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ABSTRACT
Multiple Facets (MF) is a dynamic enforcement mechanism which

has proved to be a good fit for implementing information flow se-

curity for JavaScript. It relies on multi executing the program, once

per each security level or view, to achieve soundness. By looking

inside programs, MF encodes the views to reduce the number of

needed multi-executions.

In this work, we extend Multiple Facets in three directions. First,

we propose a new version of MF for arbitrary lattices, called Gener-

alised Multiple Facets, or GMF. GMF strictly generalizes MF, which

was originally proposed for a specific lattice of principals. Second,

we propose a new optimization on top of GMF that further reduces

the number of executions. Third, we strengthen the security guar-

antees provided by Multiple Facets by proposing a termination

sensitive version that eliminates covert channels due to termina-

tion.

KEYWORDS
Multiple Facets; Dynamic Information Flow Control; Secure Multi-

Execution; Noninterference

1 INTRODUCTION
JavaScript has become the de facto programming language of the

Web. Web browsers daily execute thousands of JavaScript lines

which usually have access to confidential information, for example

cookies that mark that the user in a web session is authenticated.

It is not surprising that JavaScript is a common target for attacks.

While browsers deploy security measures in the form of access

control (e.g., SOP and CSP), they are insufficient [12, 17, 30] to

protect confidentiality of data.

Information flow control (IFC) is a promising technology which

provides a systematic solution to handle unintentional or malicious

leaks of confidential information. Recently, dynamic IFC analyses

have received a lot of attention [1–3, 5, 7, 9, 10, 14, 26, 33], due, in

part, to its applicability to JavaScript—where static analyses are

rather an awkward fit [29].
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In order to scale, a suitable IFC technique for the web not only

needs to be dynamic but also needs to reduce to the minimum the

modifications required to existing JavaScript code. In this light,

an interesting dynamic IFC technique which fulfills both of these

requirements consists in executing several copies of a program: one

execution per each security level or view. In that manner, each copy

of the program (view) depends only on information observable

to the corresponding security level, where no leaks are therefore

possible. Secure Multi Execution (SME) [14] and Multiple Facets

(MF) [3] are two techniques based on this idea.

Both techniques have been proved to be a good fit for informa-

tion flow security in the web since they have been successfully

implemented as extensions of the Firefox browser [13, 33].

Although both SME and MF are based on multi-executions, they

present important differences [7]. On one hand, SME is black-

box [24], i.e., it is a mechanism that does not look inside programs

but rather change the semantics of inputs and outputs to ensure

security. For a moment, we assume a scenario where security levels

are simply sets of principals (e.g., web origins) which denote those

authorities with confidentiality concerns over data. In such a sce-

nario, SME needs to spawn one execution for any possible set of

principals—where the number of executions grows exponentially

with respect to the number of principals! Instead, MF [3] is designed

to reduce the number of multi-executions and the memory footprint

of SME. It does so by inspecting programs code and multi-executing

instructions and multiplexing memory only when needed. While

MF is more resource-friendly than SME, SME provides stronger se-

curity guarantees when it comes to leaks via abnormal termination

[7].

Our broad goal is to augment the efficiency of techniques based

on MF and SME to general cases. In particular, we discovered that

MF might sometimes spawn more multi-executions than SME—

something that is counter-intuitive when considering the purpose

of MF (see Section 2). Our first contribution consists on a novel

technique to further reduce the number of multi-executions (and

memory footprint) of MF. Our second contribution is to generalize

MF to work for arbitrary finite lattices (see Section 3) rather than

being restricted to the security lattice of principals as in the original

proposal [3]. This becomes useful when, for instance, a program

depends on 5 security levels. In such case, as stated originally, MF

will need to encode them by using (at least) 3 principals (2
3 > 5),

and thus execute the program 2
3 = 8 times, while SME will execute

it only 5 times (one per security level). Finally, we combine MF and

SME into a single new dynamic IFC mechanism in order to provide

security guarantees as strong as SME (i.e., termination sensitive

https://doi.org/10.1145/3184558.3186348
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skip

(skip, µ ) ⇓ µ
assign

v = µ (e )

(x := e, µ ) ⇓ µ[x 7→ v]

if

µ (e ) = v (Pv , µ ) ⇓ µ′

(if e then Ptt else Pff, µ ) ⇓ µ′
seq

(P1, µ ) ⇓ µ′ (P2, µ′) ⇓ µ′′

(P1; P2, µ ) ⇓ µ′′

while

(if e then P ;while e do P else skip, µ ) ⇓ µ′

(while e do P, µ ) ⇓ µ′

Figure 1: Language semantics

non-interference) while avoiding multi-executions as much as our

optimized version of MF allows it. All proofs can be found in [23].

2 BACKGROUND ON SME AND MF
In this section, we discuss how on one hand, the underpinning

mechanism in MF reduces the number of executions compared

to SME, and on the other hand, may run more multi executions

than SME because of the security lattice based on principals. Our

goal here is partly pedagogical and partly to motivate and provide

intuition on the optimization proposed in Section 4.

Language and Semantics To investigate the foundation of mul-

tiple facets, we use a simple, deterministic while language. Its syntax

includes programs P , variables x , expressions e , and values v . We

use the symbol ⊕ for binary expression operators. A value is either

an integer value or a boolean value.

(programs) P ::= skip | x := e | if e then P1 else P2 |
while e do P | P1; P2

(expressions) e ::= v | x | e ⊕ e

Figure 1 presents standard big-step semantics of the language.

Memories µ map variables to values; we overload the notation of

memory and use µ (e ) as the evaluation function for expression e in
memory µ, where µ (v ) = v and µ (e1⊕e2) = µ (e1)⊕ µ (e2). We write

(P ,µ ) ⇓ µ ′ to mean that the evaluation of program P on memory µ
terminates with memory µ ′. We use µ[x 7→ v] for the memory µ ′

where µ ′(y) = µ (y) if y , x , and µ ′(y) = v if y = x .
MF may use fewer resources than SME SME [14] multi exe-

cutes programs, in a blackbox manner, as many times as security

levels in a lattice. Let’s define an SME memory as a function that

maps each variable to an array of values, one value per security

level. For the sake of simplicity, let’s consider first a security lattice

with only two elements H and L where H ̸⊑ L is the only disal-

lowed flow. Thus, an SME memory µ̂ maps variables to an array

of 2 (possibly different) values: one corresponding to the H view

and one corresponding to the L view. Let’s denote such array of

values as ⟨v1 : v2⟩, where v1 is a private, H , view and v2 is a public,
L, view. Assume that H (µ̂ ) (resp. L(µ̂ )) is a memory in the standard

semantics, obtained by projection of µ̂, mapping variables to single

values of the high view (resp. low view). Then, the SME monitoring

rule
1
for such a language can be given by the relation ⇓SME−T IN I

as follows:

1
We give here the termination insensitive version of SME.

SME-TINI

(P ,H (µ̂ )) ⇓ µ1 (P ,L(µ̂ )) ⇓ µ2

(P , µ̂ ) ⇓SME−T IN I µ1 ⊙ µ2

where ⊙ combines two normal memories into a SME memory in

such a way that H (µ1 ⊙ µ2) = µ1 and L(µ1 ⊙ µ2) = µ2. The SME

mechanism will blindly execute the program as many times as

possible views (or positions of the array) may exist.

Consider a program h := l where initial views for variables l
and h are given by: µ̂ (h) = ⟨1 : 0⟩ and µ̂ (l ) = ⟨1 : 1⟩. In SME,

using the SME-TINI rule, the assignment will be executed twice:

once with H (µ̂ ) = [h 7→ 1,l 7→ 1] for the high view and once

with L(µ̂ ) = [h 7→ 0,l 7→ 1] for the low view. After execution, the

final SME memory will map h to ⟨1 : 1⟩. One way to reduce the

number of executions is to exploit the knowledge that the high

and the low view for variable l are equal, i.e., H (µ̂ ) (l ) = L(µ̂ ) (l ).
Since the semantics is deterministic, there is no need to execute the

program twice. We can use this knowledge by specialising SME at

the granularity of commands and include the following assignment

rule:

SME-optim

H (µ̂ ) (e ) = L(µ̂ ) (e ) (x := e,L(µ̂ )) ⇓ µ

(x := e, µ̂ ) ⇓SME µ̂[x 7→ ⟨µ (x ),µ (x )⟩]

Notice that this SME optimization requires to look inside the
shape of the program to evaluate if expression e of an assignment

satisfies the hypothesis.

In general, in order to reduce the number of executions using

the multi-execution technique of SME-TINI, it is sufficient to (i)

identify in an SME memory which values in the array of values are

equal and (ii) remember which values correspond to which views.

MF uses the multi-execution technique, implements (i) and (ii) and

hence, reduces the number of executions. MF encodes values in SME

memories (arrays with as many positions as lattice elements) as

ordered binary trees, where the order is given by the elements of the

lattice. For example, for a SME memory where µ̂ (h) = ⟨1 : 0 : 0 : 0⟩
for a lattice of 4 elements with top element ⊤, an equivalent MF

memory encodes this array as ⟨⊤?1 : 0⟩ with the meaning that 1 is

the view for ⊤ and 0 for the rest. Every execution that depends on

that value, will multi execute twice instead of 4 times as in SME.

Moreover, MF further uses the view information provided by

the encoding in order to multi execute less in case of branching

commands. For example, for SME-TINI with SME memory µ̂ (h) =
⟨1 : 0 : 0 : 0⟩ the program:

1: if h = 0 then
2: h := h + 1

executes 4 times (where the assignment at line 2 executes 3 times).

Using theMFmemory encoding µ̂ (h) = ⟨⊤?1 : 0⟩, MF remembers

that at line 2 there is no possible observation for the view⊤ (because

for view ⊤ the value of h is 1 so it doesn’t take the then branch).

Hence, the assignmenth := h+1 only executes once with a memory

where h is 0 (the view of variable h corresponding to the 3 levels

which are not ⊤).

For a program h := l , where µ̂ (l ) is ⟨1 : 1⟩ in SME, MF keeps only

the value 1: a single value represents the fact that all views can

observe the same value. Thus the assignment h := l executes once
(and all future executions dependent on h will also be reduced).
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⊤ 

B1 B2 B3

⊥ 

Figure 2: Lattice ⟨LB,⊑⟩

Hence when encoding of an

SME memory can be reduced ef-

fectively, multi executions are re-

duced accordingly. As shown in

the following sections, preserva-

tion of MF memories encoding

through execution requires: to

represent arrays of values as trees

called faceted values and to eval-

uate expressions depending on faceted values. In particular, the

definition of the evaluation of expressions on faceted values de-

pends highly on the shape of expressions and their values according

to different views, and thus is contradictory to the blackbox prop-

erty of a monitor.

MFmay run more multi executions than SME Original MF

has one limitation with respect to SME: it was designed only for

a security lattice of principals: for n principals, such a lattice con-

tains 2
n
security levels. The following Ad Exchange platform [35]

example demonstrates that MF may be less efficient than SME in

practice, when the security lattice is not based on principals.

Example 2.1. AnAd Exchange platform needs to put an advertise-

ment on a publisher’s website. For that, it implements a Real-time

Bidding (RTB) system [36], where advertisers can bid for the space

on the publisher’s website to get their ad published. The system

receives as input all the bid offers from bidders and sorts them.

According to the RTB algorithm, the second best offer wins.

We present the lattice of 5 elements for this example in Fig. 2.

For simplicity, we consider only 3 bidders called B1, B2, and B3, an
Ad Exchange (⊤ level) which is able to see all the bids, and a public

view ⊥. Because MF is designed for a principal lattice, to encode 5

security levels, it uses 3 principals k1, k2, and k3, and create a lattice
of 8 = 2

3
levels, and thus has a potential to run some parts of the

program 8 times, while SME always executes the program 5 times.

We consider one test that naively checks the order of bid of-

fers and decides the winner. The encoding of the lattice is: ⊤ =

{k1,k2,k3}, Bi = {ki }, and ⊥ = ∅.

1: winner := 0;

2: test := (x1 ≤ x2) and (x2 ≤ x3);
3: if test then winner := 2 else skip

The bid values from bidders are x1 = ⟨k1 ? 10 : 0⟩, x2 = ⟨k2 ? 5 : 0⟩,
and x3 = ⟨k3 ? 7 : 0⟩. Thus, the resulting value of test at line 2 is

⟨k1 ? ⟨k2 ? ⟨k3 ?ff :ff⟩ : ⟨k3 ?ff :ff⟩⟩ : ⟨k2 ? ⟨k3 ?tt :ff⟩ : ⟨k3 ?tt :tt ⟩⟩⟩.

Therefore, the original MF executes the if instruction 8 times

with 3 useless executions for levels {k1,k2}, {k2,k3}, and {k1,k3}.
Moreover, because different views of a variable may contain the

same values, MF may execute the same statement several times. For

example, in the execution described above, original MF executes

the then branch 3 times, while it only needs to run once since the

threes executions for the then branch can be merged into one.

3 MF FOR ARBITRARY SECURITY LATTICE
We present an extension to the original Multiple Facets mecha-

nism [3] for an arbitrary security lattice ⟨L,⊑⟩, which we call Gen-

eralised Multiple Facets mechanism, or GMF. Similarly to Multiple

Facets, GMF operates over a faceted memory µ̂ that maps variables

to simple values or faceted values. A faceted value is of the form
⟨l ?V1 :V2⟩ where l ∈ L is a security level, and Vi can be either

a faceted value or a simple value. The first facet V1 of ⟨l ?V1 :V2⟩
is called private, and visible to the observers at security level l or
higher levels in the lattice; the second facet V2 is called public, and
visible to security levels that are lower or incomparable to l . We

use V as a meta-variable for faceted values or simple values. Every

evaluation in GMF (see Fig. 6) is marked with a set of security levels

pc , for which the current computation is visible.

3.1 Expression evaluation
⊤ 

B1 B2 B3

⊥ 

H

M1 M2

L

Figure 3: Lattice ⟨L⋄,⊑⟩

By µ̂pc (e ) we denote the evalu-

ation of expression e in faceted

memory µ̂ with set of security lev-
els pc . The definition of µ̂pc (e ) is
presented in Fig. 4. For example,

consider the evaluation of x when

the faceted value x in memory µ̂ is
⟨l ?V1 :V2⟩. To define which facet

is useful given a pc , we consider
the following cases:

• All the levels in pc are greater than or equal to l , denoted
l ≼ pc (i.e. ∀l ′ ∈ pc . l ⊑ l ′): the evaluation can use the

private facet V1 because the public facet V2 is anyway not

useful for every level in this pc .
• All the levels in pc are lower than or incomparable to l ,
denoted l ̸≼ pc (i.e. ∀l ′ ∈ pc . l ̸⊑ l ′): the evaluation can only

use the public facet V2 because V2 is a facet visible to any

view that is lower than or incomparable to l .
• Otherwise, we say that l and pc are incomparable and denote
it by l 9pc (i.e. ∃l ′,l ′′ ∈ pc . l ⊑ l ′∧ l ̸⊑ l ′′): we first evaluate
V1 with pc1 = {l

′ ∈ pc | l ⊑ l ′} – the set of all levels in pc
which are greater than or equal to l . Then, we evaluate V2
with pc2 = pc \ pc1 which is the set of all levels in pc which
are lower than or incomparable to l . Finally, we combine the

two results in a new faceted value.

To evaluate a variablex , we use a special unary operator ⊖pc (µ̂ (x )),
which returns the value that is visible to all the levels in the pc .
Let’s consider the case of ⊖pc (⟨l ?V1 :V2⟩). Notice that, if pc and l
are incomparable, meaning that there are some levels in pc that are
higher than or equal to l and other levels in pc that are lower than
or incomparable to l , denoted by l 9pc , then the evaluation returns

the faceted value ⟨l ? ⊖pc1 (V1) : ⊖
pc2 (V2)⟩. The form of the result

of µ̂pc (e ) is described in Lemma 3.1.

Lemma 3.1. If µ̂pc (e ) = ⟨l ?V1 :V2⟩, then l 9 pc .

Example 3.2 (Expression evaluation). Consider the lattice ⟨L⋄,⊑
⟩ from Fig. 3, and the evaluation of x + y in µ̂, where µ̂ (x ) =
⟨M1 ? 10 : 0⟩ and µ̂ (y) = ⟨M2 ? 5 : 0⟩.

Suppose that pc = {M1,H }. Since all the levels in pc are higher
than or equal toM1, the evaluation of x returns µ̂pc (x ) = 10. Since

pc andM2 are incomparable, the evaluation of y returns µ̂pc (y) =
⟨M2 ? 5 : 0⟩. Next, the evaluation of 10 +pc ⟨M2 ? 5 : 0⟩ is split into

two: one uses a facet visible toM2 (and hence H ), and another one
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µ̂pc (v ) = v

µ̂pc (x ) = ⊖pc (µ̂ (x ))

µ̂pc (e1 ⊕ e2) = µ̂pc (e1) ⊕pc µ̂pc (e2)

⊖pc (v ) = v

⊖pc (⟨l ?V1 :V2⟩) =




⊖pc (V1) if l ≼ pc
⊖pc (V2) if l ̸≼ pc
⟨l ? ⊖pc1 (V1) : ⊖pc2 (V2)⟩ otherwise

v1 ⊕
pc v2 = v1 ⊕ v2

v ⊕pc ⟨l ?V1 :V2⟩ =




v ⊕pc V1 if l ≼ pc
v ⊕pc V2 if l ̸≼ pc
⟨l ? (v ⊕pc1 V1) : (v ⊕pc2 V2)⟩ otherwise

⟨l ?V1 :V2⟩ ⊕pc V =




V1 ⊕pc V if l ≼ pc
V2 ⊕pc V if l ̸≼ pc
⟨l ? (V1 ⊕pc1 V ) : (V2 ⊕pc2 V )⟩ otherwise

where pc1 = {l ′ ∈ pc | l ⊑ l ′ } and pc2 = pc \ pc1.

Figure 4: Expression evaluation

µ ↑defΓ (x ) =



µ (x ) if Γ(x ) = glb(L),

⟨Γ(x ) ? µ (x ) : def (x )⟩ otherwise.

µ̂ |Γ (x ) = l (µ̂ ) (x ) where l = Γ(x )

Figure 5: Functions for faceted and normal memories.

uses a public facet that will be visible toM1.

µ̂pc (x + y) = µ̂pc (x ) +pc µ̂pc (y)

= ⊖pc (⟨M1 ? 10 : 0⟩) +
pc ⊖pc (⟨M2 ? 5 : 0⟩)

= 10 +pc ⟨M2 ? 5 : 0⟩ = ⟨M2 ? 10 +
{H }

5 : 10 +{M1 }
0⟩

= ⟨M2 ? 15 : 10⟩

3.2 Semantics
We abuse the notation and use l as a projection function on simple

values, faceted values and facetedmemories. For anyV , l (V ) returns
the value in V which is visible to users at level l . For any µ̂, l (µ̂ )
returns the memory in µ̂ which is visible to users at level l .

l (v ) = v l (⟨l1 ?V1 :V2⟩) =



l (V1) if l1 ⊑ l ,

l (V2) otherwise.

l (µ̂ ) (x ) = l (µ̂ (x ))

The projection function l is used in the definition of µ̂ |Γ function
that converts a faceted memory to a simple memory (see Fig. 5).

The semantics of GMF is defined in Fig. 6 as a big-step evaluation

relation Γ ⊢ (P ,µ ) ⇓GMF µ ′, where program P is executed in a

memory µ and a security environment Γ that maps variables to

security levels in a given security lattice ⟨L,⊑⟩.

The main rule GMF first constructs a faceted memory from the

standard memory using the transformation µ ↑
def
Γ from Fig. 5,

where glb(L) is the greatest lower bound of L. The resulting

faceted memory keeps original value of each variable x in a private

GMF

(P, µ ↑defΓ ) ↓LG µ̂′

Γ ⊢ (P, µ ) ⇓GMF µ̂′ |Γ

GSkip

(skip, µ̂ ) ↓pcG µ̂
GAssign

(x := e, µ̂ ) ↓pcG µ̂[x 7→ µ̂pc (e )]

GSeq

(P1, µ̂ ) ↓
pc
G µ̂′ (P2, µ̂′) ↓

pc
G µ̂′′

(P1; P2, µ̂ ) ↓
pc
G µ̂′′

GIf-C

µ̂pc (e ) = v (Pv , µ̂ ) ↓
pc
G µ̂′

(if e then Ptt else Pff, µ̂ ) ↓
pc
G µ̂′

GIf-S

µ̂pc (e ) = ⟨l ?V1 :V2⟩ pc1 = {l ′ ∈ pc | l ⊑ l ′ }
pc2 = pc \ pc1 µ̂1 = µ̂ ⊎ (y 7→ V1) µ̂2 = µ̂ ⊎ (y 7→ V2)

P ′ = if y then P1 else P2 (P ′, µ̂1) ↓
pc1
G µ̂′

1
(P ′, µ̂2) ↓

pc2
G µ̂′

2

(if e then P1 else P2, µ̂ ) ↓
pc
G (µ̂′

1
\\y ) ⊗l (µ̂′

2
\\y )

GWhile

(if e then P ;while e do P else skip, µ̂ ) ↓pcG µ̂′

(while e do P, µ̂ ) ↓pcG µ̂′

where µ̂1 ⊗l µ̂2 (x ) = [[⟨l ? µ̂1 (x ) : µ̂2 (x )⟩]]

Figure 6: Multiple facets for arbitrary security lattice

facet, and adds default values (defined by def function) in a public

facet. In a special case when the level of x is the smallest level in a

lattice, we keep only a simple value µ (x ) that is visible to all security
levels. We then evaluate the program with the constructed faceted

memory and pc = L. The resulting faceted memory is transformed

back to a normal memory by using the projection function µ̂ |Γ .
The semantics rules for skip, sequence andwhile loop are straight-

forward. The GAssign rule uses a faceted evaluation µ̂pc (e ) defined
in Section 3.1.

Before describing the semantics of if instruction, we first define

several auxiliary functions. Let dom(µ̂ ) be the domain of µ̂ and y
be a fresh variable, i.e. y < dom(µ̂ )). By µ̂ ⊎ (y 7→ V ) we denote

a new memory µ̂ ′, such that dom(µ̂ ′) = dom(µ̂ ) ∪ {y}, µ̂ ′(y) = V
and for all x ∈ dom(µ̂ ), µ̂ ′(x ) = µ̂ (x ). By µ̂ \\y, we remove y from

the domain of µ̂, that is, µ̂ \\y constructs a new memory µ̂ ′, where
dom(µ̂ ′) = dom(µ̂ ) \ {y} and for all x , y, µ̂ (x ) = µ̂ ′(x ).

Consider the evaluation of the if instruction if e then P1 else P2
with µ̂ and pc . If e is evaluated to a constant value (tt or ff), then
only Ptt or Pff is evaluated (see rule GIf-C).

When e is evaluated to a faceted value ⟨l ?V1 :V2⟩, we construct a
new program if y then P1 else P2, wherey is a fresh variable. From

Lemma 3.1, we have that l 9 pc , and hence pc1 = {l
′ ∈ pc | l ⊑ l ′}

and pc2 = pc \ pc1 are non-empty. In this case, we run the new

program if y then P1 else P2 twice: once with the "higher view"

than l , i.e., with pc1 = {l
′ ∈ pc | l ⊑ l ′} and y set to a private facet

V1, and another time with "lower or incomparable view" than l , i.e.
with pc2 = pc \ pc1 and y set to a public facet V2. We then combine

the resulting memories using the ⊗l operator. The combination of

faceted memories is based on the fact that when pc is split into pc1
and pc2 in the GIf-S rule, all levels in pc1 is larger than or equal to

l , and all levels in pc2 is smaller than or incomparable to l .
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[[v]] = v

[[⟨l ?V1 :V2⟩]] =




[[V ]] if V1 = V2,
[[⟨l ?V11 :V22⟩]] elseif l1 ⊑ l, l ⊑ l2 ,V1 = ⟨l1 ?V11 :V12⟩,

V2 = ⟨l2 ?V21 :V22⟩,
[[⟨l ?V11 :V2⟩]] elseif l1 ⊑ l , V1 = ⟨l1 ?V11 :V12⟩,
[[⟨l ?V1 :V22⟩]] elseif l ⊑ l2, V2 = ⟨l2 ?V21 :V22⟩,
⟨l ? [[V1]] : [[V2]]⟩ otherwise.

Figure 7: Optimisation of a faceted value.

Notice that the form of a faceted value constructed by combining

values can be reduced. For example, a faceted value of the form

⟨H ? ⟨M1 ?V11 :V12⟩ :V2⟩ can be reduced to ⟨H ?V11 :V2⟩ because
M1 ⊑ H and the projection of the original value at any level is

eitherV11 orV2. We use the optimisation on the constructed faceted

values from Fig. 7.

Therefore, in the GIf-S rule after the evaluation of P ′ in two

contexts, we combine the resulting faceted memories µ̂ ′
1
\\y and µ̂ ′

2
\\y

and apply an optimisation operator [[]] for each newly constructed

faceted value. The correctness of [[]] used to optimize faceted values

is proven in Lemma 3.3.

Lemma 3.3. For all l , all V , it follows that l (V ) = l ([[V ]]).

Example 3.4 (Evaluation of if instruction). Consider the security
lattice ⟨L⋄,⊑⟩ from Fig. 3 and the evaluation of the following pro-

gram P with pc = L⋄ and µ̂, where µ̂ (x ) = ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩.
1: if x then z := 10 else z := 5

The evaluation follows theGIf-S rule sinceM19L⋄.We construct

P ′ = if y1 then P1 else P2 and first evaluate P ′ with pc1 = {l
′ ∈

pc | M1 ⊑ l ′} = {M1,H } and µ̂1 = µ̂ ⊎ (y 7→ ⟨H ?tt :ff⟩), and then

evaluate P ′ with pc2 = pc \ pc1 = {M2,L}, µ̂2 = µ̂ ⊎ (y 7→ tt ).
Since pc1 = {H ,M1} and µ̂pc (y) = ⟨H ?tt :ff⟩, the evaluation

of P ′ with pc1 and µ̂1 is split again to two evaluations: one with

P ′′ = if t then P1 else P2, pc11 = {H }, and µ̂11 = µ̂1 ⊎ (t 7→ tt );
and the other one with P ′′, pc12 = {M1}, and µ̂12 = µ̂1 ⊎ (t 7→ ff).

The evaluation of P ′′ with pc11 and with pc12 follow the GIf-C

rule and we get two faceted memories µ̂ ′
11

and µ̂ ′
12
, where µ̂ ′

11
(z) =

10 and µ̂ ′
12
(z) = 5. Then, µ̂ ′

11
\\t and µ̂ ′

12
\\t are combined and we

get µ̂ ′
1
, where µ̂ ′

1
(z) = ⟨H ? 10 : 5⟩.

The evaluation of P2 with pc2 follows the GIf-C rule and the

result is µ̂ ′
2
, where µ̂ ′

2
(z) = 10. At this point, µ̂ ′

1
\\y1 and µ̂ ′

2
\\y1 are

combined and the result is µ̂ ′, where µ̂ ′(z) = ⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩.

Example 3.5 (Evaluation with the GMF rule). Consider the lattice
⟨L⋄,⊑⟩ from Fig. 3 and program P from Example 3.4 with one more

instruction x := x1 > x2. Suppose that Γ(x1) = M1, Γ(x2) = H ,

Γ(z) = H , µ (x1) = 10, µ (x2) = 5, the default values for x1 and

x2 are respectively 100 and 20
2
. Let µ̂ = µ ↑

def
Γ . It follows that

µ̂ (x1) = ⟨M1 ? 10 : 100⟩ and µ̂ (x2) = ⟨H ? 5 : 20⟩.

1: x := x1 > x2
2: if x then z := 10 else z := 5

2
The values and default values for x1 and x2 are chosen so that the value of x after

the evaluation of the assignment instruction is ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩.

Following GMF rule, the program is evaluated with pc = L⋄ =
{H ,M1,M2,L}. For the assignment instruction, the value of x is

updated to µ̂pc (x1 > x2) = ⟨M1 ? ⟨H ?tt :ff⟩ :tt ⟩. The rest of the
evaluation is described in Example 3.4, and the resultant faceted

memory is µ̂ ′, where µ̂ ′(z) = ⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩.

The memory after the application of rule GMF is µ ′ = µ̂ ′ |Γ . Since
Γ(z) = H , the value of z is µ ′(z) = H (⟨M1 ? ⟨H ? 10 : 5⟩ : 10⟩) = 10.

3.3 Equivalence to SME-TINI and Security
Guarantee

SME-TINI. The semantics of SME-TINI, termination-insensitive

version of SME, for an arbitrary security lattice is presented below,

where µ⃗ is a vector that maps levels to normal memories; µ ⊎l Γ
constructs a memory where values of variables at levels that are not

visible to l are replaced by default values; ⊙Γ (µ⃗ ) (x ) ≜ µ⃗[Γ(x )](x )
constructs a memory by combining all memories in µ⃗; and def is a

function mapping variables to default values.

SME-TINI

∀l ∈ L : (P ,µ ⊎l Γ) ⇓ µ⃗[l]

Γ ⊢ (P ,µ ) ⇓SME−TINI ⊙Γ (µ⃗ )

µ ⊎l Γ ≜



def (x ) if Γ(x ) ̸⊑ l ,

µ (x ) if Γ(x ) ⊑ l .

We now prove that SME-TINI enforces termination-insensitive
noninterference (TINI). Two memories µ and µ ′ are equivalent at l
w.r.t. Γ (denoted by µ =Γl µ ′) iff for all x , Γ(x ) ⊑ l =⇒ µ (x ) = µ ′(x ).

When Γ is clear from the context, µ =Γl µ ′ is written as µ =l µ
′
.

Definition 3.6 (TINI). An enforcement mechanism A is termina-
tion insensitive non-interferent (TINI) if for all security environments

Γ, programs P , and memories µ1, and µ2, we have

µ1 =l µ2 ∧ Γ ⊢ (P ,µ1) ⇓A µ ′
1
∧ Γ ⊢ (P ,µ2) ⇓A µ ′

2
=⇒ µ ′

1
=l µ

′
2
.

Theorem 3.7. SME-TINI is TINI.

Equivalence to SME-TINI. To prove the equivalence between GMF

and SME-TINI, we formally define the semantic equivalence of two

mechanisms.

Definition 3.8. Two enforcement mechanisms A and B are equiv-

alent if for any Γ, P and µ, we have that Γ ⊢ (P ,µ ) ⇓A µ ′ iff
Γ ⊢ (P ,µ ) ⇓B µ ′.

We next establish the relation between the execution with GMF

semantics and the execution with the standard semantics.

Lemma 3.9. (P , µ̂ ) ↓
pc
G µ̂ ′ iff (P ,l (µ̂ )) ⇓ l (µ̂ ′) for all l ∈ pc .

Thanks to Lemma 3.9, we now prove the equivalence of GMF

and SME-TINI.

Theorem 3.10. GMF and SME-TINI are equivalent.

As a consequence, we have that GMF is TINI.

Remark 3.1. MF [3] is constructed for a set of principals. When
the set P of principals is fixed, we can use GMF to encode MF: we
construct the lattice ⟨2P,⊆⟩, where each element is a set of principals;
we prove that GMF for ⟨2P,⊆⟩ and MF for P are equivalent [23].
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4 OPTIMIZING GMF
In Section 3, we presented the semantics of Generalised Multiple

Facets (GMF) for arbitrary lattice and have proven it to be equivalent

to SME-TINI. However, GMF from Fig. 6 can be further optimised

and avoid repeating evaluations of the same commands. The fol-

lowing example demonstrates the sub-optimality of GMF.

Example 4.1 (GMF is not optimal). We consider the below pro-

gram from Example 2.1. The lattice is ⟨LB,⊑⟩ from Fig. 2.

1: winner := 0;

2: test := (x1 ≤ x2) and (x2 ≤ x3);
3: if test then winner := 2 else skip
Suppose that the bid offers of B1, B2, and B3 are respectively 10, 5,

and 7, and the default values forBi are 0.W.r.t. this setting, the initial

faceted memory is µ̂, where µ̂ (x1) = ⟨B1 ? 10 : 0⟩, µ̂ (x2) = ⟨B2 ? 5 : 0⟩,
and µ̂ (x3) = ⟨B3 ? 7 : 0⟩. We consider the execution of the program

with GMF.

After line 2, test = ⟨B1 ? ⟨B2 ?ff :ff⟩ : ⟨B2 ?ff : ⟨B3 ?tt :tt ⟩⟩⟩. Fol-
lowing the semantics of GMF, the assignment instruction winner :=
2 is evaluated twice with pcB3 = {B3}, and pc⊥ = {⊥}; the skip
instruction is evaluated three times with pc⊤ = {⊤}, pcB1 = {B1},
and pcB2 = {B2}.

The main idea of our optimisation lays in reducing the number

of sub-evaluations and hence the number of faceted memory com-

binations. For Example 4.1, we propose a mechanism that merges

the evaluations corresponding to pcB3 and pc⊥ into one evaluation

with pc1 = {B3,⊥}. This simplification is possible since test denotes
the same value (i.e., tt ) under pcB3 and pc⊥. Similarly, our simplifi-

cation merges the evaluations corresponding topc⊤,pcB1, andpcB2,
where test denotes ff, into one evaluation with pc2 = {⊤,B1,B2},
and thus evaluates each branch of the if command only once.

In this section, we propose semantics of optimized GMF (OGMF)

that reduces the number of sub-evaluations, and hence is more

resource-friendly than GMF.

4.1 Semantics
The ideas behind the OGMF rule, and the rules for skip, assignment,

sequence, and while instructions are similar to the corresponding

ones of GMF. The functions µ ↑
def
Γ (x ) and µ̂ |Γ (x ) are defined

in Fig. 5. We now explain the semantic rules for the conditional

instruction.

Consider evaluation of the program if e then P1 else P2 with pc
and memory µ̂, and µ̂pc (e ) = V . In order to evaluate each branch

of the conditional only once, we split the pc in two subsets: in the

first subset pc1 the visible value of V is true, and in the remaining

subset pc2, V is false. We now have three distinct cases.

If pc1 = pc , meaning that for all levels in pc , the visible value of
V is true, then P1 is evaluated (rule OIf-T). If pc2 = pc , then for all

levels in pc , the visible value of V is false, and only P2 is evaluated
(rule OIf-F). Finally, when pc is split in non-empty pc1 and pc2,
then both P1 and P2 are evaluated, and their results (µ̂ ′

1
and µ̂ ′

2
) are

combined by µ̂ ′
1
⊕pc1,pc2 µ̂ ′

2
(rule OIf-S) to a new faceted memory.

The intuition behind this combination is that the projection of

µ̂ ′
1
⊕pc1,pc2 µ̂ ′

2
at l ∈ pc1 is taken from the evaluation of P1 and its

projection at l ∈ pc2 is taken from the evaluation of P2.

OGMF

(P, µ ↑defΓ ) ↓LO µ̂′

Γ ⊢ (P, µ ) ⇓OGMF µ̂′ |Γ

OAssign

(x := e, µ̂ ) ↓pcO µ̂[x 7→ µ̂pc (e )]
OSkip

(skip, µ̂ ) ↓pcO µ̂

OSeq

(P1, µ̂ ) ↓
pc
O µ̂′ (P2, µ̂′) ↓

pc
O µ̂′′

(P1; P2, µ̂ ) ↓
pc
O µ̂′′

OIf-T

µ̂pc (e ) = V
pc1 = {l ∈ pc |l (V ) = tt } pc1 = pc (P1, µ̂ ) ↓

pc
O µ̂′

(if e then P1 else P2, µ̂ ) ↓
pc
O µ̂′

OIf-F

µ̂pc (e ) = V pc1 = {l ∈ pc |l (V ) = tt }
pc2 = pc \ pc1 pc2 = pc (P2, µ̂ ) ↓

pc
O µ̂′

(if e then P1 else P2, µ̂ ) ↓
pc
O µ̂′

OIf-S

µ̂pc (e ) = V pc1 = {l ∈ pc |l (V ) = tt } pc2 = pc \ pc1
pc1 , ∅ pc2 , ∅ (P1, µ̂ ) ↓

pc1
O µ̂′

1
(P2, µ̂ ) ↓

pc2
O µ̂′

2

(if e then P1 else P2, µ̂ ) ↓
pc
O µ̂′

1
⊕pc1,pc2 µ̂′

2

OWhile

P ′ = if e then P ;while e do P else skip (P ′, µ̂ ) ↓pcO µ̂′

(while e do P, µ̂ ) ↓pcO µ̂′

(µ̂′
1
⊕pc1,pc2 µ̂′

2
) (x ) =




[[µ̂′
1
(x )]] if µ̂′

1
(x ) = µ̂′

2
(x ),

JF(µ̂′
1
(x ), µ̂′

2
(x ), pc1, pc2), pc1 ∪ pc2K otherwise.

Figure 8: Optimized multiple facets for arbitrary lattice

In the definition of combination of memories for OGMF (bottom

of Fig. 8), we distinguish two cases. If for some variable x , its value
in both faceted memories is the same, (µ̂ ′

1
(x ) = µ̂ ′

2
(x )), then we do

not need to construct a new faceted value. Instead, we optimize the

current value using the optimisation operator from Fig. 7.

If the values of x in µ̂ ′
1
(x ) and µ̂ ′

2
(x ) are different, then we con-

struct a new faceted value V = F(V1,V2,pc1,pc2) and apply further

optimisation on the resulting value V using a new optimisation

operator that takes into account a faceted value and the current pc :
JV ,pcK optimizes the form of V and is described in Fig. 9. We show

an example of such optimisation in Example 4.4.

To combine two faceted memories, we first construct a new

faceted value by using F(V1,V2,pc1,pc2):

F(V1,V2,pc1,pc2) = ⟨⟨List (pc1 ∪ pc2),V1,V2,pc1,pc2⟩⟩

where List (S ) is a list of security levels from a set S , such that if l
appears before l ′ in List (S ) then l ̸⊑ l ′. If the relation ⊑ in a given

security lattice is not a total order, we can transform it into a total

order ⊑T provided that ⊑ is a finite partial order. We can then view

List (S ) as a list such that for any l and l ′ in this list, if l appears
before l ′, then l ′ ⊑T l .

The definition of F(V1,V2,pc1,pc2) uses the following operator
that creates a faceted value based on an ordered list of security
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levels L, two faceted values, pc1 and pc2:

⟨⟨L,V1,V2,pc1,pc2⟩⟩ =




l (V1) if L = l , l ∈ pc1,

l (V2) if L = l , l ∈ pc2,

⟨l ? l (V1) : ⟨⟨T ,V1,V2,pc1,pc2⟩⟩⟩

if L = l .T , T , [], l ∈ pc1,

⟨l ? l (V2) : ⟨⟨T ,V1,V2,pc1,pc2⟩⟩⟩

if L = l .T , T , [], l ∈ pc2.

Notice that the form of the faceted value created byF(V1,V2,pc1,pc2)
may be suboptimal.

Example 4.2 (Faceted value construction). Suppose that V1 =
2, V2 = 0, pc1 = {B3,⊥}, pc2 = {⊤,B1,B2}, List (pc1 ∪ pc2) is
⊤.B1.B2.B3.⊥, and the lattice ⟨LB,⊑⟩ is from Fig. 2.

Following the definition of combination of faceted memories, we

have F(2,0,pc1,pc2) = ⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩. This
value can be further reduced to ⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩.

We therefore define an optimisation function JV ,pcK that further
optimises the result V of a F() function. The optimisation uses

the observation that faceted value returned by F() has the form of

⟨l ?v :V ′⟩, where V ′ is either a simple value or a faceted value
3
.

The function JV ,pcK is defined in Fig. 9. If V is of the form

⟨l ?v :v ′⟩, then the optimisation is straightforward. We now con-

sider the case whenV is of the form ⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩. For demon-

stration, consider the lattice ⟨LB,⊑⟩ from Fig. 2.

If the faceted valueV is of the form ⟨⊤ ?v : ⟨B1 ?v :V ′⟩⟩ (formally,

l ′ ⊑ l and v = v ′), then it can be reduced to J⟨B1 ?v :V ′⟩,pc ′K
(formally, J⟨l ′ ?v ′ :V ′⟩,pc ′K), where pc ′ = pc \ {⊤}.

If the faceted value V is of the form ⟨B1 ?v : ⟨B2 ?v :V ′⟩⟩, (l and
l ′ are incomparable and v = v ′), and moreover for all the levels in

the pc , for which either B1 or B2 is visible, it is guaranteed that they
observe the same value v (see the definition of cond (V ,pc ) below),
then we distinguish the following two cases.

cond (V ,pc ) ≜ V = ⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩ ∧

∀l1 ∈ pc : glb(l ,l
′) ⊑ l1 =⇒ l1 (V ) = v .

• If all levels in pc are greater than or equal to glb(l ,l ′) (i.e.
glb(l ,l ′) ≼ pc), then V is reduced to v . For example, if

pc = {B1,B2,B3}, glb(B1,B2) = ⊥, then glb(B1,B2) ≼ pc , and
thanks to the cond (V ,pc ) we know that B1 (V ) = B2 (V ) =
B3 (V ) = v , then we can reduce such faceted value to simply

v because value V ′ is not useful for such pc .
• If only some levels in pc are greater than or equal to glb(l ,l ′)
(i.e. glb(l ,l ′)9pc), thenV is reduced to ⟨glb(l ,l ′) ?v :V ′′⟩ and
this value is reduced further recursively. Consider that we

add one more security level L to the lattice ⟨LB,⊑⟩ such that

L ⊑ ⊥. If pc = {B1,B2,L}, glb(B1,B2) = ⊥, then glb(B1,B2)9
pc because ⊥ ̸⊑ L. We then construct a set of security levels

S from pc , which are higher or equal than glb(l ,l ′), and
therefore the view on V from all these levels is v (because

cond (V ,pc ) holds). In our example, S = {B1,B2}, and we

construct a new faceted value V ′′ = ⟨⟨{L},V ′⟩⟩ = L(V ′). We

then define a new pc ′ = (pc \ S ) ∪ {glb(l ,l ′)} = {L,⊥}, and
we need to keep glb(l ,l ′) in pc ′ because we must ensure

3
The function F() cannot return a simple value since it is called on non-empty pc1
and pc2 .

that all the levels present in the new faceted value are also

present in pc . Therefore, the reduced faceted value for our

example is J⟨⊥ ?v :L(V ′)⟩, {⊥,L}K.
Finally, if none of the above conditions hold then we recursively

reduce the facet ⟨l ′ ?v ′ :V ′⟩.
The correctness of µ̂1 ⊕

pc1,pc2 µ̂2 in the OIf-S rule is proven in

Lemma 4.3.

Lemma 4.3. For all levels l , variables x , sets of security levels pc1
and pc2, and memories µ̂1 and µ̂2,
• if l ∈ pc1, then l (µ̂1 ⊕pc1,pc2 µ̂2) (x ) = l (µ̂1) (x ),
• if l ∈ pc2, then l (µ̂1 ⊕pc1,pc2 µ̂2) (x ) = l (µ̂2) (x ).

Example 4.4 (Optimisation of faceted value). Consider a faceted
value ⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩ andpc = {⊤,B1,B2,B3,⊥}
from Example 4.2. We show how this value is optimised with our

optimisation function J,K:

J⟨⊤ ? 0 : ⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩⟩, {⊤,B1,B2,B3,⊥}K =
= J⟨B1 ? 0 : ⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩⟩, {B1,B2,B3,⊥}K =
= ⟨B1 ? 0 : J⟨B2 ? 0 : ⟨B3 ? 2 : 2⟩⟩, {B2,B3,⊥}K⟩ =
= ⟨B1 ? 0 : ⟨B2 ? 0 : J⟨B3 ? 2 : 2⟩, {B3,⊥}K⟩⟩ = ⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩

Example 4.5 (OGMF is more resource-friendly than GMF). Con-
sider the program fromExample 4.1. To show optimisation of OGMF,

we evaluate it with pc = {⊤,B1,B2,B3,⊥} and µ̂, where µ̂ (x1) =
⟨B1 ? 10 : 0⟩, µ̂ (x2) = ⟨B2 ? 5 : 0⟩, and µ̂ (x3) = ⟨B3 ? 7 : 0⟩. After the
execution of the instruction at line 2, the faceted memory is µ̂ ′ =
µ̂[winner 7→ 0, test 7→ V ], whereV = ⟨B1 ? ⟨B2 ?ff :ff⟩ : ⟨B2 ?ff : ⟨B3 ?tt :tt ⟩⟩⟩.
We consider the execution of the if instruction.

For levelspc1 = {B3,⊥}, the evaluation of test istt :B3 (µ̂
pc (test)) =

⊥(µ̂pc (test)) = tt . Moreover, pc1 , pc , therefore, the rule OIf-S

applies. The evaluation of the program is split to two: the first eval-

uation is with P1 = winner := 2 and pc1 = {B3,⊥}; and the second

evaluation is with P2 = skip and pc2 = {⊤,B1,B2}. Each branch of

the conditional will be evaluated only once.

The evaluation of P1 with pc1 terminates with µ̂ ′′
1
(winner ) = 2.

The evaluation of P2 with pc2 terminates with µ̂ ′′
2
(winner ) = 0.

These two facetedmemories are combined to µ̂ ′′, where µ̂ ′′(winner ) =
⟨B1 ? 0 : ⟨B2 ? 0 : 2⟩⟩. The construction of this faceted memory is pre-

sented in Examples 4.2 and 4.4.

In the example above, OGMF has only two sub-evaluations, while

GMF has five, moreover OGMF combines faceted memories once,

while GMF combines them four times. Therefore, OGMF is more

resource-friendly than GMF.

4.2 Equivalence to SME-TINI and Security
Guarantee

We first establish the relation between the standard semantics and

the semantics of OGMF.

Lemma 4.6. (P , µ̂ ) ↓
pc
O µ̂ ′ if and only if (P ,l (µ̂ )) ⇓ l (µ̂ ′) for all

l ∈ pc .

We now can prove the semantic equivalence result for OGMF

and SME-TINI.

Theorem 4.7. OGMF and SME-TINI are equivalent.

As a consequence, OGMF and GMF are equivalent even though

OGMF is optimized. In addition, OGMF is TINI.
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J⟨l ?v :v ′⟩, pcK =



v if v = v ′

⟨l ?v :v ′⟩ otherwise.

J⟨l ?v : ⟨l ′ ?v ′ :V ′⟩⟩, pcK =




J⟨l ′ ?v :V ′⟩, pc′K if l ′ ⊑ l , v = v ′, where pc′ = pc \ {l },
v if l ∥ l ′, v = v ′, cond (V , pc ) and glb(l, l ′) ≼ pc ,
J⟨glb(l, l ′) ?v :V ′′⟩, pc′K if l ∥ l ′, v = v ′, cond (V , pc ) and glb(l, l ′) 9 pc , where pc′ = (pc \ S ) ∪ {glb(l, l ′) },

S = {l1 ∈ pc | glb(l, l ′) ⊑ l1 }, and V ′′ = ⟨⟨List (pc \ S ),V ′⟩⟩,
⟨l ?v : J⟨l ′ ?v ′ :V ′⟩, pc′K⟩ otherwise, where pc′ = pc \ {l }.

⟨⟨L,V ⟩⟩ =



l (V ) if L = l ,
⟨l ? l (V ) : ⟨⟨T ,V ⟩⟩⟩ if L = l .T ,T , [].

Figure 9: Definition of JV ,pcK, and optimisation of a faceted value V with respect to the set of security levels pc.

5 A TERMINATION SENSITIVE VERSION OF
MULTIPLE FACETS

A termination sensitive model assumes that an attacker can observe

termination of evaluations. In [19], the model is explained further:

an attacker at level l can observe the termination of evaluations

at level l and lower. In the case of GMF and OGMF, an evalua-

tion marked with pc is an evaluation at l if l ∈ pc . Notice that an
evaluation is at more than one level whenever pc is not a singleton.

As illustrated by Example 5.1, GMF and OGMF do not prevent

the influence of private data at higher levels to the termination of

the evaluations at lower levels. In other words, GMF and OGMF do

not prevent leakage on termination channel [19].

Example 5.1. Suppose that L = {L,H }, where L ⊑ H . We look

at the evaluation of if x then (while tt do skip) else skip with

pc = L and µ̂ (x ) = ⟨H ?tt :ff⟩. When GMF or OGMF is used,

the evaluation is split into two: one is with pc1 = {H }, the other
one is with pc2 = {L}. The evaluation with pc2 converges, while
the evaluation with pc1 diverges since its executing program is

while tt do skip. Therefore, the evaluation of the whole program

with pc = {L,H } also diverges and hence, to an attacker at L, the
evaluation at L diverges. However, if the program is evaluated

with µ̂ ′(x ) = ⟨H ?ff :ff⟩, to the attacker at L, the evaluation at L
converges. Based on observations on those two evaluations, an

attacker at L can gain insight about the high facet of x . In other

words, GMF and OGMF do not prevent the influence of data at H
to the termination of the evaluation at L.

Therefore, we propose Termination SensitiveMultiple Facets (TSMF),

a version of MF that takes into account the termination sensitive

model. TSMF is a generalization of a version of MF presented in [8,

Appendix A]. The basic idea of TSMF is that when an if instruction

is evaluated, TSMF performs a bounded evaluation of the instruc-

tion by using OGMF. If the OGMF evaluation does not terminate

within the given time bound, then the instruction is evaluated in-

stead using SME semantics with a low-prio scheduler [14]. The

security guarantees offered by TSMF are the same as SME with

the same low-prio scheduler [19]. The semantics of TSMF and the

proofs about its security guarantees can be found in [23].

6 RELATEDWORK
SME. Devriese and Piessens introduce the idea of Secure Multi-

Execution [14]. Since then, many researchers have developed differ-

ent aspects of this approach. Close to our work, Kashyap et al. [19]

discuss how schedulers might affect security guarantees (i.e., TSNI

and TINI) based on the chosen scheduler and the lattice ordering.

They show several schedulers and classify them according to the

strength of security guarantees and according to fairness properties.

This work complement theirs by providing a similar analysis but

for an interplay of MF and SME semantics. SME [14] has many im-

plementations: as a library in Haskell [18], as an experimental web

browser based on Firefox [13], as a static program transformation

for both Python and JavaScript [4], and as an adaptation to reactive

systems [6]. In the work above, SME preserves the semantics of

secure programs up to interleaving of events. To remedy that, Za-

narini et al. [37] carefully leverage SME to design a precise monitor

which exactly preserves semantics of secure programs up to termi-
nation. Several other works [10, 26, 33] expand SME and introduce

declassification. In this work, we focus on semantics guarantees up

to interleaving of events—as in the SME original formulation.

MF. Austin and Flanagan introduce MF semantics [3]—a tech-

nique often referred as an optimization for SME. However, as shown

by Bielova and Rezk [7], they do not provide the same security guar-

antees (i.e., TINI vs. TSNI) and differ in their treatment of default

values. This work provides yet another look into a comparison

between both techniques to show their differences, while introduc-

ing novel value-based optimizations to MF. Another work by the

same authors [9] compare and contrast five dynamic techniques,

including MF and SME, to mainly reason about the preservation of

semantics of secure programs, a property known as transparency.
In this work, we show that GMF and OGMF enjoy the same trans-

parency guarantees as SME-TINI (Theorems 3.10 and 4.7).

Tools. Most information flow control tools provide TINI, e.g., Jif

[21], FlowCaml [25], Laminar [27], Paragon [11], and JSFlow [16].

Similarly, termination leaks are often ignored in security tools com-

ing from the operating system research community, e.g., Asbestos

[15], HiStar [38], and Flume [20]. A few exceptions to this trend

are the security libraries LIO [31] and MAC [28], which provide

TSNI for concurrent programs.

Decentralized label models. The decentralized label model (DLM),

allows one to express the interests of mutually-distrusting prin-

cipals without a central authority [22]. The set of labels forms a

pre-order where the order relationship does not require to know

all the points in the relationship to determine the result of com-

paring two labels—bearing in mind that there might be an infinite

number of labels due to the dynamic creation of principals at run-

time. In a similar spirit, DC-labels [32, 34] provides a decentralized
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label format which allows one to express rich policies dictated

by mutually-distrusting principals as propositional logic formulas

(without negation). In this work, we require to know all the points

in the chosen lattice in order to optimize MF as shown by OGMF.

Extending our techniques to DLM or DC-labels is an interesting

direction for future work.

7 CONCLUSION AND PERSPECTIVES
This work contributes to develop techniques to secure programs

using dynamic information flow—a promising approach to secure

existing JavaScript code. We specially focus on proposing a tech-

nique that achieves a smaller number of executions than MF (and

hence smaller memory footprint) without diminishing security

guarantees. We further extend our MF-based technique to work

with arbitrary finite lattices (GMF) based on the observation that

off-the-shelf lattices with principals are not always the most conve-

nient ones to use. Knowing all the points in the lattice allows for

further optimizations: spawning multi-executions could be done

on a value-based basis (OGMF) rather than on security levels—as in

original MF. Finally, we propose a hybrid approach which present

an interesting balance between the number of executions and secu-

rity guarantees: it behaves as OGMF as long as it can and switches

to SME when termination leaks could occur (TSMF). In other words,

TSMF prioritizes resource usage as long as there are no risks for

termination leaks. We expect that these insights will help inform

future development of multi-execution-based techniques. In fact,

an intriguing question is what it would take for our optimizations

(or future ones) to work on potentially infinite lattices like the DLM

or DC-labels—an interesting direction for future work.
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