Hardware implementation of the arithmetic of fields of characteristic 2 and 3

Nicolas Estibals
CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA
Nicolas.Estibals@loria.fr
Introduction

Curve-based cryptography relies on finite fields

- Among them: small characteristic fields (2 and 3)
 - Example: pairings on supersingular elliptic curves

Need for hardware implementations

- Embedded systems (RFID, smart card, sensors, ...)
- High-performance cryptographic coprocessor (bank servers, ...)
 - No native support in CPUs (Partial support in Intel AVX instruction set)
Introduction

- Curve-based cryptography relies on finite fields
 - Among them: small characteristic fields (2 and 3)
 - Example: pairings on supersingular elliptic curves

- Need for hardware implementations
 - Embedded systems (RFID, smart card, sensors, ...)
 - High-performance cryptographic coprocessor (bank servers, ...)
 - No native support in CPUs (Partial support in Intel AVX instruction set)

- Reconfigurable hardware (FPGA)
 - great prototyping platform
 - flexibility when increasing security is needed
Introduction

Curve-based cryptography relies on finite fields

- Among them: small characteristic fields (2 and 3)
 - Example: pairings on supersingular elliptic curves

Need for hardware implementations

- Embedded systems (RFID, smart card, sensors, ...)
- High-performance cryptographic coprocessor (bank servers, ...)
 - No native support in CPUs (Partial support in Intel AVX instruction set)

Reconfigurable hardware (FPGA)

- great prototyping platform
- flexibility when increasing security is needed

Join work with:

- Jean-Luc Beuchat, LCIS, University of Tsukuba, Japan.
- Jérémie Detrey, CARAMEL project-team, INRIA Nancy Grand-Est, France.
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks
 - small embedded multipliers
 - etc.
 - Inside a logic cell:
 - connections to the routing matrix
 - programmable lookup-tables
 - 4 inputs, 1 output
 - 6 inputs, 1 output
 - 6 inputs, 2 outputs
 - optional registers
 - free pipelining
 - more logic for fast carry-propagation
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells

![Diagram of FPGA architecture]
FPGAs are composed of:

- programmable logic cells
- a configurable routing matrix
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells

- Inside a logic cell:
 - connections to the routing matrix
 - programmable lookup-tables:
 - 4 inputs, 1 output
 - 6 inputs, 1 output
 - 6 inputs, 2 outputs
 - optional registers:
 - free pipelining
 - more logic for fast carry-propagation
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks

![Diagram of FPGA architecture with connections and lookup-tables](image-url)
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks
 - small embedded multipliers
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks
 - small embedded multipliers
 - etc.
FPGA architecture

- FPGAs are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks
 - small embedded multipliers
 - etc.

- Inside a logic cell:
 - connections to the routing matrix
 - programmable lookup-tables
 - 4 inputs, 1 output
 - 6 inputs, 1 output
 - 6 inputs, 2 outputs
FPGA architecture

- **FPGAs** are composed of:
 - programmable logic cells
 - a configurable routing matrix
 - input/output cells
 - embedded memory blocks
 - small embedded multipliers
 - etc.

- **Inside a logic cell:**
 - connections to the routing matrix
 - programmable lookup-tables
 - 4 inputs, 1 output
 - 6 inputs, 1 output
 - 6 inputs, 2 outputs
 - optional registers
 - free pipelining
FPGA architecture

FPGAs are composed of:
- programmable logic cells
- a configurable routing matrix
- input/output cells
- embedded memory blocks
- small embedded multipliers
- etc.

Inside a logic cell:
- connections to the routing matrix
- programmable lookup-tables
 - 4 inputs, 1 output
 - 6 inputs, 1 output
 - 6 inputs, 2 outputs
- optional registers
 - free pipelining
- more logic for fast carry-propagation
Outline of the talk

▶ Small characteristic finite fields

▶ Multiplication algorithms and hardware implementation

▶ A finite field coprocessor

▶ Finite fields of composite extension degree

▶ Conclusion
Representation of the elements

- Small characteristic: $p = 2$ or 3

- Polynomial basis:
 - $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq (m-1)}$
 - Reduction modulo $f(x)$ possibly required
Representation of the elements

- Small characteristic: $p = 2$ or 3

- Polynomial basis:
 - $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq(m-1)}$
 - Reduction modulo $f(x)$ possibly required

- Operations in the field
 - Addition
 - Frobenius automorphism: $(.)^p$
 - Multiplication
 - Inversion
 - Itoh & Tsujii algorithm (Fermat’s little theorem)
 - or Extended Euclidean algorithm
Representation of the elements

- Small characteristic: $p = 2$ or 3

- Polynomial basis:
 - $\mathbb{F}_{p^m} = \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]/\leq(m-1)$
 - Reduction modulo $f(x)$ possibly required

- Operations in the field
 - Addition
 - Frobenius automorphism: $(.)^p$
 - Multiplication
 - Inversion
 - Itoh & Tsujii algorithm (Fermat’s little theorem)
 - or Extended Euclidean algorithm
Hardware implementation of addition

\[
\begin{align*}
\text{Add coefficient-wise} \\
\text{Representation of coefficient} \\
\text{• } F_2: \text{two values } \rightarrow \text{one wire, addition is the XOR boolean operator} \\
\text{• } F_3: \text{three values } \rightarrow \text{borrow-save representation on two wires} \\
\end{align*}
\]
Hardware implementation of addition

Add coefficient-wise

\[a_{m-1} b_{m-1} a_{m-2} b_{m-2} \]
Hardware implementation of addition

Add coefficient-wise

Representation of coefficient
- \(\mathbb{F}_2 \): two values → one wire, addition is the XOR boolean operator
- \(\mathbb{F}_3 \): three values → borrow-save representation on two wires
 - Opposite of a coefficient: swap the two wires
Computation of the Frobenius automorphism

\[a^p \equiv (a_{m-1}x^{m-1} + \cdots + a_1 x + a_0)^p \pmod{f(x)} \]

Raising to the \(p \)-th power

Since \((p^i) \equiv 0 \pmod{p} \) when \(i \neq 0 \), non-linear terms disappear

Need reduction

reduce each \(x^p \cdot i \cdot \text{linear combination of the coefficients} \)

\(f \) with low Hamming weight

tri- or pentanomials

each coefficient of the results is the sum of few coefficients

Hardware implementation

Selection of coefficient is free (just wiring!)

Same cost as for a few additions

Depending on LUTs’ size, one LUT per coefficient might be enough
Computation of the Frobenius automorphism

\[a^p \equiv a_{m-1}x^{p(m-1)} + \cdots + a_1x^p + a_0 \pmod{f(x)} \]

- **Raising to the** \(p \)-**th power**

- **Linear operation**
 - Since \(\binom{p}{i} \equiv 0 \pmod{p} \) when \(i \neq 0 \), non-linear terms disappear

- **Need reduction**
 - reduce each \(x^{p \cdot i} \)
 - linear combination of the coefficients
Computation of the Frobenius automorphism

\[a^p \equiv (a_{\sigma_{m-1}(0)} + a_{\sigma_{m-1}(1)} + \cdots)x^{p-1} + \cdots \pmod{f(x)} \]

- Raising to the \(p \)-th power
- Linear operation
 - Since \(\binom{p}{i} \equiv 0 \pmod{p} \) when \(i \neq 0 \), non-linear terms disappear
- Need reduction
 - reduce each \(x^{p^i} \)
 - linear combination of the coefficients
- \(f \) with low Hamming weight
 - tri- or pentanomials
 - each coefficient of the results is the sum of few coefficients
Computation of the Frobenius automorphism

\[a^p \equiv (a_{\sigma_{m-1}(0)} + a_{\sigma_{m-1}(1)} + \cdots) x^{p-1} + \cdots \quad (\text{mod } f(x)) \]

- **Raising to the** \(p \)-**th power**

- **Linear** operation
 - Since \(\binom{p}{i} \equiv 0 \pmod{p} \) when \(i \neq 0 \), non-linear terms disappear

- **Need reduction**
 - reduce each \(x^{p \cdot i} \)
 - linear combination of the coefficients

- **\(f \) with low Hamming weight**
 - tri- or pentanomials
 - each coefficient of the results is the sum of few coefficients

- **Hardware** implementation
 - Selection of coefficient is free (just wiring!)
 - Same cost as for a few additions
 - Depending on LUTs’ size, one LUT per coefficient might be enough
Itoh & Tsujii algorithm

Fermat’s little theorem

\[a^{-1} \equiv a^{p^m-2} \pmod{f} \]
Fermat’s little theorem

\[a^{-1} \equiv a^{p^m-2} \pmod{f} \]

Computation of \(a^{p^m-2} \) only needs:

- \((m - 1)\) Frobenius automorphism applications
- few multiplications
- an inversion in \(\mathbb{F}_p \)
Fermat’s little theorem

\[a^{-1} \equiv a^{p^m - 2} \pmod{f} \]

Computation of \(a^{p^m - 2} \) only needs:

- \((m - 1)\) Frobenius automorphism applications
- few multiplications
- an inversion in \(\mathbb{F}_p \to \text{identity} \) for \(p = 2 \) or 3

No need for supplementary hardware
Itoh & Tsujii algorithm

- Fermat’s little theorem
 \[a^{-1} \equiv a^{p^m - 2} \pmod{f} \]

- Computation of \(a^{p^m - 2} \) only needs:
 - \((m - 1)\) Frobenius automorphism applications
 - few multiplications
 - an inversion in \(\mathbb{F}_p \rightarrow \text{identity} \) for \(p = 2 \) or 3

- No need for supplementary hardware
Outline of the talk

▶ Small characteristic finite fields

▶ Multiplication algorithms and hardware implementation

▶ A finite field coprocessor

▶ Finite fields of composite extension degree

▶ Conclusion
Naive algorithm

- Schoolbook algorithm
 - express each partial product
 - add them

\[
a \cdot b \mod f
\]
Naive algorithm

- Schoolbook algorithm
 - express each partial product
 - add them

- Reduction modulo f needed
Naive algorithm

- **Schoolbook algorithm**
 - express each partial product
 - add them

- **Reduction modulo** f needed

- **Reduce** each partial product sequentially

\[
\begin{align*}
 a \cdot b \\[2pt]
 a \cdot b_0 \\[2pt]
 a \cdot b_1 \\[2pt]
 a \cdot b_{m-2} \\[2pt]
 a \cdot b_{m-1} \cdot x \pmod{f} \\
 a \cdot b \pmod{f}
\end{align*}
\]
Naive algorithm

- **Schoolbook algorithm**
 - express each partial product
 - add them

- Reduction modulo f needed

- **Reduce** and **accumulate** each partial product sequentially

\[a \cdot b \mod f \]
Parallel-serial multiplier

- Operand \(a\) is treated in parallel
- Operand \(b\) is treated \(D\) coefficients per cycle
- Need \(\lceil m/D \rceil\) cycles to complete the product
Karatsuba algorithm

\[A \cdot B = A \cdot B \]

3-way Karatsuba

- split operands in three parts
- only 6 subproducts needed
Karatsuba algorithm

\[A_H B_H X^{2n} + (A_H B_L + A_L B_H) X^n + A_L B_L \]
Karatsuba algorithm

\[A_H B_H X^{2n} + (A_H B_L + A_L B_H)X^n + A_L B_L \]

\[ab' + a'b = (a + a')(b + b') - ab - a'b' \]

\[A_H B_H X^{2n} + ((A_H + A_L)(B_H + B_L) - A_H B_H - A_L B_L)X^n + A_L B_L \]
Karatsuba algorithm

\[A_H \cdot B_H + (A_H + A_L)(B_H + B_L) - A_H B_H - A_L B_L \]
Karatsuba algorithm

\[A_H \cdot B_H + (A_H + A_L) \cdot (B_H + B_L) - A_H B_H - A_L B_L \]

\[a \cdot b' + a' \cdot b = (a + a') \cdot (b + b') - ab - a'b' \]
Karatsuba algorithm

\[A \cdot B = (A_H + A_L)(B_H + B_L) - A_HB_H - A_LB_L \]

\[ab' + a'b = (a + a')(b + b') - ab - a'b' \]
Karatsuba algorithm

3-way Karatsuba

- split operands in three parts
- only 6 subproducts needed
Odd-even split for Karatsuba multiplication

\[A \times B = (A_0 A_1) \times (B_0 B_1) \]

\[A \times B = (A_0 B_1 + A_1 B_0) \times 2 + A_0 B_0 \]

\[A \times B = (A_0 B_1 + A_1 B_0) \times 2 + (A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1 \]
Odd-even split for Karatsuba multiplication

\[(A_O B_O X^2 + A_E B_E) + X(A_O B_E + A_E B_O)\]
Odd-even split for Karatsuba multiplication

\[(A_OB_OX^2 + A_EB_E) + X(A_OB_E + A_EB_O)\]

\[ab' + a'b = (a + a')(b + b') - ab - a'b'\]

\[(A_OB_OX^2 + A_EB_E) + X((A_O + A_E)(B_O + B_E) - A_OB_O - A_EB_E)\]
Odd-even split for Karatsuba multiplication

\[(A \cdot B) = (A_O + A_E)(B_O + B_E) - A_OB_O - A_EB_E \]

\[ab + a'b = (a+ a')(b+ b') - ab - a'b' \]
Odd-even split for Karatsuba multiplication

\[A \cdot B \]

\[(A_O B_O X_2 + A_E B_E) + X(A_O B_E + A_E B_O) \]

\[A \cdot B \]

\[ab + a'b = (a + a')(b + b') - ab - a'b' \]

\[(A_O B_O X_2 + A_E B_E) + X((A_O + A_E)(B_O + B_E) - A_O B_O - A_E B_E) \]
Fully parallel pipelined Karatsuba multiplier

Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result

Fully parallel evaluation of the subproducts

Diagram:
- Splitter
- Recomposer
- $A \cdot B$
Fully parallel pipelined Karatsuba multiplier

Karatsuba-like algorithm:
- split the operands
- compute the subproducts
- recompose the result

Fully parallel evaluation of the subproducts

Recursive scheme
- eventually use different multiplication algorithms
- end with the quadratic paper-and-pencil algorithm
Fully parallel pipelined Karatsuba multiplier

▶ Karatsuba-like algorithm:
 • split the operands
 • compute the subproducts
 • recompose the result

▶ Fully parallel evaluation of the subproducts

▶ Recursive scheme
 • eventually use different multiplication algorithms
 • end with the quadratic paper-and-pencil algorithm

▶ Pipelined
 • with the help of optional registers
 • cut the critical path
 • increase the frequency
Fully parallel pipelined Karatsuba multiplier

▶ Karatsuba-like algorithm:
 • split the operands
 • compute the subproducts
 • recompose the result

▶ Fully parallel evaluation of the subproducts

▶ Recursive scheme
 • eventually use different multiplication algorithms
 • end with the quadratic paper-and-pencil algorithm

▶ Pipelined
 • with the help of optional registers
 • cut the critical path
 • increase the frequency

▶ Final reduction modulo f
An example of multipliers over $\mathbb{F}_{3^{239}}$

$\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field
An example of multipliers over $\mathbb{F}_{3^{239}}$

- $\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field

- Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

- Post-place-and-route estimation for Xilinx Virtex-II Pro
 - ~ 50000 slices (2 LUTs $4 \rightarrow 1$ per slice)
 - 200 MHz
 - Computes $200 \cdot 10^6$ products per second
 - 4000 products per second and per slice

- Comparison with parallel-serial multiplier with $D = 16$
 - ~ 8700 slices
 - 180 MHz
 - Computes $12 \cdot 10^6$ products per second
 - 1400 products per second and per slice
An example of multipliers over $\mathbb{F}_{3^{239}}$

$\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field

Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

Choose to have 7 pipeline stages
An example of multipliers over $\mathbb{F}_{3^{239}}$

$\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field

Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

Choose to have 7 pipeline stages

Post-place-and-route estimation for Xilinx Virtex-II Pro

- ~ 50000 slices (2 LUTs 4 \rightarrow 1 per slice)
- 200 MHz
- computes $200 \cdot 10^6$ products per second
An example of multipliers over $\mathbb{F}_{3^{239}}$

$\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field

Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

Choose to have 7 pipeline stages

Post-place-and-route estimation for Xilinx Virtex-II Pro
- ~ 50000 slices (2 LUTs 4 \rightarrow 1 per slice)
- 200 MHz
- computes $200 \cdot 10^6$ products per second

Comparison with parallel-serial multiplier with $D = 16$
- ~ 8700 slices
- 180 MHz
- computes $12 \cdot 10^6$ products per second
An example of multipliers over $\mathbb{F}_{3^{239}}$

- $\mathbb{F}_{3^{239}} = \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \rightarrow \sim 380$-bit field

- Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

- Choose to have 7 pipeline stages

- Post-place-and-route estimation for Xilinx Virtex-II Pro
 - ~ 50000 slices (2 LUTs $4 \rightarrow 1$ per slice)
 - 200 MHz
 - computes $200 \cdot 10^6$ products per second
 - 4000 products per second and per slice

- Comparison with parallel-serial multiplier with $D = 16$
 - ~ 8700 slices
 - 180 MHz
 - computes $12 \cdot 10^6$ products per second
 - 1400 products per second and per slice
Outline of the talk

▶ Small characteristic finite fields

▶ Multiplication algorithms and hardware implementation

▶ A finite field coprocessor

▶ Finite fields of composite extension degree

▶ Conclusion
Designing a finite field coprocessor

- Determine the specific needs of operations of your computation
Designing a finite field coprocessor

- Determine the **specific needs** of operations of your computation
- **Example:** final exponentiation in pairing computation
Designing a finite field coprocessor

► Determine the **specific needs** of operations of your computation

► **Example**: final exponentiation in pairing computation
 - Low **silicon footprint** design

![Diagram of Register file and Unified operator]

- **Register file**
- **Unified operator**
 - addition / subtraction
 - Frobenius (\(\cdot^3\))

\[\text{Parallel–serial multiplier} \quad D \text{ coeffs / cycle} \quad \lceil m / D \rceil \text{ cycles / product}\]
Designing a finite field coprocessor

- Determine the **specific needs** of operations of your computation

- **Example**: final exponentiation in pairing computation
 - Low **silicon footprint** design
 - Many multiplications

```
Parallel–serial multiplier
D coeffs / cycle
⌈m/D⌉ cycles / product

Unified operator
addition / subtraction
Frobenius (·)^3

Register file
```

N. Estibals — Hardware implementation of the arithmetic of fields of characteristic 2 and 3
Designing a finite field coprocessor

- Determine the **specific needs** of operations of your computation

- **Example:** final exponentiation in pairing computation
 - Low **silicon footprint** design
 - Many multiplications
 - Long **chains of Frobenius** automorphism application

```
Register file
Unified operator
  addition / subtraction
  Frobenius (·)^3
  double Frobenius (·)^9
  feedback loop
Parallel–serial multiplier
  D coeffs / cycle
  \[ \lceil m/D \rceil \] cycles / product
```
Designing a finite field coprocessor

- Determine the **specific needs** of operations of your computation

Example: final exponentiation in pairing computation

- Low **silicon footprint** design
- Many multiplications
- Long chains of Frobenius automorphism application
- Only one inversion

![Diagram](image)

- **Register file**
- **Unified operator**
 - addition / subtraction
 - Frobenius $(\cdot)^3$
 - double Frobenius $(\cdot)^9$
 - feedback loop
- **Parallel–serial multiplier**
 - D coeffs / cycle
 - $\lceil m/D \rceil$ cycles / product
Detailed architecture of the coprocessor (char. 3)
Outline of the talk

▶ Small characteristic finite fields

▶ Multiplication algorithms and hardware implementation

▶ A finite field coprocessor

▶ Finite fields of composite extension degree

▶ Conclusion
Composite extension degree

- Needed field might have a composite extension degree

- Tower field construction:
 - \(\mathbb{F}_{p^m \cdot n} = \mathbb{F}_{p^m}[y]/(g(y)) \)
 - \(g \) irreducible polynomial of degree \(n \)
Composite extension degree

- Needed field might have a composite extension degree

- **Tower field** construction:
 - $\mathbb{F}_{p^m \cdot n} = \mathbb{F}_{p^m}[y]/(g(y))$
 - g irreducible polynomial of degree n

- Reducing the **datapath**
 - design a **coprocessor** for \mathbb{F}_{p^m}
 - **program it** to implement arithmetic of $\mathbb{F}_{p^m \cdot n}$
 - reduce **area** of the design

- **Operations**
 - same algorithms
 - coefficients are now in \mathbb{F}_{p^m}
Some other multiplication algorithms

- Subproducts between field elements, not polynomials
 - no overlapping at reconstruction step

- Apply reduction modulo g
 - some subproducts may not be needed after reconstruction step
Some other multiplication algorithms

- Subproducts between field elements, not polynomials
 - no overlapping at reconstruction step

- Apply reduction modulo g
 - some subproducts may not be needed after reconstruction step

- Toom–Cook algorithms
 - evaluate and interpolate at some points
 - \mathbb{F}_p does not provide enough interpolation points
 - hardly usable in this case
Some other multiplication algorithms

- Subproducts between field elements, not polynomials
 - no overlapping at reconstruction step

- Apply reduction modulo g
 - some subproducts may not be needed after reconstruction step

- Toom–Cook algorithms
 - evaluate and interpolate at some points
 - \mathbb{F}_p does not provide enough interpolation points
 - hardly usable in this case

- CRT-based algorithms
 - evaluate the product modulo some irreducible polynomials
 - reconstruct the result thanks to CRT
Some other multiplication algorithms

- Subproducts between field elements, not polynomials
 - no overlapping at reconstruction step

- Apply reduction modulo g
 - some subproducts may not be needed after reconstruction step

- Toom–Cook algorithms
 - evaluate and interpolate at some points
 - \mathbb{F}_p does not provide enough interpolation points
 - hardly usable in this case

- CRT-based algorithms
 - evaluate the product modulo some irreducible polynomials
 - reconstruct the result thanks to CRT

- Montgomery’s Karatsuba-like formulae
 - ad hoc formulae for degree 4, 5 and 6 polynomials

- Algorithmic search for optimal formulae
 - Work in progress with J. Detrey, R. Barbulescu and P. Zimmermann
Choosing multiplication algorithm

* Evaluate the cost of the different algorithms
 * choice depend on the hardware implementation of \mathbb{F}_{p^m}
 * additions not always negligible
Choosing multiplication algorithm

- Evaluate the cost of the different algorithms
 - choice depend on the hardware implementation of \mathbb{F}_p
 - additions not always negligible

Multiplication in \mathbb{F}_3

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>\times</th>
<th>\plus</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoolbook</td>
<td>25</td>
<td>24</td>
<td>0.96</td>
</tr>
<tr>
<td>One-level Karatsuba (Montgomery’s trick)</td>
<td>21</td>
<td>29</td>
<td>1.38</td>
</tr>
<tr>
<td>Recursive Karatsuba</td>
<td>15</td>
<td>39</td>
<td>2.60</td>
</tr>
<tr>
<td>Recursive Karatsuba (Montgomery’s trick)</td>
<td>14</td>
<td>43</td>
<td>3.07</td>
</tr>
<tr>
<td>Montgomery’s Karatsuba-like</td>
<td>13</td>
<td>54</td>
<td>4.153</td>
</tr>
<tr>
<td>CRT-based</td>
<td>12</td>
<td>53</td>
<td>4.42</td>
</tr>
</tbody>
</table>
Choosing multiplication algorithm

- Evaluate the cost of the different algorithms
 - choice depend on the hardware implementation of \mathbb{F}_{p^m}
 - additions not always negligible

Multiplication in \mathbb{F}_{3^m5}

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>\times</th>
<th>$+$</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoolbook</td>
<td>25</td>
<td>24</td>
<td>0.96</td>
</tr>
<tr>
<td>One-level Karatsuba (Montgomery’s trick)</td>
<td>21</td>
<td>29</td>
<td>1.38</td>
</tr>
<tr>
<td>Recursive Karatsuba</td>
<td>15</td>
<td>39</td>
<td>2.60</td>
</tr>
<tr>
<td>Recursive Karatsuba (Montgomery’s trick)</td>
<td>14</td>
<td>43</td>
<td>3.07</td>
</tr>
<tr>
<td>Montgomery’s Karatsuba-like</td>
<td>13</td>
<td>54</td>
<td>4.153</td>
</tr>
<tr>
<td>CRT-based</td>
<td>12</td>
<td>53</td>
<td>4.42</td>
</tr>
</tbody>
</table>

Multiplication in \mathbb{F}_{2^m7}

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>\times</th>
<th>$+$</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoolbook</td>
<td>49</td>
<td>48</td>
<td>0.98</td>
</tr>
<tr>
<td>One-level Karatsuba (Montgomery’s trick)</td>
<td>40</td>
<td>52</td>
<td>1.30</td>
</tr>
<tr>
<td>Recursive Karatsuba</td>
<td>25</td>
<td>51</td>
<td>2.04</td>
</tr>
<tr>
<td>Recursive Karatsuba (Montgomery’s trick)</td>
<td>23</td>
<td>76</td>
<td>3.30</td>
</tr>
<tr>
<td>Montgomery’s Karatsuba-like</td>
<td>22</td>
<td>84</td>
<td>3.818</td>
</tr>
<tr>
<td>CRT-based</td>
<td>22</td>
<td>88</td>
<td>4.05</td>
</tr>
</tbody>
</table>
Outline of the talk

▶ Small characteristic finite fields

▶ Multiplication algorithms and hardware implementation

▶ A finite field coprocessor

▶ Finite fields of composite extension degree

▶ Conclusion
Accelarators for curve-based cryptography rely on finite field arithmetic.
Conclusion

- Accelerators for curve-based cryptography rely on finite field arithmetic

- Many criterion for optimization
 - area: low cost devices
Conclusion

- Accelerators for curve-based cryptography rely on finite field arithmetic.

- Many criterion for optimization:
 - area: low cost devices
 - speed: if security should not introduce latency
Conclusion

- Accelerators for curve-based cryptography rely on finite field arithmetic.

- Many criterion for optimization:
 - area: low cost devices
 - speed: if security should not introduce latency
 - area-speed tradeoff: high-throughput application
Conclusion

- Accelerators for curve-based cryptography rely on finite field arithmetic

- Many criterion for optimization
 - area: low cost devices
 - speed: if security should not introduce latency
 - area-speed tradeoff: high-throughput application

- Multiplication is the critical operation
 - many implementation strategies
Conclusion

- Accelerators for curve-based cryptography rely on finite field arithmetic.

- Many criterion for optimization:
 - **area**: low cost devices
 - **speed**: if security should not introduce latency
 - **area-speed tradeoff**: high-throughput application

- **Multiplication** is the critical operation:
 - many implementation strategies

- Need for algorithms/hardware codesign
Thank you for your attention!

Questions?