
Reactive non-interference for a Browser Model
Nataliia Bielova∗, Dominique Devriese†, Fabio Massacci∗ and Frank Piessens†

∗ University of Trento, Italy
{bielova, massacci}@disi.unitn.it

† DistriNet Research Group, KULeuven, Belgium
{dominique.devriese, frank.piessens}@cs.kuleuven.be

Abstract—We investigate non-interference (secure information
flow) policies for web browsers, replacing or complementing
the Same Origin Policy. First, we adapt a recently proposed
dynamic information flow enforcement mechanism to support
asynchronous I/O. We prove detailed security and precision
results for this enforcement mechanism, and implement it for
the Featherweight Firefox browser model. Second, we investigate
three useful web browser security policies that can be enforced
by our mechanism, and demonstrate their value and limitations.

I. INTRODUCTION

The explosive growth of Web applications such as web-
based e-mail, social networking, web banking, and others
has turned the Web into one of the most important software
delivery platforms. The Web browser has become a virtual
machine that receives and executes a variety of interactive
applications from different stakeholders. Hence, one of the
key security responsibilities of a browser is to provide proper
protection mechanisms to ensure that these different applica-
tions cannot interfere with each other in non-authorized ways.
In today’s browsers, this is achieved by enforcing the same-
origin-policy. An origin is a (protocol, domain name, port)
triple, and restrictions are imposed on the way in which code
and data from different origins can interact.

Unfortunately, this same-origin-policy is fraught with prob-
lems. Not only is it implemented inconsistently in current
browsers [19], it is also ambiguous and imprecise [3], and
it fails to provide adequate protection for resources belonging
to the user rather than to some origin [19]. This has led to
a significant amount of research proposing improvements for
web browser security, ranging from specific countermeasures
for holes in the same-origin-policy to proposals for new
browser architectures that basically turn a browser into a
service operating system. We give a brief overview of this
research area in the related work section.

Of particular importance for this paper are the various
proposals that have been made to base the policy enforced by
a browser on non-interference, or information flow security. A
program is non-interferent if secret inputs to the program do

This research is partially funded by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, by the Research Fund
K.U.Leuven, and by the EU FP7 programmes: EU-ICT-IP-MASTER, EU-
FET-IP-SecureChange, FP7-ICT-WebSand and FP7-IST-NoE-NESSOS. Do-
minique Devriese holds a Ph.D. fellowship of the Research Foundation -
Flanders (FWO). The authors wish to thank Aaron Bohannon for his helpful
comments on an earlier version of this paper.

not influence (flow into) public outputs. An information flow
policy defines which inputs and outputs are considered secret
or public. More generally, a policy has a partially ordered set
(poset) of security or confidentiality levels and labels input
and output channels with such levels. The program is non-
interferent if information only flows from inputs labeled li to
outputs labeled lo for li ≤ lo. In other words: information only
flows upward, toward more confidential levels.

Non-interference has been studied intensely for several
decades, and a wide variety of enforcement mechanisms has
been proposed. Sabelfeld and Myers [17] provide an exten-
sive survey of static enforcement methods, and Le Guernic
[8] surveys dynamic methods. Several authors have already
investigated the use of secure information flow techniques
in the context of a browser, for instance to secure mashup
composition [15], [13], or to prevent private information to
flow to advertisement providers [14], [6].

Devriese and Piessens [7] introduced a novel secure multi-
execution technique that proposes to execute a program multi-
ple times, once for each security level, using special rules for
I/O operations. The main advantage of this approach is that
it is proved to be sound (any program is noninterferent under
secure multi-execution) and precise (the technique does not
change the behaviour of the noninterferent programs).

Very recently, Bohannon et al. [4] proposed to replace the
same-origin-policy with information flow policies. They define
the notion of reactive non-interference, an adaptation of the
classic notion of non-interference to reactive systems, systems
that perform asynchronous I/O such as web browsers. In
addition, they provide a bisimulation-based proof technique to
prove the soundness of enforcement mechanisms for reactive
non-interference. In a later paper, Bohannon et al. [3] develop
Featherweight Firefox, an extensive formalization of a web
browser as a reactive system (implemented in OCaml).

Continuing on this line of work, this paper makes the fol-
lowing contributions. First, we develop a provably secure and
precise enforcement mechanism for reactive non-interference,
based on secure multi-execution [7]. Our precision results are
stronger and more general than those proven for the original
technique. Then, we analyze three useful web browser policies,
of increasing complexity. We demonstrate their value and lim-
itations in some typical web scenario’s. Finally, we implement
our mechanism and all the policies for the Featherweight
Firefox browser model.

The remainder of this paper is structured as follows: The

next section describes the problem addressed in this paper.
We summarize the results of Bohannon et al. used in the this
paper in Section III. Section IV gives an informal overview of
our approach and Section V provides a formal model where
we prove our main precision and security results. Section VI
presents a variety of useful policies that can be enforced by our
mechanism. Finally, we provide related work, and conclude.

II. PROBLEM STATEMENT

A browser interacts with a variety of web sites, and possibly
executes JavaScript code downloaded from them. In order to
make sure that these sites do not interfere in undesirable ways,
today’s browsers enforce the same-origin policy, an access-
control policy where browser resources are tagged with their
origin, and access to resources is limited to code coming from
the same origin. Origin is defined as a triple (protocol, host,
port), so two origins are considered to be the same only if all
the elements of their tuples are equal.

The same-origin-policy has many problems, and has been
criticized by many authors [19], [11]. Some of the issues,
such as the fact that different browser resources use different
definitions of origin, can be considered implementation bugs
or inconsistencies, and they could in principle be addressed
without fundamentally changing the same-origin access con-
trol policy (even though, as Singh et al. point out [19], the
incompatibility burden of such fixes can be substantial). While
such issues are important, they are not what this paper is about.

Other limitations of the same-origin-policy are more fun-
damental, and do not seem to be solvable without significant
changes to the policy enforced by the browser. In particular,
there are several scenarios that indicate that a policy based on
non-interference would have advantages over the current ac-
cess control policy. A first, very simple, motivating example is
a scenario where a website sends code to perform calculations
on user private data.

Example 1 (Tax Calculator): Suppose the fictitious website
http://taxcalc.com offers the service of pre-calculating
the amount of tax in function of income, age, marital status
and so forth. The service sends an HTML form for entering
the user’s information, and JavaScript code for calculating the
tax based on the information entered in the form.

The user wants assurance that the information he enters does
not leave his computer — not even to the website providing the
service. The same-origin-policy does not offer any protection
for this scenario since the origin of the script for calculating
the tax is the same as the origin of the including page.

More fundamentally, if we assume that further interactions
between the user and the website are essential (for instance
to pay for the service), no access-control policy can provide
this assurance: the script needs access to the private data to
perform its function, and it needs access to the network to
send invoicing information to the service. What is needed is
an information flow enforcement mechanism that can ensure
that the script cannot leak private information to the network.

Example 2 (Flight ticket): Consider an e-commerce site
where users can order flight tickets. Obviously, the user will

be fine with sharing some private information such as name,
birth date and even credit-card information with the website.
However, the user would like to have assurance that this
information does not leak to other sites.

The same-origin-policy provides some protection for this
scenario: it ensures that scripts running in the user’s browser
and belonging to web pages from other origins cannot access
the information entered by the user. However, scripts that are
part of the e-commerce web pages will have the same origin,
so they can access and easily transmit information to other
sites. This can be done by initiating an HTTP request to that
other site where some information to be leaked is encoded in
the URL or parameters of the request [10]. The script that leaks
the information does not necessarily come from the trusted
site, there are many ways in which malicious scripts can find
their way into pages from trusted websites. Two common
attack vectors are (1) cross-site scripting (XSS), where a
vulnerability in the server software enables an attacker to inject
scripts in the web pages served by the server [16], and (2)
the inclusion of advertisements from third-party ad-providers;
such advertisements are regularly implemented as scripts that
run within the same origin as the including page [14].

An important additional challenge is that for many web
applications, some form of information flow between origins
is actually desired. So any proposed browser security policy
should not block such information flows. It is, for instance,
common to include content (e.g. images and scripts) from
other origins in web pages. A strict non-interference policy
would prohibit such techniques and hence be strongly incom-
patible with the current web.

The examples above illustrate that non-interference is a
promising candidate for a (baseline) browser security policy,
but two important problems need to be addressed.

First, an enforcement mechanism for non-interference at
the level of the browser is needed. While several browser
security countermeasures based on information flow security
techniques have been proposed, none of them can enforce
non-interference for the full browser and for a broad class
of security lattices in a secure and precise way (see the
Related Work section). This paper proposes an enforcement
mechanism, and proves it secure and precise.

Second, non-interference is parameterized with a policy: a
poset of security levels, and an assignment of such levels to
browser inputs and outputs. Selecting suitable policies is a
challenge. This paper analyzes several interesting policies and
shows that they can securely handle the scenarios above, yet
stay compatible with desired cross-origin information flows
such as image and script loading.

III. BACKGROUND

To address the first problem (the development of a general,
secure and precise enforcement mechanism for a full browser),
we need a formal model of a browser and a formalization of
non-interference for such a model. This section summarizes
work by Bohannan et al. on Featherweight Firefox [3] and
reactive non-interference [4] that we build on in this paper.

A. Reactive systems
At the highest level of abstraction, a browser is modeled as

a reactive system [3], [4], a particular kind of automaton that
reacts to inputs by changing state and emitting outputs.

Definition 3.1: A reactive system is a tuple
(ConsumerState, ProducerState, Input,Output,→)

where → is a labelled transition system whose states are
State = ConsumerState ∪ ProducerState and whose
labels are Act = Input ∪Ouput, subject to the constraints:
• for all C ∈ ConsumerState, if C a−→ Q, then a ∈ Input

and Q ∈ ProducerState,
• for all P ∈ ProducerState, if P a−→ Q, then a ∈
Output,

• for all C ∈ ConsumerState and i ∈ Input, there exists
a P ∈ ProducerState such that C i−→ P , and

• for all P ∈ ProducerState, there exists an o ∈ Output
and Q ∈ State such that P o−→ Q.

The system is idle and is waiting for inputs in consumer states,
and it emits outputs in producer states. A reactive system can
only handle one input event at a time (thus correctly modeling
the fact that JavaScript event handlers are single threaded).
The definition allows for non-termination: it is possible that
the system never returns to a consumer state. We limit our
attention in this paper to deterministic reactive systems.

Reactive systems transform streams of input events into
streams of output events. A stream is defined as a coinductive
interpretation of the grammar S ::= [] | s :: S, where s ranges
over stream elements. A coinductive definition of the grammar
defines the set of finite and infinite objects that can be built
with repeated applications of the term constructors, so a stream
is a finite or infinite list of elements [9].

We use metavariables I and O to range over streams of
inputs i and outputs o, respectively. The behavior of a reactive
system in a state Q is defined as a relation between the input
streams and output streams.

Definition 3.2: Coinductively define Q(I) ⇒ O (state Q
transforms the input stream I to the output stream O) by the
following rules, where C and P are respectively consumer and
producer states: C([])⇒ []

C
i−→ P P (I)⇒ O

C(i :: I)⇒ O

P
o−→ Q Q(I)⇒ O

P (I)⇒ o :: O

B. Featherweight Firefox
The notion of reactive system is very abstract. To an-

alyze potential security policies, we use a browser model
that concretizes the abstract states, inputs and outputs. The
Featherweight Firefox browser model [3] does exactly that. It
includes many browser features such as multiple browser win-
dows; cookies; sending HTTP requests and receiving HTTP
responses; essential HTML elements; building document node
trees, and also the basic features of JavaScript. It is imple-
mented as an executable model in OCaml.

Featherweight Firefox (FF) is a reactive system, with
a much more detailed definition of the input and out-
put events, and the internal state of the browser. Input

TABLE I: Selected user and network I/O events.

User load_in_new_window(url)
input input_text(user window, nat, string)
User window_opened
output page_loaded(user window, url, rendered doc)

page_updated(user window, rendered doc)
Network
input

receive(domain, nat, cookie updates, resp body)

Network
output

send(domain, request uri, cookies, string)

events can either come from the user (loading a URL in a
new window load_in_new_window, entering text in a text
box input_text, etc.), or from the network (receiving an
HTTP response receive). Output events can be to the user
(web page is updated page_updated, window is opened
window_opened) or to the network (sending HTTP request
send). The FF browser model defines precisely how the
browser will react to these inputs by emitting outputs. Some
of input and output events are shown in Table I.

The FF model is surprisingly rich. We will see examples
including for instance the execution of event handlers imple-
mented as scripts in an html page.

C. ID-security, or reactive non-interference

It remains to define what it means for a reactive system (and
hence FF) to be non-interferent. Bohannon et al. [4] propose
a notion of ID-security, a termination insensitive variant of
non-interference. We specialize their definitions to this case.

Let us assume that a poset of security levels is given. The
predicate visiblel(s) models what observers of security level
l can see: visiblel(s) is true iff the stream element s is visible
to an observer at level l. First, we define what it means for
two (input or output) streams to be equivalent up to level l.

Definition 3.3: Coinductively define S ≈ID
l S′ (S is ID-

similar to S′ at l) with the following rules:

[] ≈ID
l []

visiblel(s) S ≈ID
l S′

s :: S ≈ID
l s :: S′

¬visiblel(s) S ≈ID
l S′

s :: S ≈ID
l S′

¬visiblel(s) S ≈ID
l S′

S ≈ID
l s :: S′

This definition is coinductive, meaning that the property holds
on the largest possible set fixed under all the rules. We can
now define when a reactive system is secure in a state Q.

Definition 3.4: A state Q is ID-secure or (reactive) non-
interferent if, for all l, I ≈ID

l I ′ implies O ≈ID
l O′ whenever

Q(I)⇒ O and Q(I ′)⇒ O′.
The definitions in this section allow us to state our first goal

for this paper: we want to build an enforcement mechanism
ensuring that FF is reactive non-interferent.

IV. INFORMAL OVERVIEW

Our enforcement mechanism is based on a relatively new
dynamic technique for achieving non-interference: secure
multi-execution [7], [5], [12]. The core idea of this mechanism
is to execute the program multiple times (one sub-execution
of the program for each security level), and to ensure that (1)

1 var a = parseInt(document
2 .getElementById(’a’).value);
3 var b = parseInt(document
4 .getElementById(’b’).value);
5 var sum = a + b;
6 document.getElementById(’c’).value = sum;
7 document.getElementById(’banner’)
8 .src = ’http://attacker.com?t=’ + sum;

Fig. 1: JavaScript code example

outputs of a given level l are only done in the sub-execution
at level l, and (2) inputs at level l are only done at level l
(the sub-executions above l reuse the inputs obtained by level
l; sub-executions not above l are fed a default value). So the
sub-execution at level l only sees inputs of levels below l and
its output could not have been influenced by inputs of a higher
level. Non-interference follows easily from this observation.

Devriese and Piessens [7] have worked out this mech-
anism for a simple sequential programming language with
synchronous I/O, and have proven its security and precision.
Capizzi et al. [5] have implemented it at the level of operating
system processes for the case of two security levels.

The mechanism we propose adapts this technique to reactive
systems, and we prove its security (weaker than what Devriese
and Piessens have shown in their setting: we lose termination-
and timing-sensitivity), as well as its precision (stronger than
the result by Devriese and Piessens: we show precision under
much weaker assumptions).

Let us explain the mechanism by means of an example.
Consider again the tax calculation example from Section II.
The JavaScript code in Fig. 1 models the essence of this
example: the user provides private inputs (two integers) in the
text fields a and b, and the JavaScript code computes their sum
and displays this in text field c. We can assume this JavaScript
code is a part of an event handler that fires whenever the user
changes the contents of a or b.

The code in Fig. 1 shows a potential attack: the script will
leak the (secret) sum to ”attacker.com” by sending an HTTP
request to that domain with the secret as a parameter (setting
the src property of an image HTML element in JavaScript
will have as a side effect that the image is reloaded from the
URL assigned to the src property). Recall that the JavaScript
code was not necessarily endorsed by the tax calculation site. It
could have been injected through a cross-site scripting (XSS)
attack or hidden in an advertisement running on the page.
Under a policy that assigns a high security level (H) to text
field inputs, and a low security level (L) to all the outputs
(including the one to ”attacker.com”), this program is clearly
not secure: high inputs leak to low outputs. Notice that all
current browsers are vulnerable to such attack since a script
gets assigned the same origin as the including page and hence
is able to leak any (secret) user information.

Our enforcement mechanism runs several sub-executions of
the web browser, one for each security level. Tables II and III
show what happens at L and H sub-executions. The level
of every input event is shown in column 1, while levels of
output events are shown in column 2. The tables show which

TABLE II: Run of L sub-execution of the browser.

L load_in_new_window(”http://taxcalc.com”)
H window_opened
L send(”taxcalc.com”, request uri, cookies, ...)

L receive(”taxcalc.com”, 0, cookie updates, doc(a=0,
b=0, c=0, js inline))
H page_loaded(user window(“taxcalc.com”), ...,

doc(a=0, b=0, c=0, js inline))
H input_text(user window(“taxcalc.com”), 1, ”2”)
L (further L input)

L send(”attacker.com”, request uri, cookies, ”?t=0”)

TABLE III: Run of H sub-execution of the browser.

L load_in_new_window(”http://taxcalc.com”)
H window_opened
L send(”taxcalc.com”, request uri, cookies, ...))

L receive(”taxcalc.com”, 0, cookie updates, doc(a=0,
b=0, c=0, js inline))
H page_loaded(user window(“taxcalc.com”), ...

doc(a=0, b=0, c=0, js inline))
H input_text(user window(“taxcalc.com”), 1, ”2”)

H page_updated(user window(“taxcalc.com”),
doc(a=0, b=2, c=2, ...))

H window_opened
L send(”attacker.com”, request uri, cookies, ”?t=2”)

L (further L input)
L send(”attacker.com”, request uri, cookies, ”?t=2”)

events get suppressed. For instance, for the L sub-execution,
the following events get suppressed: (1) the input events of
level H (and also all output events that would have been the
result of the input event), and (2) the output events at level H.

The offending output to ”attacker.com” is suppressed, as the
L sub-execution never gets the H input event where the user
is typing secret data in the text box. In the tables, we show
that even if the script would try to send the contents of a and
b later in response to further L input, the actual output sent
to “attacker.com” would only contain the sum of the default
values in both text boxes. Notice the proposed mechanism
also ensures that there are no implicit flows, since the low
sub-execution (that is allowed to send) does not contain any
high-level information (the user secret data). There is never
any information flow from H inputs to L outputs.

V. FORMALIZATION

We propose to apply the secure multi-execution technique to
a reactive system. Given an information flow policy, we build
a new reactive system that is called a wrapper. The wrapper
runs multiple sub-executions of the original reactive system:
one for each security level. When it consumes an input event,
it is passed to those sub-executions that are allowed to see
it, i.e. the sub-executions at a level higher or equal than level
of this event. A sub-execution produces output events only at
the level of this sub-execution. Because of space constraints,
proofs are provided in a separate technical report [2].

A. Secure multi-execution of reactive systems

The information flow policy contains a partially ordered
set of security levels (L,≤) and a function lbl : Act → L
assigning security levels to all inputs and outputs of the

LOAD

R(l)
i−→ Pl if lbl(i) ≤ l then R′(l) = Pl

else R′(l) = R(l) for all l

(R, ∅) i−→ (R′, Upper(i))

OUT-P
R(l)

o−→ P lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ P], l :: L)

OUT-C
R(l)

o−→ C lbl(o) = l

(R, l :: L)
o−→ (R[l 7→ C], L)

DROP-P
R(l)

o−→ P lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ P], l :: L)

DROP-C
R(l)

o−→ C lbl(o) 6= l

(R, l :: L)
·−→ (R[l 7→ C], L)

Fig. 2: Semantics for secure multi-execution of a reactive
system.

reactive system. The output · is invisible at all levels, and
can be used to represent internal activity of the system. (For
instance to return from a producer state to a consumer state
without producing real output [4].)

A state of the wrapper is a tuple (R,L), where

• R is a function mapping security levels to states of the
reactive system, R : L → State. R(l) is the state of the
sub-execution at level l.

• L is the list of the levels of all the sub-executions that are
in producer state (you can think of it as the scheduler’s
ready queue).

States (R, ∅) are consumer states of the wrapper and states
(R,L) with L 6= ∅ are producer states. The initial state of the
wrapper is a state (R, ∅) such that for all l ∈ L, the state R(l)
is the initial state of the original reactive system.

Fig. 2 shows the semantics of the wrapper. When a new
input event i arrives, it is passed to the copies at the levels in
Upper(i) (defined as a list of security levels higher or equal
than the level of i), and the wrapper makes a transition to
a producer state ([LOAD]). Once the wrapper is in producer
state (R, l :: L), it gives the sub-execution at level l a chance to
proceed. If this sub-execution produces an output at level l, the
wrapper outputs it ([OUT-P] and [OUT-C]), otherwise a silent
output (·) is produced instead ([DROP-P] and [DROP-C]). If
the sub-execution at the level l reaches a consumer state, then
this level is removed from L ([OUT-C] and [DROP-C]).

It is intuitively clear that this construction guarantees non-
interference. Output at level l is only produced from the sub-
execution at level l, which only gets input at level l or lower,
so leaks from higher levels are impossible. On the other hand,
the sub-execution at level l receives identical input on level
l or lower. Therefore, if the program is non-interferent, then
our wrapper still produces the same output as the original. It
is possible that the order of outputs will be reordered though.
We will discuss both of these aspects (security and precision).

B. Security

First, we show formally that our technique guarantees non-
interference: for any reactive system and any information flow
policy, our wrapper will never produce information leaks.

Bohannon et al. proposed a bisimulation-based proof tech-
nique based on ID-bisimulation relation (written ∼l)[4, Defini-
tion 4.1]. Our proof is based on the key theorem of Bohannon
et al.[4, Theorem 4.5] stating that if Q ∼l Q for all l, then
Q is ID-secure. In order to obtain ID-bisimulation relation on
the wrapper states, we propose a definition of l-similarity.

Definition 5.1: The state of the wrapper (R1, L1) is l-
similar to the state (R2, L2) (written (R1, L1) ≈l (R2, L2))
iff a) R1 ≈l R2 meaning ∀l′ ≤ l : R1(l

′) = R2(l
′)), and

b) L1|l = L2|l, where L|l represents the list of levels l′ in L
such that l′ ≤ l.

Then we have proved the following key lemma.
Lemma 5.1: The l-similarity relation is an ID-bisimulation.
Since for every state (R,L) of the wrapper we have

(R,L) ≈l (R,L), we can finally use the Theorem 4.5 from
[4] and prove the security theorem.

Theorem 5.1 (Security): All the states of the wrapper are
ID-secure.

C. Precision

On the other hand, we need to prove that our enforcement
mechanism is precise: since it will sometimes modify the
behaviour of programs, we need to prove that it does this in
a sensible way, i.e. it does not observably modify behaviour
for programs that already are secure. We show precise formal
results to explain exactly what we mean by this.

First, we need to define what we mean by saying that
our enforcement mechanism does not observably modify the
behaviour of programs. It is important to notice that even for
well-behaved programs, the wrapper can change the relative
order of output events at different security levels. We assume
that any observer will only observe at a single security level.
This assumption is valid for the policies we will consider in
Section VI. Then, we define the observer-indistinguishablel
relation that relates input or output streams that “look the
same” for observers at security level l. Like Bohannon et al.,
we use a coinductive definition to clearly specify this definition
for infinite streams.

Definition 5.2: Define observer-indistinguishablel(S, S
′)

coinductively with the following rules:
observer-indistinguishablel([], [])

lbl(s) 6= l observer-indistinguishablel(S, S
′)

observer-indistinguishablel(s :: S, S
′)

lbl(s′) 6= l observer-indistinguishablel(S, S
′)

observer-indistinguishablel(S, s
′ :: S′)

observer-indistinguishablel(S, S
′)

observer-indistinguishablel(s :: S, s :: S
′)

This notion is weaker than Bohannon et al.’s ID-similarity.
In fact, we have the following result:

Lemma 5.2: If O ≈ID
l O′, then:

observer-indistinguishablel′(O,O
′) for all l′ ≤ l.

Another notion we need is the projection of a finite stream
at a certain security level l. The projection function πl removes
from the stream those events that are at a level not below l.

Definition 5.3: Define, for finite I0

πl([]) = [] πl(i :: I0) =

{
πl(I0) if lbl(i) 6≤ l
i :: πl(I0) if lbl(i) ≤ l

Our enforcement mechanism produces observably equiva-
lent outputs for those inputs for which the original reactive
system is already “well-behaved” with respect to the security
policy. We use the following precise definition:

Definition 5.4: Given a reactive system state Q and a finite
input I and output O such that Q(I) ⇒ O we say that Q
behaves securely for input I iff for all l ∈ L, we have that
Q(πl(I))⇒ Ol with observer-indistinguishablel(O,Ol).

These are the definitions we need to state the first of our
precision theorems. The following theorem is the most detailed
result, and shows that for those inputs for which the reactive
system behaves securely, the corresponding wrapper produces
results that are observationally equivalent.

Theorem 5.2 (Precision for individual runs): Suppose a
given reactive system state Q behaves securely for input
I and Q(I) ⇒ OQ. Define the corresponding wrapper
W = (RQ, L) with RQ(l) = Q for all l ∈ L, L = ∅ if
Q ∈ ConsumerState and L = L if Q ∈ ProducerState.
For OW such that W (I)⇒ OW , we have that OQ ≈obs OW .

This theorem is actually not a typical precision result for an
information flow enforcement technique, because it does not
require non-interference of the original system, as would be
more typical (see e.g. Devriese and Piessens [7]). Instead, the
theorem gives a sufficient condition for an individual execution
to “behave securely” and produce observationally equivalent
results. However, we can show that the previous theorem is
stronger, by showing that if the original system was non-
interferent, then all of its executions “behave securely”.

Lemma 5.3: If a given reactive system state Q is ID-secure,
then it behaves securely for any input I .

This lemma easily leads to the following, more classical,
precision theorem.

Theorem 5.3 (Precision): Suppose a given reactive system
state Q is ID-secure, and Q(I)⇒ O. Define the corresponding
wrapper W = (RQ, L) with RQ(l) = Q for all l ∈ L, L = ∅
if Q ∈ ConsumerState and L = L if Q ∈ ProducerState.
For O′ such that W (I)⇒ O′, we have that O ≈obs O′.

The stronger result is important in practice. Featherweight
Firefox (without secure multi-execution) is never ID-secure:
even if all scripts that have been loaded up to now behaved
fine, somewhere in the future a malicious script might be
loaded that leaks information. So the classical precision the-
orem does not apply, and it does not allow us to conclude
precision for runs of the browser that actually behave well.

So what we need is a theorem that says: if the run of the
browser up to some point behaved well, then our enforcement
will not modify that run in an observable way. This is exactly
what our first precision theorem does.

Note that we are only talking about precision here: security
is never at stake. Featherweight Firefox with our enforcement
mechanism will always be ID-secure. The point here is that
we want to relate the behavior of the secured browser with
the unsecured one, and this cannot be done with a classical
precision theorem.

VI. INFORMATION FLOW POLICIES

We have implemented our information flow enforcement
technique for Featherweight Firefox model in OCaml 1. This
implementation allows us to demonstrate valuable information
flow policies for web browsers. The three basic policies we
show demonstrate on the one hand the power of information
flow policies, allowing us to define precisely the property that
we want to enforce. On the other hand, our examples show
that it is our technique that enforces the policies in a way
that non-complying programs are dealt with as precisely as
possible.

A. Policy 1: High/Low Policy

A first, very simple but useful policy that can be enforced
classifies all user inputs as H and all network outputs as L.
This is essentially the policy we used in Section IV to explain
our enforcement mechanism.

According to this simple High/Low policy, no public outputs
are possible after secret inputs. It might seem that this will
block any request to a website. But this is not the case.
Intuitively, the reason why the request to “attacker.com” is
being blocked is that it is made in response to a user input
event, which is considered a private (H) information by our
policy. Toward observers on the L security level, the policy en-
forcement therefore replaces this behavior by default behavior
coming from the L execution, which is kept under the illusion
that no user input has occurred.

Note that this policy is a very simple information flow
policy, but already achieves something that previously was
not possible. We can run a website making sure that certain
user information is never leaked. For example, we can think
of a “Keep all information in this field inside my browser”
button that you can push to prevent information entered
into a field from leaving your browser. The browser’s policy
enforcement could then use an enforcement technique like ours
to guarantee security of the information, and in many cases
without affecting the further behaviour of the site.

B. Policy 2: Separating origins

The airplane tickets e-commerce site example is more
typical for a general web site. In this scenario, a level of
trust is assumed between the user and the company hosting
the ticketing website, in order for the ticketing company
to provide useful information or services. Nevertheless, the

1It can be accessed here: http://disi.unitn.it/∼bielova/sme-firefox.

TABLE IV: Origin separation policy

User
input

load_in_new_window(. . .) L
input_text(user window(dom), . . .) M(dom)

User
output

window_opened H
page_loaded(. . .) H
page_updated(. . .) H

Network
input

receive(dom, . . .) M(dom)

Network
output

send(dom, . . .) M(dom)

TABLE V: Origin separation policy. M1 = M(“air.com”), M2
= M(“attacker.com”).

L load_in_new_window(”http://air.com”)

L H window_opened
M1 send(”air.com”, request uri, cookies, ””))

H H window_opened
M1 send(”air.com”, request uri, cookies, ””))

M1 receive(”air.com”, 0, cookie updates,
doc(age=0, ...))
M1 H page_loaded(user window, ”http://air.com”,

doc(age=0, ...))
H H page_loaded(user window, ”http://air.com”,

doc(age=0, ...))
M1 input_text(user window, 0, ”25”)

M1

H page_updated(user window, doc(age=25, ...))
H window_opened
M1 send(”air.com”, request uri, cookies, ”?t=25”)
H window_opened
M2 send(”attacker.com”, request uri, cookies,

”?t=25”)

H

H page_updated(user window, doc(age=25, ...))
H window_opened
M1 send(”air.com”, request uri, cookies, ”?t=25”)
H window_opened
M2 send(”attacker.com”, request uri, cookies,

”?t=25”)

standard same-origin-policy (SOP) is not sufficient as it allows
(in practice) this data to be sent anywhere.

We believe that the basic model of SOP is actually correct.
When a user enters information on a website, it is typically his
intent to disclose this information to the owner of that website,
but not others. Likewise, information received from a website
can be trusted to be sent back to this website but not to others.

A somewhat evident idea here is to use a security lattice
with three types of levels: L, M(dom) for any domain dom
and H. The L and H levels are smaller resp. bigger than all
others and the M(...) domains are mutually incomparable. The
M(dom) level is assigned to all network events originating
from or going to this domain and to all user input events
that contain information destined for a page on this domain.
Output events going to the user are classified as H. This policy
is summarized in Table IV.

Table V shows the execution of a prototypical airline
ticketing website script under origin separation policy. A level
of input event is in column 1, a level of sub-execution that
receives this input is in column 2, and a level of an output is
in column 3. We see that network output to “air.com” is now
permitted to be influenced by information from user input.

Something interesting happens when we consider a page

that tries to download a third-party script at page load time.
Imagine that upon receiving an HTTP response receive

(at level M1), the browser attempts to send the request for
a third-party script (or image) at “remote.com”. Our policy
marks input event receive as information that must be
revealed only to the “air.com” domain. Hence the request to
the “remote.com” should not be sent.

Of course, there is a good reason why the receive event
should be classified at this level. If we suppose the page that
is received represents the third step in the airline ticket pur-
chasing process, and contains a summary of all data previously
input by the user, then this is clearly information that we want
to protect and the policy is correct to not allow this info to
leak to third-party sites.

There is a tendency in information flow research to quickly
turn to declassification [18] in such situations. Such techniques
allow higher security information to be disclosed at lower
levels under certain conditions. Declassification typically re-
quires involvement from the sandboxed code and necessarily
introduces extra complexity and weakens security guarantees.
In our case, we are looking for a mechanism that can be
transparently applied to existing code and declassification is
not the best solution.

In fact, the problem in our example is that our information
flow policy is not fine-grained enough. If we want to refine
the SOP retaining maximum compatibility, we need to define
a policy that does a better job of formalizing the assumptions
in the current web security model. In this case, the policy
does not capture the implicit notion that an HTML document
contains information at different confidentiality levels. If the
document specifies that it requires a certain script to function
then this information must be permitted to leak to the website
serving the script. In the next subsection, we discuss how this
is possible without disclosing the entire document.

C. Policy 3: Sub-input-event security policies

The key to solving the issue is to assign different labels to
different parts of a single input event. One simple solution is
to model such an input event as a number of separate input
events, so that we can give each of these parts a different
level. Then our enforcement mechanism and our security and
precision theorems can be applied as before. An alternative,
more intuitive way of thinking about this splitting of an input
event (where different levels can see a different subset of the
parts of the split event), is to consider security-level dependent
projections that project an input event on the part of the event
visible to a specific level. Space limitations keep us from
discussing this policy in more detail. An extensive discussion
can be found in the technical report [2]. With these final
refinements, our approach realizes a substantial improvement
over the standard SOP, while maintaining compatibility with
typical cross-origin interactions in modern web applications.

VII. RELATED WORK

There is a large body of related work on information
flow security in general, or on web security techniques in

general. We refer the reader to three good sources where
these fields are surveyed. Sabelfeld and Myers [17] survey
static techniques for information flow enforcement, and Le
Guernic [8] surveys dynamic techniques. The PhD thesis
of Martin Johns [11] gives a good survey of web security
techniques and countermeasures for web-related vulnerabilites.

In some recent works, not yet covered in the surveys
cited above, authors have developed dynamic [1] or static [6]
techniques to enforce information flow security in a browser
context. These techniques lack the precision guarantees of
secure multi-execution, but on the other hand, secure multi-
execution is likely to have a higher performance penalty.

In the rest of this section, we focus on the work that is
most closely related to ours. A first very related line of work
is the work by Bohannon et al. which has been discussed
extensively in Section III. Next, there are several other security
countermeasures that have strong similarities to our approach.

The technique of secure multi-execution was proposed by
Devriese and Piessens [7] is the most closely related. This
new technique is proved it to be sound and precise for a
simple sequential programming language with synchronous
I/O. Our paper extends their work to reactive systems and
hence browsers. Interestingly, the formal guarantees we get
are different. Whereas [7] can prove timing-sensitive non-
interference, we have to settle for termination-insensitive non-
interference. The main reason for this is that we are more
restricted in the reordering of output events. On the other
hand, we get a substantially stronger precision result. We
show precision for any well-behaved run, whereas Devriese
and Piessens can only prove precision for programs that are
termination-sensitively non-interferent.

A similar approach was proposed by Capizzi et al. [5] where
they run two executions of operating system processes for the
H (secret) and L (public) security level. They limit themselves
to this simple two-element poset, but they provide an actual
implementation, and report on benchmarks.

In a very recent paper, Kashyap et al. [12], generalize the
technique of secure multi-execution to a family of techniques
that they call the scheduling approach to non-interference, and
they analyze how the scheduling strategy used impacts the
security properties offered.

Several very recent works have applied information flow
analysis to web mashups. Magazinius et al. [15] propose an
approach to construct a security lattice for mashups. Similarly
to our work, where an element of the security lattice depends
on the origin of the event, the authors of this paper defined
the elements as sets of origins. The paper is focused on the
definition of the policies, and does not focus on enforcement
mechanisms. Li et al. also deal with mashups in their Mash-IF
approach [13]. The security levels there consists of a tuple of
sensitivity level and an origin. It is a practical approach, but
no soundness or precision guarantees are provided.

VIII. CONCLUSION AND FUTURE WORK

This paper has studied the suitability of non-interference
as a replacement for the same-origin-policy in browsers. We

have shown that it is possible to enforce non-interference for a
browser securely and precisely for a broad class of information
flow policies. In addition we have shown that, even without
any support for declassification, useful information flow poli-
cies for a browser can be defined.

In many cases, we can detect that the reactive system was
not non-interferent to begin with, but it is future work to
investigate what can be done in these cases. A clear possibility
is to inform the user that this is the case, but we could also
try to apply certain heuristics to improve precision.

An important remaining challenge is the development of
efficient implementation techniques for our enforcement mech-
anism. It is also important to evaluate the impact of the
proposed policies on real web sites: while the security benefits
of a non-interference policy are high, there will be a price to
pay. Even though we have shown by example that some level
of compatibility with the current web can be maintained, it is
to be expected that many detailed incompatibilities will show
up, and evaluating the cost of these – and how they could be
mitigated – is a key challenge for future work.

REFERENCES

[1] T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In PLAS, 2010.

[2] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive
non-interference for the browser: extended version. Technical Report
CW602, CS Dept., K.U.Leuven, February 2011.

[3] A. Bohannon and B. C. Pierce. Featherweight Firefox: Formalizing the
core of a web browser. In WebApps, 2010.

[4] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic.
Reactive noninterference. In CCS, 2009.

[5] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. Prasad Sistla.
Preventing information leaks through shadow executions. In ACSAC,
2008.

[6] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information
flow for Javascript. In PLDI, 2009.

[7] D. Devriese and F. Piessens. Non-interference through secure multi-
execution. In SSP, 2010.

[8] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information
Flow Analyses. PhD thesis, Kansas State University, 2007.

[9] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:62–222, 1997.

[10] M. Johns. On Javascript malware and related threats. JCV, 4:161–178,
2008.

[11] Martin Johns. Code Injection Vulnerabilities in Web Applications -
Exemplified at Cross-site Scripting. PhD thesis, University of Passau,
2009.

[12] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a new ap-
proach. In SSP, 2011.

[13] Z. Li, K. Zhang, and X. Wang. Mash-IF : Practical Information-Flow
Control within Client-side Mashups. In DSN, pages 251–260, 2010.

[14] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. AdJail :
Practical enforcement of confidentiality and integrity policies on web
advertisements. In USENIX, 2010.

[15] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach
to mashup security. In ASIACCS, 2010.

[16] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-
site scripting prevention with dynamic data tainting and static analysis.
In NDSS, 2007.

[17] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. In JSAC, volume 21, pages 5–19, 2003.

[18] Andrei Sabelfeld and David Sands. Declassification: Dimensions and
principles. JCS, 17:517–548, October 2009.

[19] K. Singh, A. Moshchuk, H.J. Wang, and W. Lee. On the incoherencies
in web browser access control policies. In SSP, 2010.

