply Lemma 6.2, Lemma 6.2 has the merit
of using all three parameters of the |=M(S,F,P ) satisfaction relation, hence the result on
|=M(S,F,P ) is not a gimmick heritage from the other relations.

Theorem 6.5. For any game G, any initial state qini, any formula φ in SL[BG], it holds

G, qini |=M(∅,∅,P ) φ ⇒ G, qini 6|=M(∅,∅,P ) ¬φ

Proof. The idea, similarly to what we explained after Theorem 5.5 (page 117), is to
assume that both a formula and its negation hold on the same game from the same
state, to deduce two witnesses and to confront them. The only change lies in the way
we confront the maps as their nature has changed. First, we write V := {xi | i ≤ n},
V∃ := {xi | Qi = ∃} and V∀ := {xi | Qi = ∀}. Now, assume that both formulas below
hold:

G, qini |=M(∅,∅,P ) (Qixi)i≤l ξ(βjϕj)j≤n and G, qini |=M(∅,∅,P ) (Qixi)i≤l ¬ξ(βjϕj)j≤n

We then have twoM(∅, ∅, P ) maps θ and θ such that

∀w : (HistG → Act)V
∀ G, qini |=θ(w) ξ(βjϕj)j≤n (6.3)

∀w : (HistG → Act)V
∃ G, qini |=θ(w) ¬ξ(βjϕj)j≤n (6.4)

We confront θ with θ to get a contradiction: we build a valuation χ of domain V
inductively (Figure 6.7 gives an intuition):
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θ(x1) : (HistG → Act) θ(x2) θ(x3) θ(x4)

. . .

Building the valuation χ

Figure 6.7: How to confront θ and θ, twoM(∅, ∅, P ) maps

• consider the empty history ε. For any xi ∈ V and having build χ on ε for any xi′
where i′ < i, then

– if xi ∈ V∃, we set χ(xi)(ε) := θ(
⋃
i′<i χ|ε and xi′ )(xi)(ε)

– if xi ∈ V∀, we set χ(xi)(ε) := θ(
⋃
i′<i χ|ε and xi′ )(xi)(ε)

Because θ and θ areM(∅, ∅, P ) maps, feeding them with
⋃
i′<i χ|ε and xi′ is sufficient.

• consider a history ρ where χ has been defined on any prefix of ρ, for any x ∈ V
and any prefix ρ′ of ρ. For a variable xi ∈ V , having build χ on ρ for any xi′ where
i′ < i, then we define χρ,i to be the valuation

χ≤(ρ,i) := χ|Pref<ρ ∪
⋃
i′<i

χ(xi′)(ρ)

– if xi ∈ V∃, we then set χ(xi)(ρ) := θ(χ≤(ρ,i))(xi)(ρ)

– if xi ∈ V∀, we then set χ(xi)(ρ) := θ(χ≤(ρ,i))(xi)(ρ)

Again, because θ and θ are M(∅, ∅, P ) maps, feeding them a partial first entry is
sufficient.

Now, by construction, θ(χ|V∀) = θ(χ|V∃) = χ. Then, by Formulas (6.3) and (6.4), we
have both G, qini |=χ ξ(βjϕj)j≤n and G, qini |=χ ¬ξ(βjϕj)j≤n which is a contradiction.

6.2.2 Can a formula and its negation both fail to hold on a game
?

The three lemmas below outline the possibilities for both a formula and its negation to
fail on a game relatively to the satisfaction relations with unordered prefix dependencies.
The situation is akin to Chapter 5.

Lemma 6.6. There exists a formula φ in SL[BG], a game G and an initial state qini such
that for any ♥ ∈ {∅, F}, it holds that

G, qini 6|=M(∅,♥,P ) φ and G, qini 6|=M(∅,♥,P ) ¬φ
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Proof. Similar to the one of Lemma 5.7 (page 119), same game and same formula.

Lemma 6.7. There exists a formula φ in SL[BG], a game G and an initial state qini such
that for any ♠ ∈ {∅, S}, it holds that

G, qini 6|=M(♠,∅,P ) φ and G, qini 6|=M(♠,∅,P ) ¬φ

Proof. Similar to the one of Lemma 5.8 (page 119), same game and same formula.

Lemma 6.8. For any formula φ in SL[BG], any game G and any initial state qini,

G, qini 6|=M(S,F,P ) φ ⇒ G, qini |=M(S,F,P ) ¬φ

Proof. Due to the correspondence of |=M(S,F,∅) and |= (the original relation defined in
Chapter 1), at least one of φ and ¬φ must hold on G relatively to |=M(S,F,∅). The one
that holds for |=M(S,F,∅) also holds for |=M(S,F,P ).

6.3 Needed and avoidable dependencies

We start by an adaptation of Lemma 5.9 (page 122) in Section 5.4 to the case with
unordered prefix dependencies. The proof of the result below is similar to the one of
Lemma 5.9, we simply add that, by construction, unordered prefix dependencies cannot
play a role.

Lemma 6.9. There exist a formula φ ∈ SL[DG], a turn-based game G and one of its
states qini such that

• G, qini 6|=M(∅,∅,P ) φ and G, qini |=M(∅,F,P ) φ

• G, qini 6|=M(S,∅,P ) φ and G, qini |=M(S,F,P ) φ

Similarly, we can adapt the first part of Lemma 5.10 (page 123) to satisfaction relations
with unordered prefix dependencies. However the second part of Lemma 5.10 cannot be
adapted to work with |=M(∅,F,P ) and |=M(S,F,P ): unordered prefix dependencies can replace
the role of side dependencies thus making side dependencies non essential2. Reusing the
game and formula of Lemma 5.10’s proof, we get G, qini |=M(∅,F,P ) φ.

Lemma 6.10. There exist a formula φ ∈ SL[CG], a turn based game G and one of its
states qini such that

G, qini 6|=M(S,∅,P ) φ and G, qini |=M(S,F,P ) φ

2Page 123, the strategies xA and xB dispatch one goal on qini.a and the other on qini.b based on the
choices of y such that the goal passing through qini.a is satisfied. In Chapter 5, the strategy z used side
dependency to play the opposite of y and satisfy the goal passing through qini.b. With knowledge of the
actions played on qini, the strategy z knows the goal active on qini.b and thus can deduce the choice of
y without side dependencies.
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The proofs of Lemma 5.11 and Theorem 5.13 (page 124 and 125) also extend to
unordered prefix dependencies, hence:

Lemma 6.11. There exist a formula φ ∈ SL[CG], a concurrent game G and one of its
states qini such that G, qini 6|=M(∅,∅,P ) φ and G, qini |=M(∅,F,P ) φ.

Theorem 6.12. For any formula φ ∈ SL[CG], any concurrent game G and any state qini
of G,

G, qini |=M(S,∅,P ) φ ⇒ G, qini |=M(∅,∅,P ) φ

With methods and models similar to the ones of Section 5.4, we study the remaining
cases.

qini

a

b

p1

p2

(a) A turn-based game with two agents.

qini

a

b

p1

p2

(b) Another turn-based game.

Figure 6.8: The games used in Lemmas 6.13 and 6.14.

Lemma 6.13. There exist a formula φ ∈ SL[CG], a turn-based game G and one of its
states qini such that for all ♠ ∈ {∅, S} and all ♥ ∈ {∅, F} it holds G, qini 6|=M(♠,♥,∅) φ and
G, qini |=M(♠,♥,P ) φ.

Proof. Take the game G of Figure 6.8a and the following formula

φ := ∃y.∀xA.∃xB


assign( , y; , xA). F p1

∧
assign( , y; , xB). F p2

By construction of φ and G, no side and future dependencies are needed hence we treat
all items at once. Take ♠ ∈ {∅, S} and ♥ ∈ {∅, F}. We prove G, qini |=M(♠,♥,P ) φ. As
unordered prefix dependencies are allowed, y(qini.a) and y(qini.b) may assume knowledge
of what xA played on qini. If xA(qini) = a then we set xB(qini) = b (xB having a
local influence from xA), y(qini.a) = p1 and y(qini.b) = p2. One can then see that both
objectives hold. On the other hand, if xA(qini) = b, we set xB(qini) = a, y(qini.a) = p2

and y(qini.b) = p1; again both goals will hold. We can then build a M(♠,♥, P ) map
witnessing that G, qini |=M(♠,♥,P ) φ.

Now, if φ was to admit aM(♠,♥, ∅) map as witness, then which strategy y prescribes
in a (resp. in b) would not depend on the values of xA. If y(qini.a) = y(qini.b) then trivially
one of the two goals will not be satisfied. If y(qini.a) = p1 then for xA(qini) = b, the first
goal is not satisfied. Finally, if y(qini.a) = p2 and y(qini.b) = p1 then for xA(qini) = a, the
first goal is not satisfied. So knowledge on the prefixes for strategies quantified before is
required to build an adequate y.
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Lemma 6.14. There exist a formula φ ∈ SL[DG], a turn-based game G and one of its
states qini such that for any ♠ ∈ {∅, S} and any ♥ ∈ {∅, F}, it holds G, qini 6|=M(♠,♥,∅) φ
and G, qini |=M(♠,♥,P ) φ.

Proof. Take the game of Figure 6.8b and the following formula

φ := ∃y.∀xA.∀xB.∀z


assign( , y; , xA; , z). F p1

∨
assign( , y; , xB; , z). F p2

Again, by construction of φ and G, no side and future dependencies are possible hence
we do all items at once: fix ♠ ∈ {∅, S} and ♥ ∈ {∅, F}. We start by showing that
G, qini |=M(♠,♥,P ). To build a strategy on qini.a, y has knowledge of what xA and xB
played on the prefix qini, if xA(qini) = xB(qini) = a then whatever the choice of y, one of
the goals will be satisfied. Similarly, if xA(qini) = xB(qini) = b then whatever the choice
of z, one of the goals will be satisfied. Two cases remain, the first is when xA(qini) = a
and xB(qini) = b, then by taking y(qini.a) playing to p1 the first goal will be achieved;
the second is when xA(qini) = b and xB(qini) = a then taking y(qini.a) = p2 ensures the
second objective. Hence G, qini |=M(♠,♥,P ).

Next in order is to show that G, qini 6|=M(♠,♥,∅). To build y on qini.a, we do not have
knowledge of the choices of xA and xB. Assume we set y(qini.a) = p1 then xA can play
to b, xB to a and z to p2 and neither of the goals will be satisfied. On the other hand,
if y(qini.a) = p2 then xA can play to a, xB to b and z to p1 and, again, neither of the
goals will be satisfied. Hence G, qini 6|=M(♠,♥,∅) and knowledge on the prefixes is needed
to ensure φ.

6.4 Moving informations through the two timelines

The addition of unordered prefix dependencies to the side and future ones gives rise to
original situations. As we will see with the theorem below, we can use them to pass
informations that one formerly thought to be inaccessible.

Theorem 6.15. There exist a concurrent game G, one of its states qini and a SL[DG]
formula φ such that

• G, qini 6|=M(∅,∅,P ) φ and G, qini |=M(S,∅,P ) φ.

• G, qini 6|=M(∅,F,P ) φ and G, qini |=M(S,F,P ) φ.

Proof. Consider the game G of Figure 6.9 with 6 agents , 11 , 22 , , 11 and 22 .
Each agent can only influence the state represented in its name, for example 11 and 22
are the only agents having an influence on the state named c. To ease the reading we
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qinia

p1

∅

b c

∅

p2

0 1

0, 0

1, 1

0, 1

1, 0

0

1

0, 0

1, 1

0, 1

1, 0

Figure 6.9: A concurrent game G.

only represented the actions of the active agents on the transitions. We define a SL[DG]
formula

φ := ∃xp1. ∃xp2. ∃x1 . ∀x2 . ∃x1 . ∀x2 . ∃x
assign( , xp1; 11 , x1 ; 22 , x2 ; , x ; 11 , x1 ; 22 , x2 ).F p1

∨
assign( , xp2; 11 , x1 ; 22 , x2 ; , x ; 11 , x1 ; 22 , x2 ).F p2

For the first point, Table 6.1a induces aM(S, ∅, P ) witness of G, qini |=M(S,∅,P ) φ and
Table 6.1b proves that G, qini 6|=M(∅,∅,P ) φ. The first table gives a description of each
existentially quantified strategy (on the state it is active on) based upon the choice of
the two universally quantified strategies (x2 and x2 ). We also indicate the knowledge
of each strategy on the right. Table 6.1b does a case-by-case analysis to show that,
whatever theM(∅, ∅, P ) map chosen, it cannot be a witness of φ holding on G from qini
for |=M(∅,∅,P ).

We can get the second point simply by noticing that future dependencies may only in-
tervene for x but do not modify the results, hence G, qini |=M(S,F,P ) φ and G, qini 6|=M(∅,F,P )

φ.

Intuitively, the proof of Theorem 6.15 shows that we can pass the information of a
universal variable x2 to an existential variable x1 on the same history, despite x1 being
quantified before x2 . This comes from having a state c privileging the timeline of the
game and the states a, b privileging the timeline of the quantifiers. Figure 6.10 illustrates
the reasoning: the choice of x2 is passed to x using side dependencies (by the timeline
of the quantifications), then to x1 using unordered prefix dependencies (by the timeline
of the game), next to x2 using local dependencies (if x2 refuses to carry the choice of
x2 , the formula is trivially satisfied), and back to x1 using side dependencies (by the
timeline of the quantifications).

We use the actions in the transition from b to c to hide the information about x2 . We
could have also passed the information using the objectives instead of the actions, hence
Theorem 6.15 still holds for turn-based games. Indeed, we can add a new goal ψadd that
carries the information from b to c: if ψadd goes from b to c, this means x2 (qini.a) = 1

and if it goes from b to some new state branching from b, it means x2 (qini.a) = 0. In a
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qini

a∃x1 . ∀x2 b ∃x

c ∃x1 . ∀x2

Side

Side

Prefix

Figure 6.10: Idea behind Theorem 6.15

broader sense, the choice of the framework (adding the full sequence of actions) does not
impact the result of Theorem 6.15, as long as a strategy can know which goals are active
on the current history.

This passing of informations using both timelines (of the game and the quantifiers)
can also be done when there is a single goal. The idea of Theorems 6.16 and 6.17 (below)
are similar to the one of Theorem 6.15 and we move the proofs to annexes 6.B and 6.C
(pages 156 and 158).

Theorem 6.16. There exist a concurrent game G, one of its states qini and a SL[1G]
formula φ such that G, qini 6|=M(∅,F,P ) φ and G, qini |=M(S,F,P ) φ.

Theorem 6.17. There exist a formula φ ∈ SL[1G] and a concurrent game structure G
such that

• G, qini 6|=M(∅,F,∅) φ and G, qini |=M(∅,F,P ) φ

• G, qini 6|=M(∅,∅,P ) φ and G, qini |=M(∅,F,P ) φ

• G, qini 6|=M(S,F,∅) φ and G, qini |=M(S,F,P ) φ

• G, qini 6|=M(S,∅,P ) φ and G, qini |=M(S,F,P ) φ

The hope we had to suppress some of the dependencies (by adding unordered pre-
fix dependencies) dies with theorems 6.15, 6.16 and 6.17. Theorems 6.16 and 6.17 are
particularly interesting: they show that even for a single objective, adding information
about the actions played on a history gives rise to some unexpected behaviour. This
comforts us in the idea that future and side dependencies are a hassle: making the ac-
tions of all variables available has the side effect of bypassing quantification order. Note
that Theorems 6.16 and 6.17 cannot be adapted to LTL as we need more than one quan-
tifier alternation. They can however be adapted for other logics: BSIL, CATL, ATLsc
and CHP-SL (the first version of SL, see [15]). The proofs use the same games as The-
orems 6.16 and 6.17 but adapt the formulas to the syntax of these logics. Concerning
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the dependency problem, the combination of Theorems 6.15, 6.16 and 6.17 means that
adding information about the history is not enough to suppress the impact of side and
future dependencies.

6.5 Additional results on SL[1G]

Theorem 6.18. For any SL[1G] formula φ, any concurrent game G and any state qini of
G,

G, qini |=M(∅,∅,P ) φ ⇔ G, qini |=M(∅,∅,∅) φ

Proof. The right-to-left part of the equivalence is trivially satisfied. The proof of the left-
to-right implication is for the most part similar to the one of Theorem 5.14 (page 127).
We build the same game H and draw the same correspondences. We only change the
paragraph “Concluding the proof”. We recall Proposition 5.17, which is the result we get
at the end of the construction.

Proposition 5.17. Assume that P∃ is winning in H and let δ be a positional winning
strategy, then theM(∅, ∅) map HtoG(δ) is a witness that G, qini |=M(∅,∅) φ.

We assume that G, qini |=M(∅,∅,P ) φ. Turn-based parity game are positionally deter-
mined, meaning that one of the player has a positional winning strategy. First of two
possibilities, P∃ is winning. We then let δ be a positional winning strategy for P∃. By
Proposition 5.17, HtoG(δ) is a witness of G, qini |=M(∅,∅,∅) φ and the left-to-right implica-
tion holds. Second possibility, P∀ is winning. Then, we do a similar reasoning with P∀ and
¬φ as we did with P∃ and φ, we get G, qini |=M(∅,∅,∅) ¬φ and therefore G, qini |=M(∅,∅,P ) ¬φ.
Now combining this with Theorem 6.5 (page 142), we get that G, qini 6|=M(∅,∅,P ) φ which is
in contradiction with the hypothesis made at the start of the proof. Therefore P∀ cannot
be winning in H and the left-to-right implication of the equivalence must hold.

In a similar vein to Corollary 5.18 (page 132), we get

Corollary 6.19. The model checking problem of SL[1G] formulas relatively to the |=M(∅,∅,P )

satisfaction relation is 2 -EXPTIME-complete.

Theorem 6.20. For any SL[1G] formula φ, any concurrent game G and any state qini of
G,

G, qini |=M(S,∅,∅) φ ⇔ G, qini |=M(S,∅,P ) φ

Proof. G, qini |=M(S,∅,∅) φ if and only if G, qini |=M(∅,∅,∅) φ (Theorem 5.13) if and only if
G, qini |=M(∅,∅,P ) φ (Theorem 6.18) if and only if G, qini |=M(S,∅,P ) φ (Theorem 6.12).

6.6 Conclusion
Pushed by the disappointing results of Chapter 5, we extended the framework: a strategy
δ choosing an action on a history ρ has access to all the actions played by all the strate-
gies on strict prefixes of ρ (we call this additional information unordered prefix). In this
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M(S, F, P )

M(∅, F, P )M(S, ∅, P )M(S, F, ∅)

M(S, ∅, ∅) M(∅, F, ∅) M(∅, ∅, P )

M(∅, ∅, ∅) Timeline of the game.

Allow both timelines.

Timeline of the

quantifications.

Figure 6.11: Which maps follow which timeline.

framework, the combination of side and future dependencies with unordered prefix depen-
dencies gives rise to some unexpected results: certain dependencies cannot be suppressed
in SL[1G], a formula and its negation can both hold onto the game (see Figures 6.11
and 6.12). While the framework makes it possible (and understandable), the result is
still surprising because, in essence, we just made the actions played earlier available in
their entirety to the strategies. Ultimately, adding all the actions played on the prefix of
the current history does not help us remove some of the dependencies. Our results are
summed up on Figure 6.13.

M(S, F, P )

M(∅, F, P )M(S, ∅, P )M(S, F, ∅)

M(S, ∅, ∅) M(∅, F, ∅) M(∅, ∅, P )

M(∅, ∅, ∅)

Both a formula and

its negation may hold

on the same game.

If a formula holds on a

game, its negation does not.

If a formula fail to

hold on a game, its

negation must hold.

Both a formula and

its negation can fail to

hold on the same game.

Figure 6.12: When can a formula and its (syntactic) negation hold both hold on a game?
When can a formula and its (syntactic) negation hold both fail to hold on a game?
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6.A Annex A
Lemma 6.4. There exists a game G, one of its states qini and a SL[BG] formula φ such
that

G, qini |=M(S,∅,P ) φ and G, qini |=M(S,∅,P ) ¬φ

Proof. First, we consider the turn-based game of Figure 6.14 and the state qini as starter.
The game has four agents , , , and , and six atomic propositions
p1, p2, p3, p4, p5, p6. Second, we define φ

φ :=∀x2. ∀x4. ∀x5. ∃x1. ∃x3. ∃x6. ∃z1. ∃y1. ∀v5. ∃v6. ∀w2. ∃w3. ∀z4. φ
′

with φ′ :=



ψ1⇔ψ5

∨

ψ5⇔ψ6 ∧ ψ2⇔ψ3 ∧


ψ1⇔ψ4

∨
ψ3⇔ψ4

qini

A

C p4

p1 ∅

B

p2 p3

D

p5 p6

Figure 6.14: Game of Lemma 6.4.
and

ψ1 := assign( , x1; , z1; , y1; , w2; , v5)Fp1

ψ2 := assign( , x2; , z1; , y1; , w2; , v5)Fp2

ψ3 := assign( , x3; , z1; , y1; , w3; , v5)Fp3

ψ4 := assign( , x4; , z4; , y1; , w2; , v5)Fp4

ψ5 := assign( , x5; , z1; , y1; , w2; , v5)Fp5

ψ6 := assign( , x6; , z1; , y1; , w2; , v6)Fp6

A witness that G, qini |=M(S,∅,P ) (Qixi)i≤l ξ(βjϕj)j≤n can be derivated from Figure 6.15
and a witness that G, qini |=M(S,∅,P ) (Qixi)i≤l ¬ξ(βjϕj)j≤n can be derivated from Fig-
ure 6.16. We present the variables following the order of the quantifications. An existen-
tially quantified variable then depends on the variables universally quantified on the left
(with an exception of y1(qini.A.C) in the first table which also depends on z4(qini.A)).
We have also made the different dependencies appear in red in both figures.
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6.B Annex B
Theorem 6.16. There exist a concurrent game G, one of its states qini and a SL[1G]
formula φ such that G, qini 6|=M(∅,F,P ) φ and G, qini |=M(S,F,P ) φ.

Proof. The idea is very similar to the one used in the proof of Theorem 6.15. Consider
once again the game G of Figure 6.9 that we recall on Figure 6.17 with 6 agents , 11 ,
22 , , 11 and 22 . We recall that each agent can only influence the state represented
in its name, for example 11 and 22 are the only agents having an influence on the state
c. We define a SL[1G] formula

φ := ∃x1 . ∀x2 . ∃x1 . ∀x2 . ∃x . ∃x .

assign( , x ; 11 , x1 ; 22 , x2 ; , x ; 11 , x1 ; 22 , x2 ). F (p1 ∨ p2)

As we did in Theorem 6.15, we present the proof through two Tables: 6.2a and 6.2b.
On the first one, we detail how to build a witness θ by specifying θ(w) in function of w;
we give the dependencies on the right and the result at the bottom. On the second table,
we do a case analysis to prove that G, qini 6|=M(∅,F,P ) φ; again the dependencies allowed
appear on the right and the result, case by case, at the bottom.

qinia

p1

∅

b c

∅

p2

0 1

0, 0

1, 1

0, 1

1, 0

0

1

0, 0

1, 1

0, 1

1, 0

Figure 6.17: The game of Figure 6.9 used in Theorems 6.15 and 6.16.

Note that x uses a future dependency, hence Theorem 6.16 cannot be extended
to the case of |=M(S,∅,P ) and |=M(∅,∅,P ). Theorem 6.12 even showed that |=M(S,∅,P ) and
|=M(∅,∅,P ) are equivalent.
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6.C Annex C
Theorem 6.17. There exist a formula φ ∈ SL[1G] and a concurrent game structure G
such that

• G, qini 6|=M(∅,F,∅) φ and G, qini |=M(∅,F,P ) φ

• G, qini 6|=M(∅,∅,P ) φ and G, qini |=M(∅,F,P ) φ

• G, qini 6|=M(S,F,∅) φ and G, qini |=M(S,F,P ) φ

• G, qini 6|=M(S,∅,P ) φ and G, qini |=M(S,F,P ) φ

qini

b1p

b2p

c

d p

e p

f

?, ?, 0, 0

?, ?, 1, 1

?, ?, 1, 0

?, ?, 0, 1

1, 0, ?, ?

0, 1, ?, ?

1, 1, ?, ?

0, 0, ?, ?

Figure 6.18: The game G used in Theorem 6.17’s proof.

Proof. Consider the game of Figure 6.18 with four agents 11 , 22 , 11 and 22 , and two
actions 0, 1. We define a SL[1G] formula φ

φ := ∃x1. ∀x2. ∃x3. ∀x4. assign( 11 , x3; 22 , x4; 11 , x1; 22 , x2)F p

Proving G, qini |=M(∅,F,P ) φ: To do so we specify aM(∅, F, P ) witness:

• To specify x3(qini) we may assume knowledge of x2 on qini.c through the future
dependencies. We then can set x3(qini) = 1− x2(qini.c).

• To specify x1(qini.c) we may assume knowledge of x3/x4 on qini through the un-
ordered prefix dependencies. We simply set x1(qini.c) = 1− x4(qini).

From this we can get a coherent M(∅, F, P ) map θ. It remains to check if it is an
appropriate witness, for this we refer to Table 6.3.

x1(qini.c) x2(qini.c) x3(qini) x4(qini) Result
1 0 1 0 ok (d)
0 0 1 1 ok (b2)
1 1 0 0 ok (b1)
0 1 0 1 ok (e)

Table 6.3: Checking if θ is a witness of φ
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Proving G, qini 6|=M(∅,∅,P ) φ: If we forbid future dependencies, x3(qini) may not rely
on any knowledge to make its choice. Assume that you have θ a M(∅, ∅, P ) map with
θ(w)(x3)(qini) = 1 no matter w. θ has two possibilities:

• either θ(w)(x1)(qini.c) = 1 for w’s with w(x4)(qini) = 0. Then for w0 with w0(x4)(qini) =
0 but also w0(x2)(qini.c) = 1, θ(w0) will lead the goal to f and fail.

• or θ(w)(x1)(qini.c) = 0 for w’s with w(x4)(qini) = 0. Then taking w0 with w0(x4)(qini) =
0 but also w0(x2)(qini.c) = 0 also leads θ(w0) to f and fail.

In either cases, θ is not a witness. The case with θ(w)(x3)(qini) = 0 is similar. In the
end, G, qini 6|=M(∅,∅,P ) φ

Proving G, qini 6|=M(∅,F,∅) φ: If we forbid unordered prefixes dependencies, x1(qini.c)
may not relies on what has been played on qini. Consider a M(∅, F, ∅) map θ. Either
θ(w)(x1)(qini.c) = 1 or θ(w)(x1)(qini.c) = 0, no matter w. Take the first case, again we
decompose by cases:

• either θ(w)(x3)(qini) = 1 for w’s with w(x2)(qini.c) = 1. Then for w0 with w0(x2)(qini.c) =
1 and w0(x4)(qini) = 0, θ(w0) leads to f

• or θ(w)(x3)(qini) = 0 for w’s with w(x2)(qini.c) = 1. Then for w0 with w0(x2)(qini.c) =
1 and w0(x4)(qini) = 1, θ(w0) also leads to f .

In both cases we need the unordered prefix dependencies to satisfy φ.

Notice that by construction of the formula and the game there cannot be side depen-
dencies. So, from the three previous paragraphs we can easily deduce all the points of
the theorem.
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Chapter 7

The SL[EG] fragment

In the previous chapter, we have seen that adding all the actions on the history (via
unordered prefix dependencies) leads to unexpected consequences. In particular, one can
override the order of quantification locally by using the side or future dependencies in
conjunction with the actions made available; this can even be done with SL[1G] formulas.
The previous chapter fell short: we wanted to suppress side dependencies by adding the
actions played onto the histories 1, but in the end this cannot be done.

In this chapter we show a strong correlation between the ability to satisfy a formula
φ without side or future dependencies and the possibility for both φ and ¬φ to hold on
a game. More precisely we define a fragment SL[EG] of SL[BG] for which the following
theorem holds. We also show that SL[EG] is maximal for Theorem 7.1.

Theorem 7.1. Consider a formula φ ∈ SL[EG], a game G, a state qini of G and two
parameters ♠ ∈ {∅, S} and ♥ ∈ {∅, F}. If G, qini |=M(♠,♥,P ) φ and G, qini 6|=M(♠,♥,P ) ¬φ
then G, qini |=M(∅,∅,P ) φ.

A more fashionable way to state Theorem 7.1 is to say that when a formula φ ∈
SL[EG] holds and its syntactic negation does not, we can remove both side and future
dependencies. A naive approach would be to assume that if G, qini 6|=M(∅,∅,P ) φ, then
G, qini |=M(∅,∅,P ) ¬φ and therefore G, qini |=M(♠,♥,P ) ¬φ. However from G, qini 6|=M(∅,∅,P ) φ,
we cannot deduce G, qini |=M(∅,∅,P ) ¬φ; indeed, we may be in one of those cases where
neither φ nor ¬φ hold on G for |=M(∅,∅,P ). Hence Theorem 7.1 is not trivial.

Theorem 7.1 cannot be extended as an equivalence between the possibility for both
a formula and its negation to hold and the capacity to remove side dependencies. There
are cases where both φ and ¬φ hold on a game for |=M(S,∅,P ) and where we can remove
side dependencies from one of the two. Indeed, consider the game (that we refer to as G
in the following) and formula (referred to as φ) in the proof of Theorem 6.15 (page 146).
We have G, qini |=M(S,∅,P ) φ (as proven in the proof) and G, qini |=M(∅,∅,P ) ¬φ (this can
easily be checked).

1Formally we use unordered prefix dependencies but as explained during Chapter 6, the framework
is equivalent to adding all the actions played before on the histories.
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7.1 Semi-stable sets and SL[EG]

Before defining our logic, we first fix some notations: for n ∈ N, we let {0, 1}n be the set
of mappings from [1, n] to {0, 1}. We write 0n (or 0 if the size n is clear) for the function
that maps all integers in [1, n] to 0, and 1n (or 1) for the function that maps [1, n] to 1.
For f ∈ {0, 1}n and k ≤ n, f[1,k] is the restriction of f to [1, k]. The size of f ∈ {0, 1}n
is defined as |f | =

∑
1≤i≤n f(i). For two elements f and g of {0, 1}n, we write f ≤ g

whenever f(i) = 1 implies g(i) = 1 for all i ∈ [1, n]. Given Bn ⊆ {0, 1}n, we write
↑Bn = {g ∈ {0, 1}n | ∃f ∈ Bn. f ≤ g}. A set F n ⊆ {0, 1}n is upward closed if F n = ↑F n.
Finally, we also define the following operators:

f : i 7→ 1− f(i) f f g : i 7→ min{f(i), g(i)} f g g : i 7→ max{f(i), g(i)}.

As a way to to get the reader accustomed to these three operators, we start with a
simple lemma.

Lemma 7.2. For any f, g, s ∈ {0, 1}n, (f f s) ∨ (g f s) = (f f s) ∨ (g f s).

Proof. Consider some 1 ≤ i ≤ n, then

(f f s) ∨ (g f s)(i) = 1 ⇔ (f f s) ∨ (g f s)(i) = 1

⇔ s(i) = 1⇒ f(i) = 0 and s(i) = 0⇒ g(i) = 0

⇔ s(i) = 1⇒ f(i) = 1 and s(i) = 0⇒ g(i) = 1

⇔ (f f s) ∨ (g f s)(i) = 1

In order to define SL[EG], we introduce the notion of semi-stable subset of {0, 1}n:

Definition 7.3. A set F n ⊆ {0, 1}n is semi-stable if for any f and g in F n, it holds that

∀s ∈ {0, 1}n (f f s)g (g f s) ∈ F n or (g f s)g (f f s) ∈ F n.

Example 7.4. Obviously, {0, 1}n is semi-stable, as well as the empty set. For n = 2,
the set {〈0, 1〉, 〈1, 0〉} is easily seen not to be semi-stable: taking f = 〈0, 1〉 and g = 〈1, 0〉
with s = 〈1, 0〉, we get (f f s)g (gf s) = 〈0, 0〉 and (gf s)g (f f s) = 〈1, 1〉. Similarly,
{〈0, 0〉, 〈1, 1〉} is not semi-stable. It can be checked that any other subset of {0, 1}2 is
semi-stable.

We now define SL[EG]. As for SL[BG] and its fragments, we focus on its flat fragment,
which is defined as follows:

SL[EG] 3 φ ::= ∀x.φ | ∃x.φ | ξ
ξ ::= F n((βi)1≤i≤n)

β ::= assign(A, x). β | ϕ
ϕ ::= ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | p
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where p ranges over AP, n ranges over N and for each n, F n ranges over a set Fn of
semi-stable subsets of {0, 1}n. The semantics of the F n operator is defined as

G, q |=χ F
n((βi)i≤n) ⇔ ∃f ∈ F n where f(i) = 1 iff G, q |=χ βi

Notice that if F n would range over all subsets of {0, 1}n, then this definition would
exactly correspond to SL[BG]. Similarly, the case where F n = {1n} corresponds to SL[CG],
while F n = {0, 1}n \ {0n} gives rise to SL[DG]. Both {1n} and {0, 1}n \ {0n} are semi-
stable, hence SL[CG] ⊆ SL[EG] and SL[DG] ⊆ SL[EG].

Example 7.5. Consider the formula of Example 1.5.4 expressing the existence of a Nash
equilibrium. For two agents, it can be written as

∃x1.∃x2.∀y1.∀y2


(assign(A1, y1;A2, x2).ϕ1)⇒ (assign(A1, x1;A2, x2).ϕ1)

∧
(assign(A1, x1;A2, y2).ϕ2)⇒ (assign(A1, x1;A2, x2).ϕ2)

(7.1)

This formula has four goals, and it corresponds to the set

F 4 = {〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈1, 1, 0, 1〉, 〈0, 1, 0, 1〉, 〈0, 0, 1, 1〉, 〈1, 1, 0, 0〉,
〈0, 0, 0, 1〉, 〈0, 1, 0, 0〉, 〈0, 0, 0, 0〉}

Taking f = 〈1, 1, 0, 0〉 and g = 〈0, 0, 1, 1〉, with s = 〈1, 0, 1, 0〉 we have (f f s)g (gf s) =
〈1, 0, 0, 1〉 and (g f s)g (f f s) = 〈0, 1, 1, 0〉, which are not in F 4. Hence Formula (7.1)
is not syntactically in SL[EG]. We conjecture that the existence of Nash equilibria cannot
be expressed in SL[EG].

7.2 Expressiveness of SL[EG]

We now investigate the relative expressiveness of SL[EG] w.r.t the (flat) fragment SL[AG]
of SL[BG], defined in Section 5.3. To this aim, pick φ ∈ SL[BG] with n goals, and write
φ = ℘. ξ(ψi)1≤i≤n, where ℘ is the quantification part, and ξ is a boolean combination of
the goals (ψi)1≤i≤n. We define

F n
ξ = {f ∈ {0, 1}n | ξ(f) evaluates to true}.

Proposition 7.6. For any formula φ ∈ SL[AG] with n goals, F n
ξ is semi-stable.

Proof. Take φ ∈ SL[AG] with n goals. By definition of SL[AG], the boolean formula ξ of φ
may be written in one of the following two ways:

ξ(xi)1≤i≤n = ξ′((xi)1≤i≤n−1) ∧ xn
ξ(xi)1≤i≤n = ξ′((xi)1≤i≤n−1) ∨ xn
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As a consequence, we are in one of the following two cases:

F n
ξ = {f | f(n) = 1 and f[1,n−1] ∈ F n−1

ξ′ } (7.2)

F n
ξ = {f | f(n) = 1} ∪ {g | g(n) = 0 and g[1,n−1] ∈ F n−1

ξ′ } (7.3)

By induction on n, we prove that such sets are semi-stable. The base case, for n = 1, is
trivial. Now, assume that the result holds up to step n−1, and pick a formula φ ∈ SL[AG]
with n goals (for n ≥ 2). We first consider the case where ξ = ξ′((xi)1≤i≤n−1)∧ xn. Then
F n
ξ = {f | f(n) = 1 and f[1,n] = F n−1

ξ′ }, and by induction hypothesis F n−1
ξ′ is semi-stable.

Pick any two elements f and g in F n
ξ , and any s ∈ {0, 1}n. Let s′ = s[1,n−1] ∈ {0, 1}n−1,

f ′ = f[1,n−1] and g′ = g[1,n−1]. Since f(n) = g(n) = 1, we have [(f f s) g (g f s)](1) =
[(g f s)g (f f s)](1) = 1. Moreover, [(f f s)g (g f s)][1,n−1] = (f ′ f s′)g (g′ f s′), and
[(g f s)g (f f s)][1,n−1] = (g′ f s′)g (f ′ f s′). Since F n−1

ξ′ is semi-stable, it contains one
of these two elements, so that one of (f f s)g (g f s) and (g f s)g (f f s) is in F n

ξ .
The case where ξ = ξ′((xi)1≤i≤n−1) ∨ xn relies on similar arguments: assuming that

F n−1
ξ′ is semi-stable, we pick two elements f and g in F n

ξ , and s ∈ {0, 1}n. In case
f(n) = 1 or g(n) = 1, then one of (f fs)g (gfs) and (gfs)g (f fs) takes value 1 in n,
and thus belongs to F n

ξ . Otherwise, the argument is similar to the case of conjunctive
formulas.

It follows that any formula in SL[AG] can be written as a formula in SL[EG]. One can
wonder if the converse translation is possible, which would mean that SL[EG] and SL[AG]
would have the same expressive power. The answer is negative:

Proposition 7.7. Fix n = 3 and let Hn = {〈1, 1, 1〉, 〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉}. Then Hn

is semi-stable, and for any formula φ = ℘. ξ(ψi)1≤i≤n in SL[AG], we have F n
ξ 6= Hn.

Proof. That Hn is semi-stable is easily obtained by brute force. Now, for any formula φ =
℘ξ in SL[AG], ξ(x1, x2, x3) must be in one of the following four forms:

ξ′(x1, x2) ∧ x3 ξ′(x1, x2) ∧ ¬x3

ξ′(x1, x2) ∨ x3 ξ′(x1, x2) ∨ ¬x3

Again, it is easily checked that none of these cases can give rise to exactly Hn: for
instance, in the first case, 〈1, 1, 0〉 would not belong to F n

ξ , while the last case would
allow 〈0, 0, 0〉 to be in Hn.

7.3 Properties of SL[EG]

We exhibit some properties of semi-stable sets of valuations. In particular, we show that
semi-stable sets can be rearranged by flipping bits into an upward-closed set. We fix an
index n for the rest of this section.
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7.3.1 Closure under bit flipping

Fix a vector b ∈ {0, 1}n. We define the operation flipb : {0, 1}n → {0, 1}n that maps any
vector f to (f f b) g (f f b). In other terms, flipb flips the i-th bit of its argument if
bi = 0, and keeps this bit unchanged if bi = 1. Notice that flipb is a permutation of {0, 1}n.
Notice also that flip0(f) = f and flipf (f) = 1 for all f ∈ {0, 1}n.

The following lemma shows that flipping bits preserves semi-stability. This is a natural
property for our logic, since flipping bits corresponds to negating goals. More precisely, for
b ∈ {0, 1}n, open formulas F n((βi. ϕi)1≤i≤n) and flipb(F n)((βi. ϕ

′
i)1≤i≤n), where ϕ′i = ϕi

if b(i) = 1 and ϕ′i = ¬ϕi if b(i) = 0, are equivalent.

Lemma 7.8. If F n ⊆ {0, 1}n is semi-stable, then so is flipb(F n).

Proof. We assume that F n is semi-stable. Take f ′ = flipb(f) and g′ = flipb(g) in flipb(F n),
and s ∈ {0, 1}n. Then

(f ′ f s)g (g′ f s) =
(
((f f b)g (f f b))f s

)
g
(
((g f b)g (g f b))f s

)
= (((f f s)g (g f s))f b)g

(
((f f s)g (g f s))f b

)
Write α = (f f s)g (g f s) and β = (f f s)g (g f s). By Lemma 7.2, β = α. We then
have

(f ′ f s)g (g′ f s) = (α f b)g
(
α f b

)
= flipb(α). (7.4)

This computation being valid for any f and g, we also have

(g′ f s)g (f ′ f s) = (γ f b)g
(
γ f b

)
= flipb(γ) (7.5)

with γ = (gf s)g (f f s). By hypothesis, at least one of α and γ belongs to F n, so that
also at least one of (f ′ f s)g (g′ f s) and (g′ f s)g (f ′ f s) belongs to flipb(F n).

Corollary 7.9. F n is semi-stable if, and only if, its complement is.

Proof. Assume F n is not semi-stable, and pick f and g in F n and s ∈ {0, 1}n such that
none of α = (f f s)g (g f s) and γ = (g f s)g (f f s) are in F n. It cannot be the case
that g = f , as this would imply α = f ∈ F n. Hence α 6= γ. We claim that α and γ are
our witnesses for showing that the complement of F n is not semi-stable: both of them
belong to the complement of F n, and (α f s) g (γ f s) can be seen to equal f , hence it
is not in the complement of F n. Similarly for (γ f s)g (α f s) = g.

7.3.2 Transformation into upward-closed set

Lemma 7.10. If F n ⊆ {0, 1}n is semi-stable, then for any s ∈ {0, 1}n and any non-empty
subset Hn of F n, it holds that

∃f ∈ Hn. ∀g ∈ Hn. (f f s)g (g f s) ∈ F n.
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Proof. For a contradiction, assume that there exist s ∈ {0, 1}n and Hn ⊆ F n such that,
for any f ∈ Hn, there is an element g ∈ Hn for which (f f s)g (g f s) /∈ F n. Then there
must exist a minimal integer 2 ≤ λ ≤ |Hn| and λ elements {fi | 1 ≤ i ≤ λ} of Hn such
that

∀1 ≤ i ≤ λ− 1 (fi f s)g (fi+1 f s) 6∈ F n and (fλ f s)g (f1 f s) 6∈ F n.

By Corollary 7.9, the complement of F n is semi-stable. Hence, considering (fλ−1 f s) g
(fλ f s) and (fλ f s)g (f1 f s), one of the following two vectors is not in F n:(

[(fλ−1 f s)g (fλ f s)]f s
)
g
(
[(fλ f s)g (f1 f s)]f s

)(
[(fλ f s)g (f1 f s)]f s

)
g
(
[(fλ−1 f s)g (fλ f s)]f s

)
The second expression equals fλ, which is in F n. Hence we get that (fλ−1 f s)g (f1 f s)
is not in F n, contradicting minimality of λ.

Lemma 7.11. For any semi-stable set F n, there exists B ∈ {0, 1}n such that flipB(F n)
is upward closed.

Proof. The lemma trivially holds for F n = ∅ thus, in the following, we assume F n to be
non-empty. For 1 ≤ i ≤ n, let si ∈ {0, 1}n be the vector such that si(j) = 1 if, and
only if, j = i. Applying Lemma 7.10, we get that for any i, there exists some fi ∈ F n

such that for any f ∈ F n, it holds

(fi f si)g (f f si) ∈ F n. (7.6)

We fix such a family (fi)i≤n then define g ∈ {0, 1}n as g =
b

1≤i≤n(fifsi), i.e. g(i) = fi(i)
for all 1 ≤ i ≤ n. Starting from any element of F n and applying Equation (7.6) iteratively
for each i, we get that g ∈ F n. Since g f si = fi f si, we also have

∀f ∈ F n (g f si)g (f f si) ∈ F n

By Equation (7.5), since flipg(g) = 1, we get

∀f ∈ F n (1f si)g (flipg(f)f si) ∈ flipg(F
n). (7.7)

Now, assume that flipg(F n) is not upward closed: then there exist elements f ∈ F n and
h /∈ F n such that flipg(f)(i) = 1⇒ flipg(h)(i) = 1 for all i. Starting from f and iteratively
applying Equation (7.7) for those i for which flipg(h)(i) = 1 and flipg(f)(i) = 0, we get
that flipg(h) ∈ flipg(F n) and h ∈ F n. Hence flipg(F n) must be upward closed.

Remark 7.12. Notice that being upward closed is not a sufficient condition for being
semi-stable. Consider for instance the set F n = ↑{〈0, 0, 1, 1〉; 〈1, 1, 0, 0〉}. Then F n is
not semi-stable: taking f = 〈0, 0, 1, 1〉 and g = 〈1, 1, 0, 0〉, and s = {1, 0, 0, 1}, we get
(f f s)g (g f s) = 〈0, 1, 0, 1〉 /∈ F n and (g f s)g (f f s) = 〈1, 0, 1, 0〉 /∈ F n.
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7.3.3 Ordering {0, 1}n

Consider F n ⊆ {0, 1}n and s ∈ {0, 1}n, for any h ∈ {0, 1}n, we define

Fn(h, s) := {h′ ∈ {0, 1}n | (hf s)g (h′ f s) ∈ F n}

and, writing F n for the complement of F n,

Fn(h, s) := {h′ ∈ {0, 1}n | (hf s)g (h′ f s) ∈ F n}

Trivially Fn(h, s)
⋂

Fn(h, s) = ∅ and Fn(h, s)
⋃
Fn(h, s) = {0, 1}n. If F n is a semi-

stable set, then the family (Fn(h, s))h∈{0,1}n obeys certain properties:

Lemma 7.13. Fix a semi-stable set F n and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Proof. Assume that the two relations do not hold: there are h′1 ∈ Fn(h1, s)\Fn(h2, s) and
h′2 ∈ Fn(h2, s)\Fn(h1, s). We then have:

(h1 f s)g (h′1 f s) ∈ F n (h2 f s)g (h′1 f s) 6∈ F n

(h2 f s)g (h′2 f s) ∈ F n (h1 f s)g (h2 f s) 6∈ F n

Now consider (h1 f s)g (h′1 f s), (h2 f s)g (h′2 f s) and s. As F n is semi-stable, one
of the two following vectors is in F n :(

(h1 f s)g (h′1 f s)f s
)
g
(
(h2 f s)g (h′2 f s)f s

)(
(h2 f s)g (h′2 f s)f s

)
g
(
(h1 f s)g (h′1 f s)f s

)
The first vector is equal to (h1 f s)g (h′2 f s) and the second to (h2 f s)g (h′1 f s) and
both are supposed to be in F n, we get a contradiction.

Given a semi-stable set F n and s ∈ {0, 1}n , we can use the inclusion relation of
Lemma 7.13 to defines a quasi-order relation �Fns over the elements of {0, 1}n.

Definition 7.14. Fix F n semi-stable and s ∈ {0, 1}n. We define �Fns ⊆ {0, 1}n×{0, 1}n
so that h1 �F

n

s h2 iff Fn(h1, s) ⊆ Fn(h2, s). In particular, h1 �F
n

1 h2 whenever either
h1 ∈ F n or h2 ∈ F n.

To ease the reading, whenever F n is clear from context, we write �s instead of �Fns .
Reflexiveness and transitivity of �s follows from the reflexiveness and transitivity of the
inclusion relation ⊆. We use the usual notations ≺s,�s,�s and =s respectively for the
strict, the inverse, the strict of the inverse quasi orders and the equality up to quasi-order,
all derived from �s. Intuitively, �s orders the elements of {0, 1}n based on how “easy”
it is to complete their restriction to s so that the completion belongs to F n. Figure 7.1
shows an application while Figure 7.2 gives an illustration of two orders.
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(0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)
F 3

If

{
(0, ?, ?) ≺(1,0,0) (1, ?, ?) and
((?, 1, 1)f (0, 1, 1))g ((0, ?, ?)f (1, 0, 0)) ∈ Fn

then ((?, 1, 1)f (0, 1, 1))g ((1, ?, ?)f (1, 0, 0)) ∈ Fn

Figure 7.1: Link between the F n(h, s)’s sets and the orders.

(0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)
F 3 �(1,0,0)

(1, ?, ?)

(0, ?, ?) G
reater

�(1,1,0)

(1, 1, ?) =(1,1,0) (1, 0, ?)

(0, 1, ?)

(0, 0, ?)

(0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)

Figure 7.2: An illustration with F 3 := {〈1, 1, 1〉; 〈1, 1, 0〉; 〈1, 0, 1〉; 〈0, 1, 1〉; 〈1, 0, 0〉} of the
orders �(1,0,0) and �(1,1,0).

Remark 7.15. To avoid new notations, we defined �s over {0, 1}n × {0, 1}n but only
the indexes on which s takes value 1 are of interest: given h1, h2 ∈ {0, 1}n such that
(f1 f s) = (f2 f s), we have F(f1, s) = F(f2, s) and f1 =s f2. The fact that all orders
belong to the same product set {0, 1}n × {0, 1}n allows us to easily compare elements of
{0, 1}n on multiple orders. The other option would have been to work with order over
{0, 1}|s|×{0, 1}|s|; we would then have need some new operations to navigate between the
sets {0, 1}|s| and {0, 1}n.

Lemma 7.16. Given a semi-stable set F n, s1, s2 ∈ {0, 1}n such that s1 f s2 = 0 and
f, g ∈ {0, 1}n such that f �s1 g and f �s2 g. Then f �s1gs2 g.

Proof. Because f �s1 g and f �s2 g, we have

∀i ∈ {1, 2} ∀h ∈ {0, 1}n (f f si)g (hf si) ∈ F n ⇒ (g f si)g (hf si) ∈ F n (7.8)

Consider h′ ∈ {0, 1}n such that α := (f f (s1g s2))g (h′f (s1 g s2)) is in F n. Define the
element h := α f s2, then (f f s2) g (h f s2) = (f f (s1 g s2)) g (h′ f (s1 g s2)) ∈ F n.
Using (7.8) with s2 and h, we get β := (g f s2)g (hf s2). As s1 f s2 = 0, we can write
β = (f f s1)g (g f s2)g (h′ f (s1 g s2)) ∈ F n.

Now consider h = βfs1, we have (ffs1)g(hfs1) = β ∈ F n. Using (7.8) with s1 and
h, we get (gf (s1g s2))g (h′f (s1 g s2)) ∈ F n. Therefore Fn(f, s1g s2) ⊆ Fn(g, s1g s2)
and f �s1gs2 g.
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7.4 Side dependencies in SL[EG]

This section is devoted to the proof of Theorem 7.1, which we recall below.

Theorem 7.1. Consider a formula φ ∈ SL[EG], a game G, a state qini of G and two
parameters ♠ ∈ {∅, S} and ♥ ∈ {∅, F}. If G, qini |=M(♠,♥,P ) φ and G, qini 6|=M(♠,♥,P ) ¬φ
then G, qini |=M(∅,∅,P ) φ.

We fix a concurrent game G = 〈AP,Agt,Q,Act,∆, labels〉 and consider a closed SL[EG]
formula

φ := (Qixi)1≤i≤l. F
n((βjϕj)1≤j≤n)

where for any 1 ≤ i ≤ l, Qi ∈ {∃,∀}, and for any 1 ≤ j ≤ n, βj : Agt→ {xj | 1 ≤ j ≤ l} is
a full assignment and ϕj is a LTL formula. We also write V := {xi | 1 ≤ i ≤ l}, V∀ := {xi |
Qi = ∀} and V∃ := {xi | Qi = ∃}. Finally, following Lemmas 7.8 and 7.11, we assume
that F n is upward closed (even if it means negating some of the LTL objectives).

Outline of the proof

The proof is quite long and technical, therefore we first sketch it to give its intuition
to the reader. The idea at the heart of our proof is that, when making a decision for
an existentially quantified variable xi on a history ρ, we have knowledge of which goals
are still active on ρ (as opposed to which ones have deviated) through the unordered
prefix dependencies. We then represent the set of goals enabled on ρ (according to a
given context) by an element s of {0, 1}n and use the quasi-order �s to get a clear cut
hierarchy of the potential results. This way, when making a decision for xj on ρ, we have
a set of ordered potential results and just act to achieve the highest possible.

Sketch of proof

1. We define a set {Ds,h | s, h ∈ {0, 1}n} of parity automata. Given a path ρ, we can
associate an element k ∈ {0, 1}n such that k(i) = 1 iff ρ satisfy ϕi. An automaton
Ds,h accepts a path ρ iff h �s k. The intuitive idea is that Ds,h accepts a path ρ if
and only if ρ produces a result at least as good as h relatively to �s.

2. Using these automata, we define two new sets of operators: Γstickd,s,h and Γsepd,s,Υ for s, h ∈
{0, 1}n and some parameters d,Υ that will be defined later on. The Γstick operators
are used to encode the {Ds,h}s,h∈{0,1}n automata while the Γsepd,s,Υ operators handle
the junction between the different Γstick operators. The operators are essential
to the step below; as we will see in the technical proof, they are however rather
technical and therefore we cannot provide much intuition about them.

3. We highlight some specific elements bq,d,s of {0, 1}n where q is a state of G, d
represents some knowledge about the history and s is a set of active goals. A bq,d,s
element represents the best we can hope to achieve relatively to�s when we consider
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a history ρ finishing in q, carrying the information on d and where s represents the
set of active goals on ρ.

The construction of the b elements is done inductively based on the size of s: we
start with |s| = 1 toward |s| = n and use the elements defined at previous steps
to decide if we should keep the goals active in s together or if we should separate
them from one another.

4. We then produce twoM(∅, ∅, P ) maps θ and θ. Using the b elements built at the
previous step, the map θ deduces an optimal strategy in order to satisfy φ. θ is in
some way (made clear within the technical proof) an optimal map for φ. Similarly,
θ is the best map to avoid the satisfaction of φ.

5. Finally, we show the following lemma:

Lemma 7.17. There exists a valuation χ of domain V such that θ(χ|V∀) = χ and
θ(χ|V∃) = χ. Moreover χ satisfies

G, qini |=χ ΓFn ⇒ ∀w : (HistG → Act)V
∀ G, qini |=θ(w) F

n(βjϕj)1≤j≤n

G, qini |=χ ¬ΓFn ⇒ ∀w : (HistG → Act)V
∃ G, qini |=θ(w) F

n(βjϕj)1≤j≤n

We can then apply a simple reasoning to get Theorem 7.1. Assume that G, qini |=M(♠,♥,P )

φ and G, qini 6|=M(♠,♥,P ) ¬φ. If G, qini |=χ ¬ΓFn , then by the second point of
Lemma 7.17, θ would be a witness that G, qini |=M(∅,∅,P ) ¬φ and it would hold that
G, qini |=M(♠,♥,P ) ¬φ. So G, qini |=χ ΓFn and using Lemma 7.17 once again, we get
that θ is a witness that G, qini |=M(∅,∅,P ) φ.

7.4.1 Automata

We build a large set of deterministic parity word automata over 2AP. For s ∈ {0, 1}n and
h ∈ {0, 1}n, we let Ds,h be a deterministic parity automaton accepting exactly the words
over 2AP along which the following formula2 holds:∨

k∈{0,1}n
h �s k

∧
j s.t.

(kfs)(j)=1

ϕj. (7.9)

where a conjunction over an empty set (i.e., if (k f s)(j) = 0 for all j) is true. As an
example, take s ∈ {0, 1}n with |s| = 1, writing j for the index where s(j) = 1, for any
h ∈ {0, 1}n we get that Ds,h is universal iff there is k �s h with k(j) = 0; otherwise
Ds,h accepts the set of words over 2AP along which ϕj holds.

2Likewise to Section 7.3.3, to retain a rigorous definition and avoid too many notations we use
k ∈ {0, 1}n despite k being in essence an element of {0, 1}|s|: indeed k only matters in Formula (7.9) on
the indexes j where s(j) = 1, therefore only on |s| indexes.
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Write D = {Ds,h | s ∈ {0, 1}n, h ∈ {0, 1}n} for the set of automata just defined. A
vector of states of D is a function associating with each automaton D ∈ D one of its
states. We write VS for the set of all vectors of states of D. Let d be a vector of states
of D and let q be a state of G. We set succ(d, q) to be the function associating with each
D ∈ D the successor of d(D) upon reading the labelling labels(q) of q; we also extend
succ to take an input (d, ρ) and to return the state reachable by ρ from d. As usual,
a path (qi)i∈N in G is accepted by an automaton D of D whenever its labels sequence
(labels(qi))i∈N is accepted by D. We use the customary notation L(D) for the set of words
accepted by an automaton D. Finally we denote by L(Dd

s,h) the set of words that are
accepted by Ds,h starting from the state d(Ds,h).

Proposition 7.18. The following holds for any s ∈ {0, 1}n :

1. for any h1, h2 ∈ {0, 1}n where h1 �s h2, we have L(Ds,h1) ⊇ L(Ds,h2).

2. Ds,0 is universal.

3. for any h ∈ F n, D1,h accepts the words satisfying
∨
f∈Fn

∧
j s.t. f(j)=1 ϕj.

Proof. The first and third points are immediate. In Formula (7.9) applied to h = 0, take
k = 0 in the disjunction; then the conjunction is empty thus trivially true and therefore
Ds,0 accepts any word over 2AP .

7.4.2 Supervising goals going on different paths

Using the automata in D, we define two new families of temporal operators for the proof of
Theorem 7.1. Their semantics differ from the until and next operators: they are relative
to the values of a valuation on the variables and are not asking to assign a strategy to
each agent. The first family of operators simply transfers the conditions of the automata
of D onto an operator for a later usage. For any d ∈ VS and any two s, h in {0, 1}n, the
parity operator Γstickd,s,h obeys the following semantics3: given a context χ with V ⊆ dom(χ)
and a state q of G,

G, q |=χ Γstickd,s,h ⇔ ∃ ρ infinite in
G from q with


∀j ≤ n, s(j) = 1⇒ out(βj(χ), q) = ρ

ρ ∈ L(Dd
s,h)

Intuitively, the outcome of the assignments enabled by s must follow a common path that
is accepted by Dd

s,h.

The main difficulty of SL[EG] (or SL[BG] more generally) lies in the separation of the
different goals along different histories. The second batch of operators must tackle this
difficulty but before defining them, we need some formalism (we recall that Q is the set
of states of G and VS is the set of all vectors of states of D):

3We recall that the different maps introduced in Chapters 5 and 6 are for finding suitable behaviour
for the quantifications and that there is a common semantics to all temporal and boolean operators,
therefore there is only one satisfaction relation (|=) for the Γstick operators.
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πj := out(βj(χ), q)
outcome of βj(χ) from q

q, s = (1, 0, 1)

ρ = π1 = π3

∈ L(Dd
s,h)

G, q |=χ Γstickd,s,h

πj := out(βj(χ), q)
outcome of
βj(χ) from q

q2q1

q, s = (1, 1, 1)

ρ

G, q |=χ Γsepd,s,Υ with
Υ 3 τ = {(〈0, 1, 0〉, q1, d1) ; (〈1, 0, 1〉, q2, d2)}

π1, π3π2

1 step

Figure 7.3: The Γstick and Γsep operators.

Definition 7.19. A partition of an element s ∈ {0, 1}n is a set {sκ | 1 ≤ κ < λ} of two
or more elements of {0, 1}n with s1 g . . .g sλ = s and where for any two κ 6= κ′ and any
j ≤ n we have sκ(j) = 1⇒ sκ′(j) = 0.

An extended partition of s is a set τ := {(sκ, qκ, dκ) ∈ {0, 1}n × Q × VS | 1 ≤ κ ≤
λ , λ ≥ 2} with (sκ)κ≤λ a partition of s.

Note that we only consider nontrivial partitions. We write Part(s) for the set of all
extended partitions of s. If |s| =≤ 1, then Part(s) = ∅. For any d ∈ VS, any s in {0, 1}n
and any set of partitions Υ of s, the condition Γsepd,s,Υ looks for the assignments enabled
by s to all follow a common history ρ for some time then partition themselves according
to some partition in Υ. Its semantics are defined upon a context χ with V ⊆ dom(χ) and
a state q of G by the formula below. Figure 7.3 gives an intuition on both operators.

G, q |=χ Γsepd,s,Υ ⇔

∃τ ∈ Υ. ∃ρ
finite history
in G from q
such that



∀j ≤ n,

s(j) = 1⇒ ρ ∈ Pref<out(βj(χ),q)

∀κ ≤ |τ |, ∀j ≤ n,

sκ(j) = 1⇒ qκ = ∆(lst(ρ),mj) with
∀A ∈ Agt, mj(A) := χ(βj(A), ρ)

∀κ ≤ |τ |, applying succ inductively
from d on the path ρ.qκ leads to dκ

7.4.3 Finding optimal elements

By an induction on |s| ranging from 1 to n,

1. for every s with |s| = α, every h ∈ {0, 1}n and every d ∈ VS, we define a new
temporal operator Γd,s,h based on the Γstick and Γsep operators.
The Γstick’s operators handle the case where all goals stay on the same path; the
Γsep’s operators handle the case where the goals split in different directions. The
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operator Γd,s,h will regroup both possibilities and ask that starting with information
d, the goals of s do at least as good as h for �s.

2. for every s with |s| = α, every d ∈ VS and every state q of G, we define an element
bq,d,s of {0, 1}n.
The bq,d,s element carries the information about the highest h ∈ {0, 1}n possible for
�s so that the operator Γd,s,h is satisfied.

3. if α 6= n, for all s ∈ {0, 1}n with |s| = α + 1 and all τ ∈ Part(s), we define yet
another element cs,τ of {0, 1}n.
The c’s elements carry information about previous step of the induction in the form
of an element of {0, 1}n. Past the initial step, cs,τ is used to determine the b’s
elements of the form b?,?,s.

This induction allows us to condense information about the best course possible in
the form of elements of {0, 1}n: the b’s and c’s elements. Theses elements will then be
used to build an optimal behaviour in later sections.

Initial step (α = 1)

1. For any d ∈ VS and any two s, h of {0, 1}n with |s| = 1 we set Γd,s,h := Γstickd,s,h.

2. For any state q of G, any d ∈ VS and any s ∈ {0, 1}n with |s| = 1, there is a
maximal element bq,d,s ∈ {0, 1}n for the order �s such that

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s (7.10)

By Proposition 7.18, Dd
s,0 is universal; therefore, for any complete valuation χ,

G, q |=χ Γd,s,0. This trivially implies that anyM(∅, ∅, P ) map ∆ is a witness that
Formula (7.10) holds for bq,d,s = 0. So there is at least one element of {0, 1}n to
fill the role of bq,d,s for Formula (7.10) and, because �s is a total quasi order, there
must exist a maximal element. On the other hand, unicity is not guaranteed : if
h1 =s h2 then L(Ds,h1) = L(Ds,h2) thus Γd,s,h1 = Γd,s,h2 and

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h1 ⇔ G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h2

Characterisation bq,d,s ∈ {0, 1}n is an element such that

(a) G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s

(b) for any h ∈ {0, 1}n with bq,d,s ≺s h, we have G, q 6|=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h

3. Fix some s ∈ {0, 1}n with |s| = 2 and an extended partition τ := {(sκ, qκ, dκ) | 1 ≤
κ ≤ 2} of s. By definition of τ , for any κ ≤ 2 we have |sκ| < |s| = 2 i.e. |sκ| = 1
thus bqκ,dκ,sκ have been defined just before. We define cs,τ by

cs,τ = (s1 f bq1,d1,s1)g (s2 f bq2,d2,s2)



174

The partition τ models a possible way for the goals to split; cs,τ then regroups the b
elements adequate to τ in a single element of {0, 1}n. Ergo cs,τ carries information
about the best that can be achieved just after the goals split along τ . The cs,τ
belonging to {0, 1}n, we can compare it to other elements of {0, 1}n carrying other
information using the quasi-orders of Section 7.3.3. Using these comparisons, we
will then deduce an optimal approach.

Induction step (1 < α ≤ n)

The induction step is slightly more involved.

1. For any d ∈ VS and any two s, h of {0, 1}n with |s| = α, we define an operator Γd,s,h
by

Γd,s,h = Γstickd,s,h ∨ Γsepd,s,Υ where Υ := {τ ∈ Part(s) | h �s cs,τ}

We recall that cs,τ was defined at the previous step of the induction. Figure 7.4
gives an intuition.

2. As before, for any q, any d ∈ VS and any s ∈ {0, 1}n with |s| = α, there is a
maximal element bq,d,s ∈ {0, 1}n for the order �s such that

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s (7.11)

Similarly to the initial step, we show that such an element bq,d,s exists by proving
that Formula (7.11) holds for bq,d,s = 0. F n is upward closed so 0 is a minimal
element of �s (no matter s) and for any τ ∈ Part(s), 0 �s cs,τ . Now, consider
any given complete valuation χ. First of two possibilities: after some finite history
ρ, χ splits the outcomes of the goals enabled by s into different paths following a
partition τ0, then we get

G, q |=χ Γsepd,s,Υ for Υ := {τ ∈ Part(s) | 0 �s cs,τ} = Part(s)

Second possibility: all the outcomes (enabled by s) follow the same infinite path.
Ds,0 is universal (Proposition 7.18) so we get G, q |=χ Γstickd,s,0. This means that,
whatever the value of χ, it holds that G, q |=χ Γd,s,0. Hence, as for the initial case,
any M(∅, ∅, P ) map is a witness that Formula (7.11) holds for Γd,s,0. As for the
initial step, unicity is not guaranteed : if h1 =s h2 then L(Ds,h1) = L(Ds,h2) thus
Γstickd,s,h1

= Γstickd,s,h2
and h1 �s cs,τ iff h2 �s cs,τ , so

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h1 ⇔ G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h2

Characterisation bq,d,s ∈ {0, 1}n is an element such that

(a) G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s

(b) for any h ∈ {0, 1}n with bq,d,s ≺s h, we have G, q 6|=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h
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qini

q

A hypothetical his-
tory leading to q in
G and d in D

ρ′Dd
s,h 3

Or
q1

s1

q2

s2

ρ′
q

ρ′

|= Γd1,s1,b1 |= Γd2,s2,b2

The goals ψj with
s(j) = 1 separate
according to a
partition τ made
of (s1, q1, d1) and
(s2, q2, d2)

|= Γstickd,s,h |= Γsepd,s,h if h �s (b1 f s1)g (b2 f s2)

|= Γd,s,h iff either |= Γstickd,s,h or |= Γsepd,s,h

Figure 7.4: The Γd,s,h operator

3. In the case of α < n, fix some s ∈ {0, 1}n with |s| = α+1 and an extended partition
τ := {(sκ, qκ, dκ) | 1 ≤ κ ≤ λ , λ ≥ 2} of s. By definition of τ , for any κ ≤ λ we
have |sκ| < |s| = α+ 1, and the element bqκ,dκ,sκ has been defined on previous steps
of the induction. We define cs,τ by

cs,τ = (s1 f bq1,d1,s1)g . . .g (sλ f bqλ,dλ,sλ)

Intermediary results

We now focus on results derived from the elements defined previously.

Lemma 7.20. For any state q, any d ∈ VS and any s ∈ {0, 1}n, there is a M(∅, ∅, P )
map %q,d,s for (Qixi)1≤i≤l witnessing that

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s

There is anotherM(∅, ∅, P ) map %q,d,s for (Qixi)1≤i≤l witnessing that

G, q |=M(∅,∅,P ) (Qixi)1≤i≤l
∧

bq,d,s≺sh

¬Γd,s,h

The proof of the first part is an immediate consequences of the definitions of the b’s
elements. Combining the optimality of the b’s elements with Theorem 6.5 gives us the
second part.

We also highlight a peculiar Γ operator whose parameters are set by φ. In the big
induction, we inductively defined both the Γ’s operators, the b’s elements and the c’s
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elements. In a way, ΓFn is what we find at the very top of the induction. Notice that for
any two f, f ′ ∈ F n, we have f =1 f

′ and thus L(D1,f ) = L(D1,f ′). By definition of the
Γstick operators, for d ∈ VS, Γstickd,1,f = Γstickd,1,f ′ . We then set

ΓstickFn = Γstickdini,1,f
and ΓFn = ΓstickFn ∨ Γsepdini,1,ΥFn

where f is any element in F n, dini is the initial vector of states and with ΥFn := {τ ∈
Part(1) | c1,τ ∈ F n}. Thus the operator ΓFn is the element of the Γ family of operators
where d is the initial vector of state, s = 1 and h is an element of F n.

The same way we highlighted ΓFn in the family of all Γ’s operators, we highlight
twoM(∅, ∅, P ) maps %1 and %1. The map %1 corresponds to %qini,dini,1 while the map %1
corresponds to %qini,dini,1.

Lemma 7.21. If G, qini |=M(∅,∅,P ) (Qixi)1≤i≤l ΓFn, then %1 witness that G, qini |=M(∅,∅,P )

(Qixi)1≤i≤lΓFn. If G, qini 6|=M(∅,∅,P ) (Qixi)1≤i≤l ΓFn, then %1 witness that G, qini |=M(∅,∅,P )

(Qixi)1≤i≤l¬ΓFn.

Proof. The first case is a simple application of Lemma 7.20. For the second case, as-
sume that G, qini 6|=M(∅,∅,P ) (Qixi)1≤i≤l ΓFn ; this implies that bqini,dini,1 6∈ F n. We can
then apply Lemma 7.20 to an element f ∈ F n to get that %1 witnesses G, q |=M(∅,∅,P )

(Qixi)1≤i≤l¬Γd,s,f . Now by definition of ΓFn this means that %1 also witnesses G, qini |=M(∅,∅,P )

(Qixi)1≤i≤l¬ΓFn .

7.4.4 Assembling optimal M(∅, ∅, P ) maps

Having done this preliminary work, we may now build twoM(∅, ∅, P ) maps θ and θ to
define a behaviour respectively for (Qixi)1≤i≤l and (Qixi)1≤i≤l. They are optimal (in a
sense that will become clear later) respectively for F n((βjϕj)1≤j≤n) and F n((βjϕj)1≤j≤n).
To define the two maps, we start on the root and progress inductively along the histories.
Given a history ρ and a function w : (Hist → Act)V∀ , we can know which goal is still
following ρ. Indeed, assume θ has been defined on strict prefixes of ρ, we say that a goal
ψj := βjϕj is active on ρ w.r.t θ(w) whenever

∀i < |ρ|, ∆(ρ(i),mi) = ρ(i+ 1)

{
with mi : Agt→ Act is defined by
∀A ∈ Agt, mi(A) := θ(w)(βj(A))(ρ≤i)

Under these circumstances, we denote by sρ,θ(w) ∈ {0, 1}n the unique element such that
sρ,θ(w)(j) = 1 iff βj is active on ρ w.r.t θ(w).

The idea behind θ is to combine together the maps defined in Lemmas 7.20 and 7.21.
We start by defining θ that aims to satisfy (Qixi)i≤l F

n(βjϕj)j≤n.

• If xi ∈ V∀, we must set θ(w)(xi)(ρ) := w(xi)(ρ) whatever the inputs w : (Hist →
Act)V∀ and ρ ∈ Hist by definition of maps (of any kind).
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• If xi ∈ V∃, we use the maps defined in Lemmas 7.20 and 7.21. Consider a history ρ,
a function w : (Hist→ Act)V∀ and a variable xi ∈ V such that θ has been defined on
strict prefixes of ρ. Then, θ being already defined on strict prefixes of ρ and having
unordered prefix dependencies, we can know the active goals on ρ for θ(w), and we
represent them by an element sρ,θ(w) of {0, 1}n. We decompose ρ in two parts ρ1

and ρ2 (ρ = ρ1.ρ2) such that ρ2 represents the part of ρ that is followed by exactly
the goals of sρ,θ(w), i.e. ρ1 is the maximal prefix such that sρ1,θ(w) 6= sρ,θ(w).

– First of two possibilities: sρ,θ(w) = 1 and ρ1 = ε. Then θ follows the map %1
of Lemma 7.21 and we set θ(w)(xi)(ε) := %1(w)(xi)(ε).

– Second possibility: sρ,θ(w) 6= 1 and ρ1 is not empty. The map θ then regroups
the important information of ρ1 in the vector of state dρ1 := succ(dini, ρ1) of
D. The behaviour of θ on ρ then follows the maps of Lemma 7.20, meaning
that we set θ(w)(xi)(ρ) := %lst(ρ1),dρ1 ,sρ,u

(w−→ρ1
)(xi)(ρ2).

Having defined θ, we proceed similarly to define θ, aM(∅, ∅, P ) map trying to ensure
F n(βjϕj)j≤n.

• If xi ∈ V∃, we must set θ(w)(xi)(ρ) := w(xi)(ρ) whatever the inputs w : (Hist →
Act)V∃ and ρ ∈ Hist by definition of maps.

• If xi ∈ V∀, consider a history ρ, a function w : (Hist → Act)V∃ and a variable
xi ∈ V such that θ has been defined on strict prefixes of ρ. We proceed again
by decomposing ρ in two parts ρ1 and ρ2 such that ρ1 is the maximal prefix with
sρ1,θ(w) 6= sρ,θ(w).

– if sρ,θ(w) = 1 and ρ1 is empty, we set θ(w)(xi)(ε) := %1(w)(xi)(ε).

– if sρ,θ(w) 6= 1 and ρ1 is non-empty, we set θ(w)(xi)(ρ) := %lst(ρ1),dρ1 ,sρ,u
(w−→ρ1

)(xi)(ρ2)
with dρ1 = succ(dini, ρ1).

7.4.5 Optimality of θ and θ

Under the assumption that only one of φ and ¬φ can hold on G underM(♠,♥, P ) maps,
θ is in a sense an optimal map for F n(βjϕj)1≤j≤n while θ is optimal for F n(βjϕj)1≤j≤n.
The lemma below formalises this optimality property and characterises when θ can ensure
F n(βjϕj)1≤j≤n and when θ can ensure F n(βjϕj)1≤j≤n. The proof can be found in the
annex 7.A (page 182).

Lemma 7.17. There exists a valuation χ of domain V such that θ(χ|V∀) = χ and
θ(χ|V∃) = χ. Moreover χ satisfies

G, qini |=χ ΓFn ⇒ ∀w : (HistG → Act)V
∀ G, qini |=θ(w) F

n(βjϕj)1≤j≤n

G, qini |=χ ¬ΓFn ⇒ ∀w : (HistG → Act)V
∃ G, qini |=θ(w) F

n(βjϕj)1≤j≤n
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We can now prove Theorem 7.1. Assume that G, qini |=M(♠,♥,P ) φ and G, qini 6|=M(♠,♥,P )

¬φ. If G, qini |=χ ¬ΓFn , then by the second point of Lemma 7.17, θ would be a witness
that G, qini |=M(∅,∅,P ) ¬φ and it would hold that G, qini |=M(♠,♥,P ) ¬φ. So G, qini |=χ ΓFn
and using Lemma 7.17 once again, we get that θ is a witness that G, qini |=M(∅,∅,P ) φ.
This concludes the proof of Theorem 7.1.

7.4.6 Closing remarks on SL[EG] complexity

From our work, we can also deduce a 2 -EXPTIME algorithm for the model checking of
SL[EG] relatively to |=M(∅,∅,P ).

Theorem 7.22. The model checking problem of SL[EG] formulas relatively to the |=M(∅,∅,P )

satisfaction relation is 2 -EXPTIME-complete.

Proof. We reuse the notations in the proof of Theorem 7.1 (Sections 7.4.1 to 7.4.5). The
proof consists in building a procedure to check if G, qini |=χ ΓFn holds; we can then
deduce if G, qini |=M(∅,∅,P ) φ holds by using Lemma 7.17. The procedure is given in the
annex 7.B (page 185).

Lemma 7.23. Consider s in {0, 1}n and assume that we know the values of all bq′,d′,s′
for all s′ ∈ {0, 1}n with |s′| < |s|, q′ ∈ Q and d′ ∈ VS. We then have a 2 -EXPTIME
algorithm that computes

• the truth value of G, q |=M(∅,∅,P ) (Qixi)1≤i≤lΓd,s,h for any q ∈ Q, d ∈ VS and
h ∈ {0, 1}n.

• the value of bq,d,s for any d ∈ VS and q ∈ Q.

Sketch of proof. The proof consists in finding the potential candidates in {0, 1}n for bq,d,s
and choosing the optimal one for �s. Each candidate is checked by building and solving a
parity game based on the ideas developed for Theorems 5.14 and 6.5 (pages 127 and 142).

The operator ΓFn is defined as a special case (see Section 7.4.3) of the family of all
Γ’s operators based on the b’s elements. We can then use the procedure of Lemma 7.23
to build the b’s elements, define ΓF

n , check the truth value of G, qini |=χ ΓFn and deduce
if G, qini |=M(∅,∅,P ) φ.

In the end, we need to build and solve at most 2n.|Q|.2n.2|φ| parity games. The state
space of each game is of size two exponential in the size of the formula and polynomial
in the size of the game. The number of indexes is exponential in the size of the formula.
Using standard techniques to solve parity game we retrieve a 2 -EXPTIME algorithm for
Lemma 7.23 and for SL[EG] model checking relatively to |=M(∅,∅,P ). We can derive a
matching lower bound from the 2 -EXPTIME lower bound of ATL∗ model checking.
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qini

qt qu

qt1p1 qt2p2 qu1p1 qu2p2

Figure 7.5: The two-agents turn-based game G

7.5 Maximality of SL[EG]

In this section, we prove that SL[EG] is, in a sense, the maximal fragment of SL[BG]
possible for the results of Theorem 7.1: we prove that if F n is not semi-stable, we can
build a formula that holds true in a given game for |=M(S,∅,P ), where its negation does
not hold for |=M(S,∅,P ) but where we cannot remove side dependencies.

Theorem 7.24. For any n ∈ N∗ and any non-semi-stable set F n there exists a SL[BG]
formula φ built on F n, a game G and a state qini of G such that

G, qini |=M(S,∅,P ) φ and G, qini 6|=M(S,∅,P ) ¬φ and G, qini 6|=M(∅,∅,P ) φ

Proof. We consider the two-agents game G depicted on Figure 7.5 with two agents
and . Let F n be a non-semi-stable set over {0, 1}n. Then there must exist f1, f2 ∈ F n,
and s ∈ {0, 1}n, such that (f1 f s)g (f2 f s) /∈ F n and (f2f s)g (f1f s) /∈ F n. We then
let

φ := ∀yt ∀yu ∀xt ∃xu · F n(β1ϕ1, . . . , βnϕn)

where

βi =

{
assign( , yt ; , xt ) if s(i) = 1

assign( , yu ; , xu ) if s(i) = 0

and

ϕi =


F p1 ∨ F p2 if f1(i) = f2(i) = 1
F p1 if f1(i) = 1 and f2(i) = 0
F p2 if f1(i) = 0 and f2(i) = 1
false if f1(i) = f2(i) = 0

It is not hard to check that the following holds:

Lemma 7.25. Let ρ be a maximal run of G from qini. Let k ∈ {1, 2} be such that ρ
visits a state labelled with pk. Then for any 1 ≤ i ≤ n, we have ρ |= ϕi if, and only if,
fk(i) = 1.

We obtain

Proposition 7.26. G, qini |=M(S,∅,P ) φ
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Proof. Let σt be a strategy for yt , and let σu for yu . Let τt be a strategy for xt . Note
that only the value τt(qini · σt(qini)) is important for φ since xt is only applied jointly
with yt . Let k ∈ {1, 2} be such that the state reached by applying τt(qini · σt(qini)) is
labelled with pk.

We then define the strategy τu for xu by τu(qini.qu) = quk and τu(qini.qt) = qtk. Note
that there is a potential side dependency of strategy τu w.r.t. τt. We now prove that, if χ
is such that

χ(yt ) = σt χ(yu ) = σu χ(xt ) = τt χ(xu ) = τu

then:
G, qini |=χ F

n(β1ϕ1, . . . , βnϕn)

Fix an integer 1 ≤ i ≤ n. Let ? be t if s(i) = 1 and u otherwise. The outcome ρi of { 7→
σ?, 7→ τ?} (which corresponds to binding ℘i) is qiniq?q?k. Applying Lemma 7.25, we get
that ρi |= φi if, and only if, fk(i) = 1. This shows that F n(β1ϕ1, . . . , βnϕn) is true, which
concludes our proof4.

As mentioned in the proof above, satisfaction of φ in G from qini uses strategies with
side dependencies. We will now show that this is indeed required.

Proposition 7.27. G, qini 6|=M(∅,∅,P ) φ

Proof. Towards a contradiction, assume that φ is satisfied in G from qini using only
strategies without side dependencies.

We let σt (resp. σu) be the strategy that maps history qini to qt (resp. qu). We fix
strategy τt such that τt(qini · qt) = qt1. There is a strategy τu (without side dependencies)
such that

G, qini |=χ F
n(β1ϕ1, . . . , βnϕn)

where χ maps yt to σt, y to σu, xt to τt and xu to τu.
Since xu is only jointly applied with yu , the only important information about τu is

its value on history qiniσu(qini) = qiniqu. Because there is no side dependency, this value
is independent on the value of τt(qiniqt) = τt(qiniσt(qini)). In particular, writing χ′ for the
context obtained from χ by replacing χ(yt ) = τt with τ ′t , where τ ′t(qiniqt) = qt2, we also
have

G, qini |=χ′ F
n(β1ϕ1, . . . , βnϕn)

Let v and v′ be the elements in {0, 1}n representing the values of the goals (β1ϕ1, . . . , βnϕn)
under χ and χ′. Then v and v′ are in F n. However:

• If τu(qiniqu) = qu1, then v′ = (f1 f s)g (f2 f s).

• If τt(qiniqt) = qt2, then v = (f1 f s)g (f2 f s).

In both cases, by hypothesis, this does not belong to F n, which is a contradiction.
4Note that there is no unordered prefix dependency and we could have shown G, qini |=M(S,∅,∅) φ.
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Only one point remains,

Proposition 7.28. G, qini 6|=M(S,∅,P ) ¬φ

Proof. Consider aM(S, ∅, P ) map θ over ∃yt ∃yu ∃xt ∀xu . Fix a function w : (Hist →
Act)xu and write ρ for the outcome of { → θ(w)(yt ); → θ(w)(xt )}. The choices
of θ on yt , yu and xt do not depend on xu , therefore ρ is independent of w. Let
k ∈ {1, 2} be such that ρ visits a state labelled pk and write wk for the function such
that wk(xu )(qini.qt) = qtk and wk(xu )(qini.qu) = qtk. Then the element v in {0, 1}n
representing the values of (β1ϕ1, . . . βnϕn) under θ(wk) can either be

v = (f1 f s)g (f1 f s) = f1

or v = (f2 f s)g (f2 f s) = f2

and both are in F n. Therefore, θ is not a witness of G, qini |=M(S,∅,P ) ¬φ and G, qini 6|=M(S,∅,P )

¬φ

With Propositions 7.26, 7.27 and 7.28 we conclude the proof of Theorem 7.24.

7.6 Conclusion
Theorem 7.1 shows that for any formula φ ∈ SL[EG], when allowing unordered prefix
dependencies and under the hypothesis that φ holds but ¬φ does not, we can remove
side and future dependencies. We have also seen that this result is the best we can
do. It would therefore be interesting to find a characterisation for the case when both a
formula and its negation hold on a game. Using this characterisation and Theorem 7.1,
we could then obtain a large class of inputs (game and formula) on which we can remove
the side and future dependencies. This class would also admit a 2 -EXPTIME-complete
model checking: all the steps in Theorem 7.1 are constructive and their combination
gives an algorithm 2 -EXPTIME in the formula and PTIME in the game for the |=M(∅,∅,P )

satisfaction relation (see Section 7.4.6).
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7.A Annex A
Lemma 7.17. There exists a valuation χ of domain V such that θ(χ|V∀) = χ and
θ(χ|V∃) = χ. Moreover χ satisfies

G, qini |=χ ΓFn ⇒ ∀w : (HistG → Act)V
∀ G, qini |=θ(w) F

n(βjϕj)1≤j≤n

G, qini |=χ ¬ΓFn ⇒ ∀w : (HistG → Act)V
∃ G, qini |=θ(w) F

n(βjϕj)1≤j≤n

Proof. Both θ and θ areM(∅, ∅, P ) maps, we can therefore apply the technique used in
the proof of Theorem 6.5 to get a valuation χ such that θ(χ|V∀) = χ and θ(χ|V∃) = χ.

It remains to prove the two implications, we start by proving the first one. In the
following, assume that

G, qini |=χ ΓFn (7.12)

We first fix some notations specific to this proof then prove some intermediary results.

Notations. For a fixed parameter w : (HistG → Act)V∀,

• we call πwj the outcome out(βj(θ(w)), qini).

• we set fw to be the {0, 1}n element such that fw(j) = 1 iff πwj satisfy ϕj.

• likewise to when we defined θ in Section 7.4.4, for any history ρ we call sρ,w the
{0, 1}n element such that sρ,w(j) = 1 iff out(βj(θ(w)), qini) follows ρ.

• finally, we define Rw ⊆ {0, 1}n × HistG, the relation such that (s, ρ) ∈ Rw if and
only if s = sρ,w and ρ is minimal (meaning for any prefix ρ′ of ρ, (s, ρ′) 6∈ Rw).

Proposition 7.29. For any w : (HistG → Act)V∀, using the notations presented above, it
holds

∀s ∈ {0, 1}n. ∀ρ ∈ HistG. (s, ρ) ∈ Rw ⇒ blst(ρ),dρ,s �s fw

where dρ := succ(dini, ρ) (the vector of states accessible by ρ from the initial vector of
states).

Proof. Fix some w : (HistG → Act)V∀ , we proceed by induction on the size of s from 1 to
n.

The initial case (|s| = 1) Consider any history ρ such that (s, ρ) ∈ Rw. As |s| = 1 and
(s, ρ) ∈ Rw, there is a unique goal, say βj0ϕj0 , following ρ. By definition of θ, πj0 = ρ.η
where η is the outcome5 obtained through βj0

(
%lst(ρ),dρ,s(w−→ρ )

)
starting in lst(ρ).

Note that because |s| = 1, Γdρ,s,blst(ρ),dρ,s = Γstickdρ,s,blst(ρ),dρ,s
. The map %lst(ρ),dρ,s is a

M(∅, ∅, P ) witness that G, qini |=M(∅,∅,P ) (Qixi)1≤i≤lΓdρ,s,blst(ρ),dρ,s , therefore it also wit-
nesses that G, qini |=M(∅,∅,P ) (Qixi)1≤i≤lΓ

stick
dρ,s,blst(ρ),dρ,s

. By definition of the Γstick operators,

5which can be written in the following barbaric way: out(βj0(%lst(ρ),dρ,s(w−→ρ )), lst(ρ))
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this implies that all its outcomes are accepted by the automaton Ddρ
s,blst(ρ),dρ,s

; in particular,

η is accepted by Ddρ
s,blst(ρ),dρ,s

.

The automaton Ddρ
s,blst(ρ),dρ,s

accepts paths which give better results for the objectives
(βjϕj)j|s(j)=1 than blst(ρ),dρ,s. In our case this means that fw does better than blst(ρ),dρ,s for
s, i.e. blst(ρ),dρ,s �s fw.

The induction step (|s| = α) We assume that the Proposition 7.29 holds for elements
s of size |s| < α. Consider for the induction step a history ρ such that (s, ρ) ∈ Rw.

• Either there exists a common (infinite) path η such that for any j with s(j) = 1,
πj = ρ.η, i.e. all goals enabled by s always follow the same path ρ.η. We then apply
the same reasoning as done in the initial case and deduce blst(ρ),dρ,s �s fw.

• Or, somewhere after ρ, the goals enabled by s split themselves along some extended
partition τ = (sκ, qκ, dκ)κ≤λ. We call η the history from the last state of ρ to the
point where the goals split from each other; formally η is obtained by applying
βj
(
%lst(ρ),dρ,s(w−→ρ )

)
where j is such that s(j) = 1.

We recall the notation for cs,τ from Section 7.4.3

cs,τ = (s1 f bq1,d1,s1)g . . .g (sλ f bqλ,dλ,sλ)

The map %lst(ρ),dρ,s witnesses that G, lst(ρ) |=M(∅,∅,P ) Γd,s,blst(ρ),dρ,s , therefore η may
reach only a partition τ such that

blst(ρ),dρ,s �s cs,τ (7.13)

For any κ ≤ λ we have (sκ, ρ.η.qκ) ∈ Rw, and using the induction hypothesis we get

sκ f bqκ,dκ,sκ �sκ fw (7.14)

so, using Lemma 7.16 (page 168) repeatedly on the (sκ)κ≤λ and Inequality 7.14, we
obtain

s1 f bq1,d1,s1 �s1 fw

⇒ (s1 f bq1,d1,s1)g (s2 f bq2,d2,s2) �s1gs2 fw

. . .

⇒ (s1 f bq1,d1,s1)g . . .g (sλ f bqλ,dλ,sλ) �s1g...gsλ fw

⇒ cs,τ �s fw

Combined with Inequality 7.13, we get blst(ρ),dρ,s �s cs,τ �s fw.

This concludes the induction and the proof of Proposition 7.29.
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Proposition 7.30. bqini,dini,1 ∈ F n

Proof. Towards a contradiction, assume that bqini,dini,1 ∈ F n. Then, by definition of the
bqini,dini,1 element6, G, qini 6|=M(∅,∅,P ) (Qixi)1≤i≤l ΓFn . Applying this to Lemma 7.21, we
have that the map %1 (and therefore θ which act as %1 before goal goes on different paths)
witness G, qini 6|=M(∅,∅,P ) (Qixi)1≤i≤l ΓFn . This immediately implies that G, qini 6|=χ ΓFn
which is in contradiction with the Hypothesis 7.12.

With these preliminary results, we are now ready to prove the first implication of the
lemma. Consider a function w : (HistG → Act)V∀ . By Proposition 7.29 applied to w, 1,
ε we get that bqini,dini,1 �1 f

w. Now by Proposition 7.30, bqini,dini,1 ∈ F n, therefore the
element fw which is greater than bqini,dini,1 for �1 must also be in F n, which is equivalent
to G, qini |=θ(w) F

n(βjϕj)1≤j≤n.

The second implication of the lemma works similarly: produce an equivalent to
Lemma 7.29 for θ, use the left side of the implication and Lemma 7.21 to get a counterpart
to Proposition 7.30, and deduce the right hand side of the implication.

6See the definitions and explanations between Lemma 7.20 and Lemma 7.21 page 175
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7.B Annex B
Lemma 7.23. Consider s in {0, 1}n and assume that we know the values of all bq′,d′,s′
for all s′ ∈ {0, 1}n with |s′| < |s|, q′ ∈ Q and d′ ∈ VS. We then have a 2 -EXPTIME
algorithm that computes

• the truth value of G, q |=M(∅,∅,P ) (Qixi)1≤i≤lΓd,s,h for any q ∈ Q, d ∈ VS and
h ∈ {0, 1}n.

• the value of bq,d,s for any d ∈ VS and q ∈ Q.

Proof. The proof has many elements similar to the ones of Theorems 5.14 (page 127)
and 6.5 (page 142), where we showed that |=M(S,F,∅), |=M(∅,∅,∅) and |=M(∅,∅,P ) are equiva-
lent over SL[1G].

Checking the first point

We build a parity game H as we did in Theorem 5.14, only adapting the transitions and
parities to Γd,s,h. We shorten the automaton Dd

s,h to D in the following. Using the notion
of clusters defined in the proof of Theorem 5.14 (page 127), we define H by

• there are two players: P∃, P∀.

• for each state q of G and each state d of D, H contains a copy of a cluster which
we call the (q, d) cluster. For any m ∈ Act∗ with |m| ≤ l, we refer to the state m of
the (q, d) cluster as the (q, d,m) state. We also add two new states qeven and qodd.

• the transitions in H are of three types:

– internal transitions in the cluster are preserved;
– consider a state (q, d,m) where m is a leaf.
∗ If there exists a state q′ such that

∀j ≤ n s(j) = 1⇒ q′ = ∆(q,mβj) where


mβj : Agt→ Act
mβj(A) = m(i− 1)

with xi = βj(A)

I.e. applying the choices of m according to βj in G leads from q to q′.
Then we add a transition from (q, d,m) to (q′, d′, ε) where d′ = succ(d, q′).
∗ If there exists a partition τ of s such that for any κ ≤ |τ |

∆(q,mβj) = qκ where


mβj : Agt→ Act
mβj(A) = m(i− 1)

with xi = βj(A)

succ(d, qκ) = dκ

bq,d,s �s cs,τ
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I.e. the goals enabled by s partition themselves from q based on m along
a partition whose c element is above bq,d,s. Then we add a transition
from (q, d,m) to qeven.
∗ If there exists a partition τ such that

∆(q,mβj) = qκ where


mβj : Agt→ Act
mβj(A) = m(i− 1)

with xi = βj(A)

succ(d, qκ) = dκ

cs,τ ≺s bq,d,s

I.e. the goals enabled by s partition themselves from q based on m along
a partition whose c element is below bq,d,s. Then we add a transition
from (q, d,m) to qodd.

• the set of priorities are the same as in D and each (q, d,m) state has the same
priority as d. We also label the states qeven and qodd respectively by an even and an
odd parity.

In the end, using the same arguments as the ones in the proof of Theorem 5.14,
we get that if P∃ wins the parity game H, we can build aM(∅, ∅, ∅) map that witnesses
G, q |=M(∅,∅,∅) (Qixi)1≤i≤lΓd,s,h and therefore also witnesses G, q |=M(∅,∅,P ) (Qixi)1≤i≤lΓd,s,h.
On the other hand if P∀ winsH, there is aM(∅, ∅, ∅) witness that G, q |=M(∅,∅,∅) (Qixi)1≤i≤l¬Γd,s,h.
Combining this with Theorem 6.5, we get7 that G, q¬ |=M(∅,∅,P ) (Qixi)1≤i≤lΓd,s,h.

Checking the second point

We recall that an element bq,d,s ∈ {0, 1}n is such that

1. G, q |=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,bq,d,s

2. for any h ∈ {0, 1}n with bq,d,s ≺s h, we have G, q 6|=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h

We can check G, q 6|=M(∅,∅,P ) (Qixi)1≤i≤l Γd,s,h for all h ∈ {0, 1}n. The element bq,d,s is the
maximal h relatively to �s for which it holds. The algorithm for the second point derives
from the algorithm of the first point.

7Rigorously, Theorem 6.5 is not proved for formulas with the new operator Γd,s,h. The proof however
also works without modifications.



Conclusion

In this thesis, we investigated the complexity and the semantics of Strategy Logic (SL).
Unlike others temporal logics for multi-agent systems, SL dissociates strategies from play-
ers. This dissociation is one of the keys of SL expressiveness; for example, a strategy δ
can be created at a time t and used at a later time t′. Another important aspect of SL is
the possibility for complex interplay between the different executions of the system. In
ATL∗, there are no strategy-sharing aspects between two executions of the system; the
executions are totally dissociated from one another. SL on the other hand allows an agent
to share its strategy in two executions. SL is therefore a very expressive logic and a good
framework to reason about temporal properties of multi-agents systems.

Complexity

As always, the large expressive power of SL leads to poor complexity results. Mogavero,
Murano, Perelli and Vardi showed that SL admits an undecidable satisfiability problem
and a decidable but NONELEMENTARY model checking problem; we present their algo-
rithm in Chapter 2. We also complete the picture with our own results: SL is at least
PH-hard with respect to the size of the game and the SL[BG] fragment cannot admit an
ELEMENTARY algorithm (thus the complexity of SL[BG] is no better than the one of
SL). Some gaps remain in SL complexity when considering formulas with a fixed num-
ber of alternations and matching the lower and upper bound would greatly improve the
understanding of SL. In particular, results on the complexity relative to the size of the
game would precise the usability of SL for practical cases; until then SL remains mainly
a theoretical framework.

The time between creation and usage

Sometimes in temporal verification, a strategy δ must be created at a time t and used at
a later time t′. At a time t′′ > t′, SL semantics then considers that δ must have knowledge
of the history between t′ and t′′ but also between t to t′. In Chapter 3, we argued that the
situation where δ is deprived the knowledge of what happened between t and t′ is more
adequate to model server/client interactions. For this, we created an alternative version
FSL of SL and study in depth its complexity. Theorems 3.2 and 3.13 show that a large
part of the logic unfortunately becomes undecidable under the new semantics.

In the end, the choice of the logic depends on the practical problem. A property
where a strategy δ is created and used at different times should be modelled in SL if the
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knowledge between creation and usage is available to δ, and in FSL if this knowledge is
not available to δ. If all strategies are created and used at the same time, the fragment
SL[BG] (where the two semantics intersect) is probably the best candidate.

Strategy dependencies

Most extensions of ATL∗ are subject to knowledge-based problems: about the goals of
other agents, about the histories on which strategies are evaluated, about the other agents
strategies. . . Along Chapters 5 to 7, we investigated the degree of knowledge needed
about the universally quantified strategies in order to build the ones which are existen-
tially quantified. There exist many subtleties and one must be careful when dealing with
the dependencies between strategies choices. For example, on our journey to cartography
dependencies, we found that adding all the actions played on the current history com-
plicates the situation greatly. In some case, it allows to transfer informations between
strategies. In particular, Theorems 6.15, 6.16 and 6.17) show that one can locally override
the order of the quantifications. The result not only holds for SL[BG], but also for all
extensions of ATL∗ that allow three or more quantifier alternations.

In simple requests, such as ω-regular conditions or ATL∗ formulas, the strategies only
need local knowledge. In systems where choices are made locally (within a state), we
must forcefully forbid any dependency, otherwise a specification could be erroneously
interpreted as true. On the other hand, when a strategy obeys a known and public
protocol, other strategies can depend on it on its entirety. Finally, global objectives must
allow a total dependence between the strategies. Consider the scenario of an electronic
attack on a system. The attacker may repeat the attack numerous times, gathering
information about the system. He may then guess the protocol in place. To model such
knowledge, the strategies of the attack must have a total knowledge of the strategies of
the system to the point of overriding the order of the quantifications.

Long term perspectives

Among the challenges of this thesis, the dependency problem between strategies stands
out. Many logics are introduced in the literature, but semantical aspects are often omit-
ted, and only the decidability of the satisfiability and model checking problems are con-
sidered. A deeper look at SL revealed many subtleties and all extensions of ATL∗ have
taken the same approach to dependencies: everything is allowed as long as it does not
mess the order of the quantifiers. I hope that the second part of this thesis gives in-
sight into these subtleties, and is convincing the reader that semantical aspects are really
important.

The framework proposed in Chapters 5 and 6 has its merits: it treats the quantifica-
tions as a compact block and allows to bypass the order of the quantifications. However,
it also suffers from severe drawbacks: the syntactic negation is completely dissociated
from the semantic negations. Indeed, the semantic negation swaps the role of existential
and universal strategies but it does not change the knowledge they have about each other;
the syntactic negation reverses both. As shown in Chapter 7, the syntactic negation plays



an important role in the dependency problem. It would be worth developing a framework
better at handling the two notions of negations. Potential answers could be found in the
works on the independence-friendly logic and the dependence logic.

Another imperfection of the framework is that universally quantified strategies are
allowed an important degree of knowledge by the universal quantification on all functions
of the form (Hist → Act)V∀ . In the manuscript, we do not investigate what happens
when both universal and existential strategies are severely limited in their knowledge of
other strategies. A deeper look into this issue would complete our work in an appropriate
manner.
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Glossary

f f g Function of {0, 1}n×{0, 1}n → {0, 1}n such that ffg(i) = 1 if and only if f(i) = 1
and g(i) = 1.

f g g Function of {0, 1}n×{0, 1}n → {0, 1}n such that fgg(i) = 1 if and only if f(i) = 1
or g(i) = 1.

π · ρ Singular concatenation of two histories π and ρ.

Πi∈I(πi) Concatenation of the histories (πi)i∈I following the order on I.

·[ Flat fragment of. . . .

δ−→π Strategy obtained by δ−→π (ρ) = δ(π.ρ).

χ−→π Valuation obtained by χ−→π (x) = χ(x)−→π for any agent or variable x.

χ π−→
Valuation obtained by χ−→π (x) = χ(x)−→π for any agent x.

↑B Upward closure of a set B (of N or {0, 1}n).

Act Set of all actions.

Agt Set of all agents.

AP Set of all atomic propositions.

dom(χ) Domain of definition of χ.

flipb Function of {0, 1}n → {0, 1}n such that flipb(f) = (f f b)g (f f b).

free(φ) Free variables and free agents of φ.

HistG Set of all histories in G.

Inf(π) Set of states appearing infinitely often in π.

L(N ) Language of N (set of all words accepted by N ).

labels Labelling function.

lst(π) Last state of π.
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out(χ, q) Outcome produced by χ starting from q.

Part(s) Set of all partitions of s (as defined in the proof of Theorem 7.1).

PathG Set of all paths in G.

Pref≤ρ Set of all prefix of ρ including ρ..

Pref<ρ Set of all prefix of ρ excluding ρ..

Shiftν(π) History obtained by shifting the counter values in π by a factor ν.

StratG Set of all strategies possible in G.

Tower(a, b) Function returning a tower of exponential of height b and input a.

V∃ Set of existentially quantified variables (of a formula or a quantifier block).

V∀ Set of universally quantified variables (of a formula or a quantifier block).

VS Set of vector of states in the proof of Theorem 7.1.

Weights Weight function of a WCGS.
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Abstract
With the proliferation of computerised devices, software verification is more prevalent
than ever. Since the 80’s, multiple costly software failures have forced both private and
public actors to invest in software verification. Among the main procedures we find the
model-checking, developed by Clarke and Emerson in the 80’s. It consists in abstract-
ing both the system into a formal model and the property of expected behaviour in
some logical formalism, then checking if the property’s abstraction holds on the system’s
abstraction. The difficulty lies in finding appropriate models and efficient algorithms.

In this thesis, we focus on one particular logical formalism: the Strategy Logic SL,
used to express multi-objectives properties of multi-agents systems. Strategy Logic is
a powerful and expressive formalism that treats strategies (i.e. potential behaviours of
the agents) like first-order objects. It can be seen as an analogue to first-order logic for
multi-agents systems. Many semantic choices were made in its definition without much
discussion. Our main contributions are relative to the possibilities left behind by the
original definition.

We first introduce SL and present some complexity results (including some of our
owns). We then outline some other semantic choices within SL’s definition and study
their influence. Third, we study the logic’s behaviour under quantitative multi-agents
systems (games with energy and counter constraints). Finally, we adress the problem of
dependencies within SL[BG], a fragment of SL.

Résumé
De nombreux bugs informatiques ont mis en lumière le besoin de certifier les programmes
informatiques et la vérification de programmes a connu un développement important au
cours des quarante dernières années. Parmi les méthodes possibles, on trouve le model
checking, développé par Clarke et Emerson dans les années 80. Le model checking consiste
à trouver un modèle abstrait pour le système et un formalisme logique pour le comporte-
ment puis a vérifier si le modèle vérifie la propriété exprimée dans la logique. La difficulté
consiste alors à développer des algorithmes efficaces pour les différents formalismes.

Nous nous intéresserons en particulier au formalisme logique de Strategy logic SL, util-
isée sur les systèmes multi-agents. SL est particulièrement expressif de par son traitement
des stratégies (comportements possibles pour les agents du système) comme des objets
du premier ordre. Dans sa définition, divers choix sémantiques sont faits et, bien que ces
choix se justifient, d’autres possibilités n’en sont pas plus absurdes: tel ou tel choix donne
telle ou telle logique et chacune permet d’exprimer des propriétés différentes. Dans cette
thèse, nous étudions les différentes implications des différents choix sémantiques.

Nous commencerons par introduire SL et préciserons l’étendue des connaissances
actuelles. Nous nous intéresserons ensuite aux possibilités non explorées par la séman-
tique originale. Nous étudierons aussi la logique sur des systèmes quantitatifs (ajout de
contraintes d’énergie et de contraintes de compteurs). Finalement, nous examinerons la
question des dépendances dans SL[BG] (un fragment de SL).
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