Fast hardware accelerator for the Tate pairing based on a fully parallel Karatsuba multiplier

Nicolas Estibals
CACAO project-team, LORIA
INRIA Nancy – Grand-Est
Nicolas.Estibals@loria.fr

Joint work with:

Jean-Luc Beuchat
LCIS, University of Tsukuba, Japan

Jérémie Detrey
CACAO, LORIA, Nancy, France

Eiji Okamoto
LCIS, University of Tsukuba, Japan

Francisco Rodríguez-Henríquez
CINVESTAV-IPN, Mexico City, Mexico
Outline of the talk

- Context
- Reduced Tate pairing
- Non-reduced Tate pairing
- Fully parallel Karatsuba multiplier
- Final Exponentiation
- Results & Conclusion
- Appendix
Pairing-based cryptography

▸ Origin of pairings in cryptography
 • attack against some elliptic curves
 ✫ Menezes–Okamoto–Vanstone, 1993
 ✫ Frey–Rück, 1994
Pairing-based cryptography

- Origin of pairings in cryptography
 - **attack** against some elliptic curves
 - Menezes–Okamoto–Vanstone, 1993
 - Frey–Rück, 1994

- Constructive properties
 - **One-round three party key exchange**
 - Joux, 2000
 - **short digital signature**
 - Boneh–Lynn–Shacham, 2001
 - Zang–Safavi–Naini–Susilo, 2004
 - **identity-based encryption**
 - Boneh–Franklin, 2001
 - Sakai–Kasahara, 2001
 - ...
Pairing-based cryptography

▶ Origin of pairings in cryptography
 • attack against some elliptic curves
 ◦ Menezes–Okamoto–Vanstone, 1993
 ◦ Frey–Rück, 1994

▶ Constructive properties
 • One-round three party key exchange
 ◦ Joux, 2000
 • short digital signature
 ◦ Boneh–Lynn–Shacham, 2001
 ◦ Zang–Safavi–Naini–Susilo, 2004
 • identity-based encryption
 ◦ Boneh–Franklin, 2001
 ◦ Sakai–Kasahara, 2001
 • ...

▶ Standardization in progress
 • ISO/IEC 14888-3
 • IEEE P1363.3
Which pairing?

▶ Reduced Tate pairing
 - common choice for cryptographic applications
Which pairing?

- Reduced Tate pairing
 - common choice for cryptographic applications

- Pairing on supersingular curves
 - easier arithmetic on the curve
 - lower security

- Small characteristic
 - higher embedding degree
 - higher security
Which pairing?

- **Reduced Tate** pairing
 - common choice for cryptographic applications

- **Pairing on supersingular curves**
 - easier arithmetic on the curve
 - lower security

- **Small characteristic**
 - higher embedding degree
 - higher **security**

- Need for **dedicated hardware coprocessor**
 - area optimized (RFID, embedded systems, ...)
 - speed optimized (bank servers, ...)

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Which pairing?

- **Reduced Tate** pairing
 - common choice for cryptographic applications

- **Pairing on** supersingular curves
 - easier arithmetic on the curve
 - lower security

- **Small characteristic**
 - higher embedding degree
 - higher security

- Need for dedicated hardware coprocessor
 - area optimized (RFID, embedded systems, ...)
 - speed optimized (bank servers, ...)

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Outline of the talk

▶ Context

▶ Reduced Tate pairing

▶ Non-reduced Tate pairing

▶ Fully parallel Karatsuba multiplier

▶ Final Exponentiation

▶ Results & Conclusion

▶ Appendix
Pairing is a bilinear map

- $G_1 = \langle P \rangle$: additively-written cyclic group of prime order $\#G_1 = \ell$
- G_2: multiplicatively-written cyclic group of order $\#G_2 = \#G_1 = \ell$
Pairing is a bilinear map

- $G_1 = \langle P \rangle$: additively-written cyclic group of prime order $\#G_1 = \ell$
- G_2: multiplicatively-written cyclic group of order $\#G_2 = \#G_1 = \ell$
- $\hat{e} : G_1 \times G_1 \rightarrow G_2$ is a bilinear pairing iff:
 - non-degeneracy: $\hat{e}(P, P) \neq 1_{G_2}$
 - bilinearity:
 - $\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$
 - $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$
 - computability: \hat{e} can be efficiently computed
Pairing is a bilinear map

- $\mathbb{G}_1 = \langle P \rangle$: additively-written cyclic group of prime order $\# \mathbb{G}_1 = \ell$
- \mathbb{G}_2: multiplicatively-written cyclic group of order $\# \mathbb{G}_2 = \# \mathbb{G}_1 = \ell$
- $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ is a bilinear pairing iff:
 - non-degeneracy: $\hat{e}(P, P) \neq 1_{\mathbb{G}_2}$
 - bilinearity:
 $\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R)$
 $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2)$
 - computability: \hat{e} can be efficiently computed
- Important property for cryptographic applications:

 $\hat{e}(k_1 P, k_2 P) = \hat{e}(k_2 P, k_1 P) = \hat{e}(P, P)^{k_1 k_2}$

 Combining secrets without having to reveal them!
Pairing over elliptic curve

Reduced Tate pairing
Pairing over elliptic curve

Input: two points P and Q in $G_1 = E(\mathbb{F}_q)[\ell]$, where:

- $q = p, 2^m$ or 3^m
- E is an elliptic curve over \mathbb{F}_q
- ℓ is a large prime factor of $\#E(\mathbb{F}_q)$
- $G_1 = E(\mathbb{F}_q)[\ell] = \{ P \in E(\mathbb{F}_q) | \ell P = O \}$

Reduced Tate pairing

$E(\mathbb{F}_q)[\ell]$
Pairing over elliptic curve

Input: two points P and Q in $G_1 = E(\mathbb{F}_q)[\ell]$, where:
- $q = p$, 2^m or 3^m
- E is an elliptic curve over \mathbb{F}_q
- ℓ is a large prime factor of $\#E(\mathbb{F}_q)$
- $G_1 = E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) | \ell P = O\}$

Output: an ℓ-th root of unity
- $G_2 = \mu_\ell = \left\{ U \in \mathbb{F}_q^\times | U^\ell = 1 \right\}$
- k is the embedding degree: the smallest integer such that $\mu_\ell \subseteq \mathbb{F}_q^\times$
Security considerations

\[\hat{e} : E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \rightarrow \mu_\ell \subseteq \mathbb{F}_{q^k} \]

- Security should be enough in \(G_1 \) and in \(G_2 \)
- **Supersingular** curves: \(k \) is bounded
- Some typical cases:

<table>
<thead>
<tr>
<th>Base field ((\mathbb{F}_q))</th>
<th>(\mathbb{F}_{2^m})</th>
<th>(\mathbb{F}_{3^m})</th>
<th>(\mathbb{F}_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedding degree ((k))</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Lower security (\sim 2^{64})</td>
<td>(m = 239)</td>
<td>(m = 97)</td>
<td>(</td>
</tr>
<tr>
<td>Medium security (\sim 2^{80})</td>
<td>(m = 373)</td>
<td>(m = 163)</td>
<td>(</td>
</tr>
<tr>
<td>Higher security (\sim 2^{128})</td>
<td>(m = 1103)</td>
<td>(m = 503)</td>
<td>(</td>
</tr>
</tbody>
</table>
Security considerations

\[\hat{e} : E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_q)[\ell] \rightarrow \mu_{\ell} \subseteq \mathbb{F}_q^* \]

- Security should be enough in \(G_1 \) and in \(G_2 \)
- Supersingular curves: \(k \) is bounded
- Some typical cases:

<table>
<thead>
<tr>
<th>Base field ((\mathbb{F}_q))</th>
<th>(\mathbb{F}_{2^m})</th>
<th>(\mathbb{F}_{3^m})</th>
<th>(\mathbb{F}_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedding degree ((k))</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Lower security ((\sim 2^{64}))</td>
<td>(m = 239)</td>
<td>(m = 97)</td>
<td>(</td>
</tr>
<tr>
<td>Medium security ((\sim 2^{80}))</td>
<td>(m = 373)</td>
<td>(m = 163)</td>
<td>(</td>
</tr>
<tr>
<td>Higher security ((\sim 2^{128}))</td>
<td>(m = 1103)</td>
<td>(m = 503)</td>
<td>(</td>
</tr>
</tbody>
</table>

- \(G_2 = \mu_{\ell} \subseteq \mathbb{F}_q^* \) is the bottleneck
- Low characteristic \((p = 2 \text{ or } 3)\) because of higher embedding degree
Reduced Tate pairing

\[E(F_{p^m})[\ell] \]

\[\mu_\ell \subseteq F_{p^{km}}^\times \]

Two very different steps:
• non-reduced pairing: Miller’s iterative algorithm
• final exponentiation: irregular computation

Idea: use two separate coprocessors
• pipeline the two computations
• balance the latencies
Reduced Tate pairing

\[E(\mathbb{F}_{p^m})[\ell] \]

\[\mu \subseteq \mathbb{F}_{p_{km}}^{\times} \]

Two very different steps:
Reduced Tate pairing

Two very different steps:

- non-reduced pairing: Miller’s iterative algorithm
Reduced Tate pairing

Two very different steps:

- non-reduced pairing: Miller’s iterative algorithm
- final exponention: irregular computation
Reduced Tate pairing

Two very different steps:
- non-reduced pairing: Miller’s iterative algorithm
- final exponentiation: irregular computation

Idea: use two separate coprocessors
Reduced Tate pairing

Two very different steps:
- non-reduced pairing: Miller’s iterative algorithm
- final exponentiation: irregular computation

Idea: use two separate coprocessors
- pipeline the two computations
- balance the latencies
Outline of the talk

▶ Context

▶ Reduced Tate pairing

▶ Non-reduced Tate pairing

▶ Fully parallel Karatsuba multiplier

▶ Final Exponentiation

▶ Results & Conclusion

▶ Appendix
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

```latex
\begin{align*}
\text{for } i & \leftarrow 0 \text{ to } (m - 1)/2 \text{ do } \\
\text{end for}
\end{align*}
```
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:

```plaintext
for i ← 0 to (m − 1)/2 do
    \(x_P \leftarrow \sqrt[3]{x_P}\) ; \(y_P \leftarrow \sqrt[3]{y_P}\)
    \(x_Q \leftarrow x_Q^3\) ; \(y_Q \leftarrow y_Q^3\)
    \(t \leftarrow x_P + x_Q\) \(u \leftarrow y_P y_Q\)
    \(S \leftarrow −t^2 ± uσ − tρ − ρ^2\)
    \(R \leftarrow R \cdot S\)
end for
```
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates

```plaintext
for i ← 0 to (m − 1)/2 do
    $x_P ← \sqrt[3]{x_P}$ ; $y_P ← \sqrt[3]{y_P}$
    $x_Q ← x_Q^3$ ; $y_Q ← y_Q^3$
    $t ← x_P + x_Q$  $u ← y_P y_Q$
    $S ← -t^2 ± u\sigma - t\rho - \rho^2$
    $R ← R \cdot S$
end for
```
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation

```latex
\begin{align*}
\text{for } i &\leftarrow 0 \text{ to } (m - 1)/2 \text{ do} \\
\quad &\text{for } i \leftarrow 0 \text{ to } (m - 1)/2 \text{ do} \\
&\quad t \leftarrow x_P + x_Q\text{; } u \leftarrow y_P y_Q \text{; } S \leftarrow -t^2 \pm u \sigma - t \rho - \rho^2 \text{; } R \leftarrow R \cdot S.
\end{align*}
```
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor

```plaintext
for $i \leftarrow 0$ to $(m - 1)/2$ do
    \( x_P \leftarrow \sqrt[3]{x_P} \); \( y_P \leftarrow \sqrt[3]{y_P} \)
    \( x_Q \leftarrow x_Q^3 \); \( y_Q \leftarrow y_Q^3 \)
    \( t \leftarrow x_P + x_Q \); \( u \leftarrow y_P y_Q \)
    \( S \leftarrow -t^2 \pm u \sigma - t \rho - \rho^2 \)
    \( R \leftarrow R \cdot S \)
end for
```

Objective: keep the multiplier pipeline busy
- 7-stages pipeline
- one product per cycle
- 17 cycles per iteration

Sparse multiplication over \mathbb{F}_{3^m} (Gorla et al., SAC 2007)
- $12 \times , 59 +$ over \mathbb{F}_{3^m} (Beuchat et al., ARITH 18)
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor

- Multiplication is critical

- Fully parallel, pipelined multiplier over \mathbb{F}_{3^m}

for $i \leftarrow 0$ to $(m - 1)/2$ do

1. $x_P \leftarrow \sqrt[3]{x_P}$; $y_P \leftarrow \sqrt[3]{y_P}$
 $x_Q \leftarrow x_Q^3$; $y_Q \leftarrow y_Q^3$

2. $t \leftarrow x_P + x_Q$; $u \leftarrow y_P y_Q$
 $S \leftarrow -t^2 \pm u \sigma - t \rho - \rho^2$

3. $R \leftarrow R \cdot S$

end for

Sparse multiplication over \mathbb{F}_{3^m} (Gorla et al., SAC 2007)

Objective: keep the multiplier pipeline busy

• 7-stages pipeline
• one product per cycle
• 17 cycles per iteration
A closer look on Miller’s loop (char. 3)

- \(\eta_T \) pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor

- Multiplication is critical

- Fully parallel, pipelined multiplier over \(\mathbb{F}_{3^m} \)

- Sparse multiplication over \(\mathbb{F}_{3^6m} \)

```plaintext
for i ← 0 to (m − 1)/2 do
  \begin{align*}
  t &← x_P + x_Q; \quad u ← y_P y_Q \\
  S &← −t^2 ± uσ − tρ − ρ^2
  \end{align*}
  \begin{align*}
  &2 \sqrt{3}, 2 + \\
  &1 \times (\mathbb{F}_{3^6m})
\end{align*}
end for
```
A closer look on Miller’s loop (char. 3)

- **ηₜ** pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor

- Multiplication is critical

- Fully parallel, pipelined
 multiplier over \(F_{3^m} \)

- Sparse multiplication over \(F_{36^m} \)
 - 12 × and 59 + over \(F_{3^m} \) (Gorla et al., SAC 2007)

```plaintext
for i ← 0 to (m − 1)/2 do
    t ← \( x_P + x_Q \); u ← \( y_P y_Q \)
    S ← \( -t^2 ± u\sigma - t\rho - \rho^2 \)
    \( R ← R \cdot S \)
end for
```
A closer look on Miller’s loop (char. 3)

- η_T pairing: shorter loop

- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor

- Multiplication is critical

- Fully parallel, pipelined multiplier over \mathbb{F}_{3^m}

- Sparse multiplication over $\mathbb{F}_{3^{6m}}$
 - $12 \times$ and $59 +$ over \mathbb{F}_{3^m} (Gorla et al., SAC 2007)
 - $15 \times$ and $29 +$ over \mathbb{F}_{3^m} (Beuchat et al., ARITH 18)

```
for i ← 0 to (m − 1)/2 do
    $t ← x_P + x_Q$ ; $u ← y_P y_Q$
    $S ← -t^2 ± u\sigma − t\rho − \rho^2$
    $R ← R · S$
end for
```
A closer look on Miller’s loop (char. 3)

- \(\eta_T \) pairing: shorter loop
- Based on Miller’s algorithm:
 1. update of point coordinates
 2. computation of line equation
 3. accumulation of the new factor
- Multiplication is critical
- Fully parallel, pipelined multiplier over \(\mathbb{F}_{3^m} \)
- Sparse multiplication over \(\mathbb{F}_{3^{6m}} \)
 - 12 \(\times \) and 59 + over \(\mathbb{F}_{3^m} \) (Gorla et al., SAC 2007)
 - 15 \(\times \) and 29 + over \(\mathbb{F}_{3^m} \) (Beuchat et al., ARITH 18)
- Objective: keep the multiplier pipeline busy
 - 7-stages pipeline
 - one product per cycle
 - 17 cycles per iteration

\[
\begin{align*}
\text{for } i & \leftarrow 0 \text{ to } (m - 1)/2 \text{ do} \\
1 & \quad x_P & \leftarrow & \sqrt[3]{x_P} \\
& & & y_P \leftarrow \sqrt[3]{y_P} \\
& & & x_Q \leftarrow x_Q^3 \\
& & & y_Q \leftarrow y_Q^3 \\
2 & \quad t & \leftarrow & x_P + x_Q \\
& & & u \leftarrow y_P y_Q \\
& & & S \leftarrow -t^2 \pm u \sigma - t \rho - \rho^2 \\
3 & \quad R & \leftarrow & R \cdot S
\end{align*}
\]

Sparse multiplication over \(\mathbb{F}_{3^{6m}} \)

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coprocessor for the non-reduced pairing (char. 3)

Parallel multiplier
- 7 pipeline stages
- 1 product / cycle

Operands preparation
Post-processing

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coprocessor for the non-reduced pairing (char. 3)

- Operands preparation
- Parallel multiplier
 7 pipeline stages
 1 product / cycle
- Post-processing
Coprocessor for the non-reduced pairing (char. 3)

Operands preparation

Parallel multiplier
7 pipeline stages
1 product / cycle

Post-processing
Coprocessor for the non-reduced pairing (char. 3)
Coprocessor for the non-reduced pairing (char. 3)

- Register file
- Parallel multiplier
 - 7 pipeline stages
 - 1 product / cycle
- Operands preparation
- Coordinates update
- Post-processing
Detailed architecture of the coprocessor (char. 3)

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coprocessor for the non-reduced pairing (char. 2)

- Similar algorithm
 - \(\frac{m+1}{2} \) iterations

Diagram:
- Register file
- Parallel multiplier
 - 5 pipeline stages
 - 1 product / cycle
- Post-processing
- Coefficients preparation
- Post-processing
- X
- Coordinates update
Coprocessor for the non-reduced pairing (char. 2)

- Similar algorithm
 - $\frac{m+1}{2}$ iterations

- But some differences:
 - only 6 products over \mathbb{F}_{2^m} per iteration
 - different scheduling
 - 5-stages multiplier pipeline

Diagram:

- Coordinates update
- Operands preparation
- Parallel multiplier
 - 5 pipeline stages
 - 1 product / cycle
- Post-processing
- Register file
- Parallel multiplier
 - 5 pipeline stages
 - 1 product / cycle
- Post-processing

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coproessor for the non-reduced pairing (char. 2)

Similar algorithm
- \(\frac{m+1}{2} \) iterations

But some differences:
- only 6 products over \(\mathbb{F}_{2^m} \) per iteration
- different scheduling
- 5-stages multiplier pipeline

No need for a register file
Coprocessor for the non-reduced pairing (char. 2)

- Similar algorithm
 - $\frac{m+1}{2}$ iterations

- But some differences:
 - only 6 products over \mathbb{F}_{2^m} per iteration
 - different scheduling
 - 5-stages multiplier pipeline

- No need for a register file
 - all data in shift register
 - more complex architecture
Detailed architecture of the coprocessor (char. 2)
Outline of the talk

- Context
- Reduced Tate pairing
- Non-reduced Tate pairing
- Fully parallel Karatsuba multiplier
- Final Exponentiation
- Results & Conclusion
- Appendix
Finite field representation and Karatsuba’s formula

- Polynomial basis:
 - $\mathbb{F}_p^m \cong \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m in $\mathbb{F}_p[x]$
 - \mathbb{F}_p^m represented by $\mathbb{F}_p[x]^{\leq (m-1)}$
Finite field representation and Karatsuba’s formula

- Polynomial basis:
 - $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m in $\mathbb{F}_p[x]$
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq (m-1)}$

- Karatsuba algorithm for polynomials
Finite field representation and Karatsuba’s formula

- Polynomial basis:
 - \(\mathbb{F}_p^m \cong \mathbb{F}_p[x]/(f(x)) \)
 - \(f(x) \) irreducible polynomial of degree \(m \) in \(\mathbb{F}_p[x] \)
 - \(\mathbb{F}_p^m \) represented by \(\mathbb{F}_p[x]^{\leq (m-1)} \)

- Karatsuba algorithm for polynomials

\[
A_H B_H X^{2n} + (A_H B_L + A_L B_H)X^n + A_L B_L
\]
Finite field representation and Karatsuba’s formula

- Polynomial basis:
 - $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m in $\mathbb{F}_p[x]$
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq (m-1)}$

- Karatsuba algorithm for polynomials

$$a b' + a' b = (a + a')(b + b') - a b - a' b'$$

$A_H B_H X^{2n} + (A_H B_L + A_L B_H) X^n + A_L B_L$

$A_H B_H X^{2n} + ((A_H + A_L)(B_H + B_L) - A_H B_H - A_L B_L) X^n + A_L B_L$
Finite field representation and Karatsuba’s formula

- **Polynomial basis:**
 - \(\mathbb{F}_p^m \cong \mathbb{F}_p[x]/(f(x)) \)
 - \(f(x) \) irreducible polynomial of degree \(m \) in \(\mathbb{F}_p[x] \)
 - \(\mathbb{F}_p^m \) represented by \(\mathbb{F}_p[x]^{\leq (m-1)} \)

- **Karatsuba algorithm for polynomials**
Finite field representation and Karatsuba’s formula

- **Polynomial basis:**
 - $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m in $\mathbb{F}_p[x]$
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq (m-1)}$

- **Karatsuba algorithm for polynomials**
Finite field representation and Karatsuba’s formula

- Polynomial basis:
 - $\mathbb{F}_{p^m} \cong \mathbb{F}_p[x]/(f(x))$
 - $f(x)$ irreducible polynomial of degree m in $\mathbb{F}_p[x]$
 - \mathbb{F}_{p^m} represented by $\mathbb{F}_p[x]^{\leq (m-1)}$

- Karatsuba algorithm for polynomials
Odd–even split for Karatsuba multiplication

\[A \cdot B \]
Odd–even split for Karatsuba multiplication

\[(A_O B_O X^2 + A_E B_E) + X(A_O B_E + A_E B_O)\]
Odd–even split for Karatsuba multiplication

\[(A_O B_O X^2 + A_E B_E) + X(A_O B_E + A_E B_O) \]

[Diagram]

\[ab' + a'b = (a + a')(b + b') - ab - a'b' \]

[Diagram]

\[(A_O B_O X^2 + A_E B_E) + X((A_O + A_E)(B_O + B_E) - A_O B_O - A_E B_E) \]
Odd–even split for Karatsuba multiplication

$A_O \cdot B_O + A_E \cdot B_E$

$A \cdot B$

$(A_O \cdot B_O + A_E \cdot B_E) + (A_O \cdot B_E + A_E \cdot B_O)$
Odd–even split for Karatsuba multiplication

\[
A \cdot B
\]
Some other subquadratic multiplication algorithms

- Karatsuba-like algorithms: detailed algorithm
 - original formula
 - 3-way Karatsuba (7 instead of 9 subproducts)
 - odd–even split
 - 3-way odd–even split-like
Some other subquadratic multiplication algorithms

- **Karatsuba-like algorithms:**
 - original formula
 - 3-way Karatsuba (7 instead of 9 subproducts)
 - odd–even split
 - 3-way odd–even split-like

- **Toom-Cook algorithms:**
 - evaluation–interpolation scheme
 - split operands in 3 or more parts
 - symmetric or asymmetric splitting
 - odd–even trick (work in progress)

- **Montgomery’s formulae**

- ...
Some other subquadratic multiplication algorithms

- Karatsuba-like algorithms: [detailed algorithm]
 - original formula
 - 3-way Karatsuba (7 instead of 9 subproducts)
 - odd–even split
 - 3-way odd–even split-like

- Toom-Cook algorithms:
 - evaluation–interpolation scheme
 - split operands in 3 or more parts
 - symmetric or asymmetric splitting
 - odd–even trick (work in progress)

- Montgomery’s formulae

- ...

- Select best method for each stage of recursion
Multiplier architecture

- **Karatsuba-like algorithm:**
 - split the operands
 - compute the subproducts
 - recompose the result

- **Fully parallel** evaluation of the subproducts
Multiplier architecture

- **Karatsuba-like algorithm:**
 - split the operands
 - compute the subproducts
 - recompose the result

- **Fully parallel** evaluation of the subproducts

- **Recursive** scheme
 - eventually use different multiplication algorithms
 - end with the **quadratic** paper-and-pencil algorithm

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Multiplier architecture

▶ Karatsuba-like algorithm:
 • split the operands
 • compute the subproducts
 • recompose the result

▶ Fully parallel evaluation of the subproducts

▶ Recursive scheme
 • eventually use different multiplication algorithms
 • end with the quadratic paper-and-pencil algorithm

▶ Pipelined
 • with the help of optional registers
 • cut the critical path
 • increase the frequency
Multiplier architecture

- Karatsuba-like algorithm:
 - split the operands
 - compute the subproducts
 - recompose the result

- Fully parallel evaluation of the subproducts

- Recursive scheme
 - eventually use different multiplication algorithms
 - end with the quadratic paper-and-pencil algorithm

- Pipelined
 - with the help of optional registers
 - cut the critical path
 - increase the frequency

- Final reduction modulo f
 - small operator if f has low Hamming weight
Choice of the recursion and FPGA implementation

▶ Leading zeros problem
 - add them when the inputs are not perfectly splittable
 - increase the size of subproducts
Choice of the recursion and FPGA implementation

► Leading zeros problem

- add them when the inputs are not perfectly splittable
- increase the size of subproducts
- correctly choose the recursion
- use different kinds of multiplier for the different subproducts
Choice of the recursion and FPGA implementation

- Leading zeros problem
 - add them when the inputs are not perfectly splittable
 - increase the size of subproducts
 - correctly choose the recursion
 - use different kinds of multiplier for the different subproducts

- Form of addition trees
 - depends on characteristic
 - depends on FPGA technology
 - maximize LUTs utilization
Choice of the recursion and FPGA implementation

- **Leading zeros problem**
 - add them when the inputs are not perfectly splittable
 - increase the size of subproducts
 - correctly choose the recursion
 - use different kinds of multiplier for the different subproducts

- **Form of addition trees**
 - depends on characteristic
 - depends on FPGA technology
 - maximize LUTs utilization

- **Why the odd–even trick does not always work**
 - depends also on characteristic and FPGA
 - have to estimate the area in number of LUT not in number of additions
An example of multiplier over $\mathbb{F}_{3^{239}}$

- Polynomial basis

$$\mathbb{F}_{3^{239}} \cong \mathbb{F}_3[X]/(X^{239} - X^5 + 1)$$
An example of multiplier over $\mathbb{F}_{3^{239}}$

- Polynomial basis

$$\mathbb{F}_{3^{239}} \cong \mathbb{F}_3[X]/(X^{239} - X^5 + 1)$$

- Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>
An example of multiplier over $\mathbb{F}_{3^{239}}$

- Polynomial basis

\[\mathbb{F}_{3^{239}} \cong \mathbb{F}_3[X]/(X^{239} - X^5 + 1) \]

- Recursion choice

<table>
<thead>
<tr>
<th>Polynomial size</th>
<th>Used algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>3-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>80</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>40</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>20</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>10</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>5</td>
<td>2-way Karatsuba with odd-even trick</td>
</tr>
<tr>
<td>3</td>
<td>quadratic multiplication</td>
</tr>
</tbody>
</table>

- Post-place-and-route estimation for Xilinx Virtex-II Pro

 - 49984 slices
 - 200 MHz

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Outline of the talk

- Context
- Reduced Tate pairing
- Non-reduced Tate pairing
- Fully parallel Karatsuba multiplier
- Final Exponentiation
- Results & Conclusion
- Appendix

$E(F_{p^m})[\ell] \subseteq F \times p^{km}$

(iterative algorithm)

(irregular computation)

Non-reduced pairing

Final exponentiation

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Final exponentiation

Design rationale:

- as small as possible
- at least as fast as the computation of the non-reduced pairing
Coprocessor for the final exponentiation (char. 3)

- Highly sequential computation
- Very heterogeneous
Coproccessor for the final exponentiation (char. 3)

- Highly sequential computation
- Very heterogeneous

\[
\begin{align*}
\text{general-purpose} \
\Rightarrow \\
\text{finite-field arithmetic} \\
\text{processor}
\end{align*}
\]
Coprocesor for the final exponentiation (char. 3)

- Highly sequential computation
- Very heterogeneous

⇒ general-purpose finite-field arithmetic processor

Register file

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coprocessor for the final exponentiation (char. 3)

- Highly sequential computation
- Very heterogeneous

\[\text{Register file} \]

Parallel–serial multiplier

\[D \text{ coeffs / cycle} \]

\[\lceil \frac{m}{D} \rceil \text{ cycles / product} \]

\[\Rightarrow \text{general-purpose finite-field arithmetic processor} \]
Coprocessor for the final exponentiation (char. 3)

- Highly sequential computation
- Very heterogeneous

⇒ general-purpose finite-field arithmetic processor

- Register file
- Unified operator addition / subtraction Frobenius $(\cdot)^3$
- Parallel–serial multiplier

 D coeffs / cycle

 $\lceil m/D \rceil$ cycles / product

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Coprocessor for the final exponentiation (char. 3)

- Highly **sequential** computation
- Very **heterogeneous**

⇒ general-purpose finite-field arithmetic processor

- **Register file**
- **Unified operator**
 - addition / subtraction
 - Frobenius $(\cdot)^3$
 - double Frobenius $(\cdot)^9$
 - feedback loop
- **Parallel–serial multiplier**
 - D coeffs / cycle
 - $\lceil m/D \rceil$ cycles / product
Detailed architecture of the coprocessor (char. 3)
Outline of the talk

▶ Context

▶ Reduced Tate pairing

▶ Non-reduced Tate pairing

▶ Fully parallel Karatsuba multiplier

▶ Final Exponentiation

▶ Results & Conclusion

▶ Appendix
Experimental setup

▶ Full Tate pairing computation:
 • non-reduced pairing and
 • final exponentiation

▶ Prototyped on Xilinx Virtex-II Pro and Virtex-4 LX FPGAs

▶ Post-place-and-route timing and area estimations
Calculation time

Calculation time [\(\mu s\)]

Security [bits]

<table>
<thead>
<tr>
<th>Security [bits]</th>
<th>Calculation time [(\mu s)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>20.9 (\mu s / F_{397})</td>
</tr>
<tr>
<td>70</td>
<td>100.8 (\mu s / F_{2457})</td>
</tr>
<tr>
<td>80</td>
<td>675.5 (\mu s / F_{2557})</td>
</tr>
</tbody>
</table>

Virtex-I

Virtex-IIPro

Virtex-4LX
Calculation time

![Graph showing calculation time versus security bits for different hardware accelerators including Virtex-II Pro and Virtex-4 LX.](image)

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Calculation time

Calculation time [µs]

Security [bits]

Virtex-II Pro
6.2 µs / F_3^{97}
12.8 µs / F_3^{193}
20.9 µs / F_3^{97}

Virtex-4LX
100.8 µs / F_2^{457}
675.5 µs / F_2^{557}

Security [bits]
Calculation time

Security [bits] vs. Calculation time [μs]

- **Virtex-I Pro**
 - $6.2 \mu s / F_{397}$
 - $12.8 \mu s / F_{3193}$
 - $20.9 \mu s / F_{397}$
 - $100.8 \mu s / F_{2457}$
 - $675.5 \mu s / F_{2557}$

- **Virtex-II Pro**
 - $6.2 \mu s / F_{397}$
 - $12.8 \mu s / F_{3193}$
 - $20.9 \mu s / F_{397}$
 - $100.8 \mu s / F_{2457}$
 - $675.5 \mu s / F_{2557}$
Calculation time

Calculation time $[\mu s]$

Security [bits] vs. Calculation time $[\mu s]$

- **Virtex-I**
 - $675.5 \mu s / F_{2557}$
 - $100.8 \mu s / F_{2457}$
 - $20.9 \mu s / F_{397}$

- **Virtex-II Pro**
 - $6.2 \mu s / F_{397}$
 - $100.8 \mu s / F_{2457}$
 - $20.9 \mu s / F_{397}$

- **Virtex-4 LX**
 - $12.8 \mu s / F_{3193}$
 - $16.9 \mu s / F_{3313}$

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Area

Area [slices]

Security [bits]

Virtex-I

Virtex-II Pro

Virtex-4 LX

xc2vp30

xc2vp100

xc4vlx200

18,360 sl. / $\mathbb{F}_{3^{97}}$

46,360 sl. / $\mathbb{F}_{3^{193}}$

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Area–Time product

Area–time product [slices \cdot s]

Security [bits]

Area–time product [slices \cdot s]

Security [bits]

Virtex-I

I Pro

AES-128?

Char. 2 (Virtex-4
LX)

3.5 µs – 16,203 sl. /F 2^{239}

7.5 µs – 44,223 sl. /F 2^{457}

18.8 µs – 78,874 sl. /F 2^{691}

AES-128?
Area–Time product

Area–time product [slices \cdot s]

Security [bits]

Area–time product [slices \cdot s]

Virtex-I

Virtex-4

Char. 2 (Virtex-4
LX)

AES-128?

3.5 µs – 16,203 sl. /F
7.5 µs – 44,223 sl. /F
18.8 µs – 78,874 sl. /F
Area–Time product

Area–time product [slices \cdot s]

Security [bits]

Area–time product [slices \cdot s]

Virtex-I

Virtex-II Pro

Virtex-4 LX

Char. 2 (Virtex-4 LX)

AES-128?

3.5 µs – 16,203 sl. /F

7.5 µs – 44,223 sl. /F

18.8 µs – 78,874 sl. /F

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Area–Time product

Area–time product [slices \cdot s]

Security [bits]

Area–time product [slices \cdot s]

Virtex-I
Virtex-II Pro
Char. 2 (Virtex-4 LX)
Virtex-4 LX

18.8 \mu s – 78,874 sl. / F_{2^{691}}
7.5 \mu s – 44,223 sl. / F_{2^{2457}}
3.5 \mu s – 16,203 sl. / F_{2^{239}}

Nicolas Estibals — Fast hardware accelerator for the Tate pairing
Area–Time product

Area–time product [slices · s]

Security [bits]

Area–time product [slices · s]

Virtex-II Pro

Char. 2 (Virtex-4 LX)

Virtex-4 LX

AES-128?

18.8 µs – 78,874 sl. / F_{2691}

7.5 µs – 44,223 sl. / F_{2457}

3.5 µs – 16,203 sl. / F_{239}

Conclusion

- A new architecture for pairing computation
 - two specialized coprocessors
 - bet on parallelizing multiplier
 - based on Karatsuba multiplication scheme
 - importance of architecture–algorithm co-design
 - careful bubble-free scheduling of Miller’s loop

High-performance accelerator
- the fastest coprocessor (17 µs for 10^9 bits of security)
- the best area–time trade-off
- scales to higher security levels
Conclusion

▶ A new architecture for pairing computation
 - two specialized coprocessors
 - bet on parallelizing multiplier
 - based on Karatsuba multiplication scheme
 - importance of architecture–algorithm co-design
 - careful bubble-free scheduling of Miller’s loop

▶ High-performance accelerator
 - the fastest coprocessor (17 µs for 109 bits of security)
 - the best area–time trade-off
 - scales to higher security levels
Future work

▶ Fully parallel multipliers
 • tune finely Karatsuba algorithm and multiplier architecture
 • try other algorithms: Toom–Cook, Montgomery’s formulae
 • try less parallel multipliers: slower but smaller
Future work

- **Fully parallel multipliers**
 - tune finely Karatsuba algorithm and multiplier architecture
 - try other algorithms: Toom–Cook, Montgomery’s formulae
 - try less parallel multipliers: slower but smaller

- **Final-exponentiation coprocessor**
 - full-featured finite-field processor
 - compute the full pairing with it (promising first experimental results)
Future work

▶ Fully parallel multipliers
 • tune finely Karatsuba algorithm and multiplier architecture
 • try other algorithms: Toom–Cook, Montgomery’s formulae
 • try less parallel multipliers: slower but smaller

▶ Final-exponentiation coprocessor
 • full-featured finite-field processor
 • compute the full pairing with it (promising first experimental results)

▶ Toward AES-128 security level
 • explore supersingular pairing over $\mathbb{F}_{2^{nn'}}$ and $\mathbb{F}_{3^{nn'}}$ (work in progress)
 • genus-2 supersingular curves in characteristic 2 (work in progress)
 • Barreto–Naehrig curves
Thank you for your attention

Questions?
Outline of the talk

▶ Context

▶ Reduced Tate pairing

▶ Non-reduced Tate pairing

▶ Fully parallel Karatsuba multiplier

▶ Final Exponentiation

▶ Results & Conclusion

▶ Appendix
Detailed Karatsuba algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Splitting</th>
<th>Subproducts</th>
<th>Recomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-way split</td>
<td>$A \rightarrow A_L + X^{\lceil m/2 \rceil}A_H$</td>
<td>$p_H \leftarrow A_H \times B_H$</td>
<td>$S \leftarrow p_H X^{2\lceil m/2 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$B \rightarrow B_L + X^{\lceil m/2 \rceil}B_H$</td>
<td>$p_M \leftarrow A_M \times B_M$</td>
<td>$+ \left(p_M - p_H - p_L \right) X^{\lceil m/2 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$A_M \leftarrow A_H + A_L$</td>
<td>$p_L \leftarrow A_L \times B_L$</td>
<td>$+ p_L$</td>
</tr>
<tr>
<td></td>
<td>$B_M \leftarrow B_H + B_L$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-way split</td>
<td>$A \rightarrow A_0 + X^{\lceil m/3 \rceil}A_1 + X^{2\lceil m/3 \rceil}A_2$</td>
<td>$p_0 \leftarrow A_0 \times B_0$</td>
<td>$S \leftarrow p_0 X^{4\lceil m/3 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$B \rightarrow B_0 + X^{\lceil m/3 \rceil}B_1 + X^{2\lceil m/3 \rceil}B_2$</td>
<td>$p_1 \leftarrow A_1 \times B_1$</td>
<td>$+ \left(p_0' - p_1 - p_2 \right) X^{3\lceil m/3 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$A_{S_0} \leftarrow A_1 + A_2$</td>
<td>$p_2 \leftarrow A_2 \times B_2$</td>
<td>$+ \left(p_1' - p_0 + p_1 - p_2 \right) X^{2\lceil m/3 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$A_{S_1} \leftarrow A_0 + A_2$</td>
<td>$p_0' \leftarrow A_{S_0} \times B_{S_0}$</td>
<td>$+ \left(p_2' - p_1 - p_0 \right) X^{\lceil m/3 \rceil}$</td>
</tr>
<tr>
<td></td>
<td>$A_{S_2} \leftarrow A_1 + A_0$</td>
<td>$p_1' \leftarrow A_{S_1} \times B_{S_1}$</td>
<td>$+ p_0$</td>
</tr>
<tr>
<td></td>
<td>$B_{S_0} \leftarrow B_1 + B_2$</td>
<td>$p_2' \leftarrow A_{S_2} \times B_{S_2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$B_{S_1} \leftarrow B_0 + B_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$B_{S_2} \leftarrow B_1 + B_0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detailed odd–even split Karatsuba algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Splitting</th>
<th>Subproducts</th>
<th>Recomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-way split</td>
<td>(A \rightarrow A_E(X^2) + XA_O(X^2))
(B \rightarrow B_E(X^2) + XB_O(X^2))
(A_M \leftarrow A_O + A_E)
(B_M \leftarrow B_O + B_E)</td>
<td>(p_O \leftarrow A_O \times B_O)
(p_M \leftarrow A_M \times B_M)
(p_E \leftarrow A_E \times B_E)</td>
<td>(S \leftarrow (p_E + Xp_O)(X^2))
(+ X(p_M - p_E - p_O)(X^2))</td>
</tr>
<tr>
<td>3-way split</td>
<td>(A \rightarrow A_0(X^3) +XA_1(X^3) + X^2A_2(X^3))
(B \rightarrow B_0(X^3) + XB_1(X^3) + X^2B_2(X^3))
(A_{S_0} \leftarrow A_1 + A_2)
(A_{S_1} \leftarrow A_0 + A_2)
(A_{S_2} \leftarrow A_1 + A_0)
(B_{S_0} \leftarrow B_1 + B_2)
(B_{S_1} \leftarrow B_0 + B_2)
(B_{S_2} \leftarrow B_1 + B_0)</td>
<td>(p_0 \leftarrow A_0 \times B_0)
(p_1 \leftarrow A_1 \times B_1)
(p_2 \leftarrow A_2 \times B_2)
(p'0 \leftarrow A{S_0} \times B_{S_0})
(p'1 \leftarrow A{S_1} \times B_{S_1})
(p'2 \leftarrow A{S_2} \times B_{S_2})</td>
<td>(S \leftarrow (p_0 + X(p'_0 - p_1 - p_2))(X^3))
(+ X(p'_2 - p_0 - p_1 + Xp_2)(X^3))
(+ X^2(p_1 + p'_1 - p_2 - p_0)(X^3))</td>
</tr>
</tbody>
</table>