Algorithms and arithmetic for the implementation of cryptographic pairings

Nicolas Estibals
CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA, France
Nicolas.Estibals@loria.fr

What is an elliptic curve?

$E / K: y^{2}+h(x) y=f(x)$
with $\operatorname{deg} h \leq 1$ and $\operatorname{deg} f=3$

What is an elliptic curve?

- Set of points $E(K)$ is a group
$E / K: y^{2}+h(x) y=f(x)$
with $\operatorname{deg} h \leq 1$ and $\operatorname{deg} f=3$

What is an elliptic curve?

- Set of points $E(K)$ is a group

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

What is an elliptic curve?

- Set of points $E(K)$ is a group
$E / K: y^{2}+h(x) y=f(x)$
with $\operatorname{deg} h \leq 1$ and $\operatorname{deg} f=3$

What is an elliptic curve?

- Set of points $E(K)$ is a group
$E / K: y^{2}+h(x) y=f(x)$
with $\operatorname{deg} h \leq 1$ and $\operatorname{deg} f=3$

What is an elliptic curve?

- Set of points $E(K)$ is a group

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

What is an elliptic curve?

- Set of points $E(K)$ is a group
- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

What is an elliptic curve?

- Set of points $E(K)$ is a group
- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group
- $[n] P=\underbrace{P+\cdots+P}_{n \text { times }}$

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

What is an elliptic curve?

- Set of points $E(K)$ is a group
- In practice: K is a finite field \mathbb{F}_{q}
$-E\left(\mathbb{F}_{q}\right)$ is a finite group
- $[n] P=\underbrace{P+\cdots+P}_{n \text { times }}$
- ℓ : a large prime dividing $\# E\left(\mathbb{F}_{q}\right)$
- Use a cyclic subgroup of

$$
E[\ell]=\{P \mid[\ell] P=\mathcal{O}\}
$$

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

What is an elliptic curve?

- Set of points $E(K)$ is a group
- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group
- $[n] P=\underbrace{P+\cdots+P}_{n \text { times }}$
- ℓ : a large prime dividing $\# E\left(\mathbb{F}_{q}\right)$
- Use a cyclic subgroup of

$$
E[\ell]=\{P \mid[\ell] P=\mathcal{O}\}
$$

$$
\begin{gathered}
E / K: y^{2}+h(x) y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

- Our favorite curves: $E_{3}: y^{2}=x^{3}-x \pm 1$
- characteristic 3
- supersingular

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let \mathbb{G} be a cyclic group, P a generator, given $Q \in \mathbb{G}$, it is supposed to be hard to compute a such that

$$
Q=[a] P
$$

Elliptic Curve Cryptography

Discrete Logarithm Problem (DLP)

Let \mathbb{G} be a cyclic group, P a generator, given $Q \in \mathbb{G}$, it is supposed to be hard to compute a such that

$$
Q=[a] P
$$

- Use this hard problem to design cryptographic protocols
- Diffie-Hellman key exchange:
- Alice generates a secret integer a
- Alice sends [a]P to Bob
- Alice computes $[a][b] P$
- Bob generates a secret integer b
- Bob sends $[b] P$ to Alice
- Bob computes $[b][a] P$

They both share the same secret: $[a b] P$

What is a pairing?

What is a pairing?

What is a pairing?

- Bilinear map:

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

What is a pairing?

- Bilinear map:

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

- Cryptographic interest: Mixing two secrets without having to know them

$$
e([a] P,[b] Q)=e(P, Q)^{a b}
$$

What is a pairing?

- Bilinear map:

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

- Cryptographic interest: Mixing two secrets without having to know them

$$
e([a] P,[b] Q)=e(P, Q)^{a b}
$$

- Useful for advanced protocols
- short signature
- electronic voting
- electronic money

[^0]
What is a pairing?

- Bilinear map:

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

- Cryptographic interest: Mixing two secrets without having to know them

$$
e([a] P,[b] Q)=e(P, Q)^{a b}
$$

- Useful for advanced protocols
- short signature
- electronic voting
- electronic money
- ...
- DLP should be hard on all the groups involved

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security
2^{128} operations

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security

$$
2^{128} \text { operations }
$$

- Difficulty of the DLP on the curve
- depends on the order ℓ
- roughly $\sqrt{\ell}$ operations

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security

$$
2^{128} \text { operations }
$$

- Difficulty of the DLP on the curve
- depends on the order ℓ
- roughly $\sqrt{\ell}$ operations

For our favorite curve E_{3} over \mathbb{F}_{3509}
$\ell \approx 2^{697}$
$\approx 2^{349}$ operations

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security

$$
2^{128} \text { operations }
$$

- Difficulty of the DLP on the curve
- depends on the order ℓ
- roughly $\sqrt{\ell}$ operations
- Difficulty of the DLP on the roots of unity
- embedding degree: k such that all roots lie in $\mathbb{F}_{q^{k}}$

$$
\begin{aligned}
& \ell \approx 2^{697} \\
& \approx 2^{349} \text { operations }
\end{aligned}
$$

$k=6$, so DLP in $\left(\mathbb{F}_{36 \cdot 509}\right)^{*}$

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security

$$
2^{128} \text { operations }
$$

- Difficulty of the DLP on the curve
- depends on the order ℓ
- roughly $\sqrt{\ell}$ operations
$\ell \approx 2^{697}$
$\approx 2^{349}$ operations
- Difficulty of the DLP on the roots of unity
- embedding degree: k such that all roots lie in $\mathbb{F}_{q^{k}}$
- Subexponential algorithms exist
* function field sieve
$k=6$, so DLP in $\left(\mathbb{F}_{36 \cdot 509}\right)^{*}$
$\approx 2^{132}$ operations

Security considerations

- Security measurement
- number of operations to break a cryptosystem
- today's recommendation: 128-bit security

$$
2^{128} \text { operations }
$$

- Difficulty of the DLP on the curve
- depends on the order ℓ
- roughly $\sqrt{\ell}$ operations
$\ell \approx 2^{697}$
$\approx 2^{349}$ operations
- Difficulty of the DLP on the roots of unity
- embedding degree: k such that all roots lie in $\mathbb{F}_{q^{k}}$ $k=6$, so DLP in $\left(\mathbb{F}_{36.509}\right)^{*}$
- Subexponential algorithms exist
\star function field sieve
$\approx 2^{132}$ operations
* very recent results (2013)

Records by Joux and Göloğlu et al. records
Joux
Barbulescu, Gaudry, Joux, Thomé
Adj, Menezes, Oliveira, Rodríguez-Henríquez $\lesssim 2^{75}$ operations

Why cryptography and hardware implementations?

- Growth of numeric exchanges
- many applications
* bank services
* secure firmware updates
* personal communications
* ...
- many targets
\star embedded electronics
* smart cards
* smartphones
* computers, servers
- Security implies non-trivial computations
- Need for hardware implementations
- CPUs may be inadequate
- limited resources

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Computation time

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- Different designs for the same computation
- optimized for latency
- optimized for compactness

Area

Hardware implementation

- Our target: Field Programmable Gate Array (FPGA)
- integrated circuit
- matrix of simple configurable logic cells
- programmable interconnection
- Performance metric

- time (ms)
- area (slices)
- time-area product
- Different designs for the same computation
- optimized for latency
- optimized for compactness
- optimized for throughput

Area

Contributions

- Fast accelerator for pairings [CHES 2009, IEEE TC 2011] Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
- parallel architecture
- pipelined subquadratic multiplier
- Compact design for pairings reaching 128-bit security
- composite extension fields
- hyperelliptic curves
[Paring 2010]
Joint work with Aranha, Beuchat and Detrey
- Formulae for sub-quadratic multiplication
[WAIFI 2012] Joint work with Barbulescu, Detrey and Zimmermann
- exhaustive search
- improved formulae for $\mathbb{F}_{35 m}$

Contributions

- Fast accelerator for pairings [CHES 2009, IEEE TC 2011] Joint work with Beuchat, Detrey, Okamoto and Rodríguez-Henríquez
- parallel architecture
- pipelined subquadratic multiplier
- Compact design for pairings reaching 128-bit security
- composite extension fields
- hyperelliptic curves
[Paring 2010]
Joint work with Aranha, Beuchat and Detrey
- Formulae for sub-quadratic multiplication
[WAIFI 2012] Joint work with Barbulescu, Detrey and Zimmermann
- exhaustive search
- improved formulae for $\mathbb{F}_{35 m}$

Outline of the talk

- Compact design through composite extension fields
- Pairing on genus-2 hyperelliptic curves
- Searching for efficient multiplication algorithms
- Conclusion and Perspectives

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$
- an inductive identity defined by

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$
- an inductive identity defined by

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$
- an inductive identity defined by

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$
- Tate pairing: $f_{\# E\left(\mathbb{F}_{q}\right), P}$
- use an addition chain
- in practice: double-and-add

$\log _{2} \# E\left(\mathbb{F}_{q}\right)$ iterations

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$
- an inductive identity defined by

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$
- Tate pairing: $f_{\# E\left(\mathbb{F}_{q}\right), P}$
- use an addition chain
- in practice: double-and-add

$\log _{2} \# E\left(\mathbb{F}_{q}\right)$ iterations

For $E_{3}\left(\mathbb{F}_{3509}\right)$	Tate pairing
$\#$ iterations	509
\times	10330
+	45170
$(.)^{3}$	8136
$(.)^{-1}$	2

- $\# E_{3}\left(\mathbb{F}_{3509}\right)=3^{509}+3^{255}+1$
- triple-and-add algorithm

Computing the pairing: Miller's algorithm

- Computation of the pairing relies on Miller functions: $f_{n, P}$
- an inductive identity defined by

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$
- Tate pairing: $f_{\# E\left(\mathbb{F}_{q}\right), P}$
- use an addition chain
- in practice: double-and-add
 $\log _{2} \# E\left(\mathbb{F}_{q}\right)$ iterations

For $E_{3}\left(\mathbb{F}_{3509}\right)$	Tate pairing	Eta T
\# iterations	509	254
\times	10330	3638
+	45170	17240
$(.)^{3}$	8136	4068
$(.)^{-1}$	2	1

- $\# E_{3}\left(\mathbb{F}_{3509}\right)=3^{509}+3^{255}+1$
- triple-and-add algorithm
- Many improvements
- vertical elimination
- use of some curve endomorphisms
* Frobenius: Ate

찬. Verschiebung: Eta, Eta T

An arithmetic coprocessor

- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications
- careful scheduling to keep multiplier busy

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

An arithmetic coprocessor

- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications
- careful scheduling to keep multiplier busy

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

- Inverse is only needed once: Itoh-Tsujii algorithm
- no need for hardware support

An arithmetic coprocessor

- Only need arithmetic operations in \mathbb{F}_{3509}
- implement a specialized processor
- Multiplication is critical
- separate linear operations and multiplications
- careful scheduling to keep multiplier busy

Operation count	
\times	3638
+	17240
$(.)^{3}$	4068
$(.)^{-1}$	1

- Inverse is only needed once: Itoh-Tsujii algorithm
- no need for hardware support
- Synthesis results for $\mathbb{F}_{\text {300 }}: 9625$ slices
- almost fully occupy a Virtex 6 LX 75 T (82\%)
- computation time: $\approx 4 \mathrm{~ms}$

Field of composite extension degree

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm
- Allows Weil Descent based attacks on the curve
- GHS: using the composite extension degree

$$
\approx 2^{279} \text { operations }
$$

- SDHP: Granger's algorithm

$$
\approx 2^{142} \text { operations }
$$

- limited effect on security

Field of composite extension degree

- Provides some arithmetic advantages
- smaller datapath
- efficient multiplication algorithm
- Allows Weil Descent based attacks on the curve
- GHS: using the composite extension degree

$$
\approx 2^{279} \text { operations }
$$

- SDHP: Granger's algorithm

$$
\approx 2^{142} \text { operations }
$$

- limited effect on security
- Results
- 1848 slices of the same Virtex 6 LX (15\%) 5.2 times smaller
- compute a pairing in 1.6 ms 2.5 times faster

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Benchmarks

Outline of the talk

- Compact design through composite extension fields
- Pairing on genus-2 hyperelliptic curves
- Searching for efficient multiplication algorithms
- Conclusion and Perspectives

Genus-2 hyperelliptic curves

$$
\begin{aligned}
& C / K: y^{2}+h(x) y=f(x) \\
& \text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
\end{aligned}
$$

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- $C(K)$ not a group!

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- $C(K)$ not a group!
- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- $C(K)$ not a group!
- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- $C(K)$ not a group!
- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

Genus-2 hyperelliptic curves

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) y=f(x)
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- Jacobian of the curve $\mathrm{Jac}_{\mathrm{C}}$
- is a group

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- Jacobian of the curve $\mathrm{Jac}_{\mathrm{C}}$
- is a group
- Chosen curves

$$
H_{2}: y^{2}+y=x^{5}+x^{3}+d,
$$ with $d \in\{0,1\}$

- characteristic 2

Optimal Eta

- Parameters for 128 -bit security
- Embedding degree $k=12$
- Field: $\mathbb{F}_{2^{367}}$

Optimal Eta

- Parameters for 128 -bit security
- Embedding degree $k=12$
- Field: \mathbb{F}_{2367}
- $\# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{367}}\right)=2^{734}-2^{551}-2^{367}+2^{184}+1$
- Our pairing algorithm

Algorithm	Tate (double-and-add)
\# iterations	734

Optimal Eta

- Parameters for 128-bit security
- Embedding degree $k=12$
- Field: \mathbb{F}_{2367}
- $\# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{367}}\right)=4 \cdot 8^{244}-4 \cdot 2^{183}-2 \cdot 8^{122}+1$
- Our pairing algorithm
- Efficient octupling formula: octuple-and-add

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)
$\#$ iterations	734	245

Optimal Eta

- Parameters for 128-bit security
- Embedding degree $k=12$
- Field: $\mathbb{F}_{2}{ }^{367}$
- $\# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{367}}\right)=4 \cdot 8^{244}-4 \cdot 2^{183}-2 \cdot 8^{122}+1$
- Our pairing algorithm
- Efficient octupling formula: octuple-and-add
- adapted Verschiebung: Eta T

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T
\# iterations	734	245	184

Optimal Eta

- Parameters for 128-bit security
- Embedding degree $k=12$
- Field: \mathbb{F}_{2367}
- $\# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{367}}\right)=4 \cdot 8^{244}-4 \cdot 2^{183}-2 \cdot 8^{122}+1$
- Our pairing algorithm
- Efficient octupling formula: octuple-and-add
- adapted Verschiebung: Eta T
- Vercauteren's optimal technique: optimal Eta

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T	Optimal Eta
$\#$ iterations	734	245	184	123

Optimal Eta

- Parameters for 128-bit security
- Embedding degree $k=12$
- Field: \mathbb{F}_{2367}
- $\# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{367}}\right)=4 \cdot 8^{244}-4 \cdot 2^{183}-2 \cdot 8^{122}+1$
- Our pairing algorithm
- Efficient octupling formula: octuple-and-add
- adapted Verschiebung: Eta T
- Vercauteren's optimal technique: optimal Eta

Algorithm	Tate (double-and-add)	Tate (octuple-and-add)	Eta T	Optimal Eta
$\#$ iterations	734	245	184	123

- Implementation on the previous coprocessor adapted for $\mathbb{F}_{2^{367}}$
- 1366 slices on the same Virtex 6 LX (12\%)
- 3.2 ms
- comparable performances with the elliptic case

Benchmarks

Outline of the talk

- Compact design through composite extension fields
- Pairing on genus-2 hyperelliptic curves
- Searching for efficient multiplication algorithms
- Conclusion and Perspectives

Origin of the problem

- Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost

Origin of the problem

- Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost
- Karatsuba (1962): first subquadratic multiplication algorithm

$$
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2}
$$

Origin of the problem

- Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost
- Karatsuba (1962): first subquadratic multiplication algorithm

$$
\begin{aligned}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2} \\
& =a_{0} b_{0}+\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right) X+a_{1} b_{1} X^{2}
\end{aligned}
$$

Origin of the problem

- Polynomial multiplication is an expensive arithmetic operation
- Schoolbook algorithm: quadratic cost
- Karatsuba (1962): first subquadratic multiplication algorithm

$$
\begin{aligned}
\left(a_{0}+a_{1} X\right)\left(b_{0}+b_{1} X\right) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{1} b_{1} X^{2} \\
& =a_{0} b_{0}+\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right) X+a_{1} b_{1} X^{2}
\end{aligned}
$$

- Well-studied problem
- asymptotic complexity
- theoretical bilinear complexity
- small and "cryptographic" size
- Five, six, and seven-term Karatsuba-like formulae, P. Montgomery (2005)
- ad-hoc formulae
- exhaustive search for five-term multiplication
- non-exhaustive search for six and seven-term multiplications
- Our approach: improve the search algorithm

Generalization of the problem

- Model of a multiplication algorithm

Generalization of the problem

- Model of a multiplication algorithm

- Also true for any bilinear application
- multiplication in extension fields
- sparse products
- matrix multiplications
- . . .

Formal framework

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements

Formal framework

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements
- Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T=\operatorname{Span} \mathcal{T}$ of V

Formal framework

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements
- Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T=\operatorname{Span} \mathcal{T}$ of V
- The set \mathcal{G} of the potential products to use in a formula: the generators

Formal framework

Formulation in terms of vector space for an $n \times m$ multiplication over a given field K

- Represent the coefficients of the result and the products as elements of
V the $n m$-dimensional K-vector space generated by $\left\{a_{i} b_{j}\right\}_{0 \leq i<n, 0 \leq j<m}$ where the $a_{i} b_{j}$'s are seen as formal elements
- Our target: the coefficients of the result is a family $\mathcal{T} \subset V$ that spans the target subspace $T=\operatorname{Span} \mathcal{T}$ of V
- The set \mathcal{G} of the potential products to use in a formula: the generators
- Goal: find the optimal formulae (i.e. with a minimum number of products)
- for increasing k until a solution is found
- find each subset $\mathcal{W} \subset \mathcal{G}$ of exactly k products
- which gives a valid formula (i.e. that lineary generates the coefficients of the result)

$$
\mathcal{T} \subset \operatorname{Span} \mathcal{W}
$$

Resolution

- Naive approach: test each subset of k potential products

```
expand_family(\emptyset,\mathcal{G})
procedure expand_family}(\mathcal{W},\mathcal{H}
    if #\mathcal{W}=k then
        if }\mathcal{T}\subsetS\mathrm{ San }\mathcal{W}\mathrm{ then
        W}\mathrm{ is a solution
    else
```

 while \(\mathcal{H} \neq \emptyset\) do
 Pick a \(h\) in \(\mathcal{H}\)
 \(\mathcal{H} \leftarrow \mathcal{H} \backslash\{h\}\)
 expand_family \((\mathcal{W} \cup\{h\}, \mathcal{H})\)
 end procedure

- Complexity depends on

$$
\binom{\# \mathcal{G}}{k}
$$

Resolution

- Naive approach: test each subset of k potential products
- Better approach: test each vector space of dimension k generated by potential products

```
expand_subspace \((\{0\}, \mathcal{G})\)
procedure expand_subspace \((W, \mathcal{H})\)
    if \(\operatorname{dim} W=k\) then
        if \(\mathcal{T} \subset W\) then
            \(W\) is a solution
    else
        \(\mathcal{H} \leftarrow \mathcal{H} \backslash W\)
        while \(\mathcal{H} \neq \emptyset\) do
            Pick a \(h\) in \(\mathcal{H}\)
            \(\mathcal{H} \leftarrow \mathcal{H} \backslash\{h\}\)
            expand_subspace \((W \oplus \operatorname{Span}(h), \mathcal{H})\)
end procedure
```

- Complexity still depends on

$$
\binom{\# \mathcal{G}}{k}
$$

Resolution

- Naive approach: test each subset of k potential products
- Better approach: test each vector space of dimension k generated by potential products
- Even better approach: part of the solution is already known, use incomplete basis theorem

$$
\begin{aligned}
& \text { expand_subspace }(T, \mathcal{G}) \\
& \text { procedure expand_subspace }(W, \mathcal{H}) \\
& \text { if } \operatorname{dim} W=k \text { then } \\
& \text { if } \operatorname{rank}(W \cap \mathcal{G})=k \text { then } \\
& \quad W \text { is a solution } \\
& \text { else } \\
& \mathcal{H} \leftarrow \mathcal{H} \backslash W \\
& \text { while } \mathcal{H} \neq \emptyset \text { do } \\
& \text { Pick a } h \text { in } \mathcal{H} \\
& \mathcal{H} \leftarrow \mathcal{H} \backslash\{h\} \\
& \quad \text { expand_subspace }(W \oplus \operatorname{Span}(h), \mathcal{H}) \\
& \text { end procedure } \\
& \text { Complexity now depends on } \\
& \qquad\binom{\# \mathcal{G}}{k-\operatorname{rank} \mathcal{T}}
\end{aligned}
$$

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$n \times m$	\#G	k	\# of tests	\# of solutions	$\# \text { of }$ formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7×7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19550	184 d

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$n \times m$	\#G	k	\# of tests	\# of solutions	$\begin{gathered} \text { \# of } \\ \text { formulae } \end{gathered}$ formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7×7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19550	184 d

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$n \times m$	\#G	k	\# of tests	\# of solutions	\# of formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7×7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19550	184 d

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$n \times m$	\#G	k	\# of tests	\# of solutions	$\# \text { of }$ formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7×7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19550	184 d

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$\boldsymbol{n} \times \boldsymbol{m}$	\#G	\boldsymbol{k}	\# of tests	\# of solutions	\# of formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	$($ Sym.)	63	17	$8.08 \cdot 10^{6}$	6	54
	7×7	$($ Sym.)	127	22	$3.38 \cdot 10^{12}$	2618	1950

$$
\begin{aligned}
& \mathcal{G}=\left\{a_{0} \cdot b_{0},\right. \\
& a_{1} \cdot b_{0}, \\
& \left(a_{0}+a_{1}\right) \cdot b_{0}, \\
& a_{2} \cdot b_{0}, \\
& \left(a_{0}+a_{2}\right) \cdot b_{0}, \\
& a_{0} \cdot b_{1}, \quad a_{1} \cdot b_{1}, \quad\left(a_{0}+a_{1}\right) \cdot b_{1}, \\
& a_{2} \cdot b_{1} \text {, } \\
& \left(a_{0}+a_{2}\right) \cdot b_{1}, \\
& a_{0} \cdot\left(b_{0}+b_{1}\right) \text {, } \\
& a_{0} \cdot b_{2} \text {, } \\
& a_{1} \cdot\left(b_{0}+b_{1}\right) \text {, } \\
& a_{1} \cdot b_{2} \text {, } \\
& \left(a_{0}+a_{1}\right) \cdot b_{2}, \\
& a_{2} \cdot\left(b_{0}+b_{1}\right) \text {, } \\
& \left(a_{0}+a_{2}\right) \cdot\left(b_{0}+b_{1}\right), \\
& a_{0} \cdot\left(b_{0}+b_{2}\right) \text {, } \\
& a_{1} \cdot\left(b_{0}+b_{2}\right), \quad\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{2}\right), \\
& a_{2} \cdot b_{2} \text {, } \\
& \left(a_{0}+a_{2}\right) \cdot b_{2}, \\
& \text {...\} }
\end{aligned}
$$

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$\boldsymbol{n} \times \boldsymbol{m}$	$\boldsymbol{\# G}$	\boldsymbol{k}	\# of tests	\# of solutions	\# of formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.)	63	17	$8.08 \cdot 10^{6}$	6	54
	7×7	(Sym.)	127	22	$3.38 \cdot 10^{12}$	2618	19550

$\mathcal{G}=\left\{a_{0} \cdot b_{0}\right.$,	$a_{1} \cdot b_{0}$,	$\left(a_{0}+a_{1}\right) \cdot b_{0}$,	$a_{2} \cdot b_{0}$,	$\left(a_{0}+a_{2}\right) \cdot b_{0}$,
$a_{0} \cdot b_{1}$,	$a_{1} \cdot b_{1}$,	$\left(a_{0}+a_{1}\right) \cdot b_{1}$,	$a_{2} \cdot b_{1}$,	$\left(a_{0}+a_{2}\right) \cdot b_{1}$,
$a_{0} \cdot\left(b_{0}+b_{1}\right)$,	$a_{1} \cdot\left(b_{0}+b_{1}\right)$,	$\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{1}\right)$,	$a_{2} \cdot\left(b_{0}+b_{1}\right)$,	$\left(a_{0}+a_{2}\right) \cdot\left(b_{0}+b_{1}\right)$,
$a_{0} \cdot b_{2}$,	$a_{1} \cdot b_{2}$	$\left(a_{0}+a_{1}\right) \cdot b_{2}$,	$a_{2} \cdot b_{2}$,	$\left(a_{0}+a_{2}\right) \cdot b_{2}$,
$\begin{aligned} & a_{0} \cdot\left(b_{0}+b_{2}\right), \\ & \ldots\} \end{aligned}$	$a_{1} \cdot\left(b_{0}+b_{2}\right)$,	$\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{2}\right)$,	$a_{2} \cdot\left(b_{0}+b_{2}\right)$,	$\left(a_{0}+a_{2}\right) \cdot\left(b_{0}+b_{2}\right)$,

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$n \times m$	\#G	k	\# of tests	\# of solutions	$\# \text { of }$ formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.) 63	17	$8.08 \cdot 10^{6}$	6	54	18 s
	7×7	(Sym.) 127	22	$3.38 \cdot 10^{12}$	2618	19550	184 d

- Optimal formulae for sparse multiplication useful in pairing computation
- in the genus-2 pairing, from 11 to 9 subproducts

Some results

- Multiplication of $n \times m$ term binary polynomials

Ring	$\boldsymbol{n} \times \boldsymbol{m}$	\#G	\boldsymbol{k}	\# of tests	\# of solutions	\# of formulae	Computation time (1 core)
$\mathbb{F}_{2}[X]$	2×2	9	3	1	1	1	0
	3×3	49	6	9	3	9	0
	4×4	225	9	$6.60 \cdot 10^{3}$	4	4	30 ms
	5×5	961	13	$9.65 \cdot 10^{9}$	27	27	2 d 15 h
	6×6	3969	14	$4.37 \cdot 10^{9}$	-	-	7 d
	6×6	(Sym.)	63	17	$8.08 \cdot 10^{6}$	6	54
	7×7	(Sym.)	127	22	$3.38 \cdot 10^{12}$	2618	19550

- Optimal formulae for sparse multiplication useful in pairing computation
- in the genus-2 pairing, from 11 to 9 subproducts
- Optimal multiplication for the extensions $\mathbb{F}_{35 m}$
- 11 subproducts instead of 12 previously
- yields a 5\% improvement for the pairing on E_{3}

Outline of the talk

- Compact design through composite extension fields
- Pairing on genus-2 hyperelliptic curves
- Searching for efficient multiplication algorithms
- Conclusion and Perspectives

Conclusion

- Hardware implementations of pairing
- An algorithm to search for multiplication formulae

Conclusion

- Hardware implementations of pairing
- An algorithm to search for multiplication formulae
- Unified framework for constructing pairing algorithms
- lot of literature on pairing algorithms
- generally concepts and results only for specific cases
- covers both elliptic and hyperelliptic cases
- covers the different variants of the Tate pairing:
* Ate, Eta, Eta T, optimal Ate, ...

Conclusion

- Hardware implementations of pairing
- An algorithm to search for multiplication formulae
- Unified framework for constructing pairing algorithms
- lot of literature on pairing algorithms
- generally concepts and results only for specific cases
- covers both elliptic and hyperelliptic cases
- covers the different variants of the Tate pairing:
* Ate, Eta, Eta T, optimal Ate, ...
- General method for cryptographic implementations
- study mathematical structures
- fix parameters thanks to cryptanalysis
- algorithmic optimizations
- choose the right arithmetic representation
- implement different hardware accelerators

Perspectives

- Lower-level architecture
- FPGA is a good prototyping platform
- but with limited uses in real-life devices
- develop skills in ASIC designs
- power consumption awareness
- Integrate side-channel counter-measures
- side-channel attacks are very effective threats
- embedded systems need to be protected
- Use this method on different cryptographic primitives
- scalar multiplication on hyperelliptic curves
- lattice-based cryptography

[^0]: - ...

