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Abstract. Runtime enforcement is a common mechanism for ensuring
that program executions adhere to constraints specified by a security
policy. It is based on two simple ideas: the enforcement mechanism should
leave good executions without changes and make sure that the bad ones
got amended. From the theory side, a number of papers [6, 10, 12] provide
the precise characterization of good executions that can be captured by a
security policy and thus enforced by a specific mechanism. Unfortunately,
those theories do not distinguish what happens when an execution is
actually bad (the practical case). The theory only says that the outcome
of enforcement mechanism should be “good” but not how far should the
bad execution be changed.
If we consider a real-life example of a drug dispensation process in a
hospital the notion of security automata or even edit automata would
stop all requests by all doctors on all drugs and all dispensation protocols,
as soon as a doctor forgot to insert the research protocol number.
In this paper we explore a set of policies called iterative properties that
revises the notion of good traces in terms of repeated iterations. We
start discussing how an enforcement mechanism can actually deal with
bad executions (and not just only the good ones).

1 Introduction

The last few years have seen a renewed interest in the theoretical and practi-
cal aspects of the run-time security enforcement mechanisms. After Schneider’s
paper [11] on security automata, a number of refinements have been proposed.
For example Hamlen’s work on rewriting [6], and Ligatti et al. works on edit au-
tomata [2, 12]. Most papers had an applied counterpart: systems actually capable
of enforcing the security policies [4, 7, 10].

Yet, as we have shown already in [3], there is a gap between the theoreti-
cal constructions actually used in the papers and the practical implementation.
The reasons behind this gap is the actual format of the definitions that have
been so far used to formally describe the “good” properties of an enforcement
mechanism: transparency and soundness.

Basically, soundness says that every output of enforcement mechanism should
be valid and transparency says that in case of valid input, the output should be
? Research partly supported by the Project EU-FP7-IP-MASTER.
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equal to the input. Most papers focused on kinds of good traces that be poten-
tially enforced with particular enforcement mechanism, thus providing an initial
classification. For practical applications, this is not enough. What distinguishes
an enforcement mechanism is not what happens when traces are good, because
nothing should happen! The interesting part is how precisely bad traces are con-
verted into good ones. To this extent soundness only says they should be made
good. The practical systems, being practical, will actually take care of correcting
the bad traces. But this part is simply not reflected in the current theories. Not
even Ligatti’s own running example could be generated or accounted for by his
theoretical constructions [3].

In order to be concrete and show the impressive width of the gap, we use a
real, industrial level healthcare process set-up in some private and public hospi-
tals for drug dispensation.

The classical enforcement mechanisms assume that as soon as some restricted
operation happens, either the process must be immediately stopped [11] or the
mechanism should wait until the execution becomes valid again by itself [10]. In
practice a mechanism faithfully implementing security automata á la Schneider
would stop the whole drug dispensation process because once a doctor did not
insert a research protocol number. Following the theoretical construction actually
used by Ligatti, Bauer and Walker the mechanism should wait, suppressing
actions of doctors and nurses, until the doctor would insert that missing protocol
number. Process becomes valid again by itself. This behavior is not inherent to
the theoretical constructions that are possible with edit automata. It is just the
only one that is actually provided in the cited papers. Therefore, in this paper
we address the following challenge:

Challenge 1 The enforcement mechanism should have a “plausible”/“believable”
behavior when the requests (of the users) do not correspond to the policy.

Contribution of the paper. In the next section, we describe our concrete
running example: a health-care process of drug dispensation to outpatients. It
will be used to show what kind of practical enforcement can be done whenever
process execution violates the security policy. In §3 the basic notations (for edit
automata, enforcement, etc.) that will be used in the paper are presented.

Our contributions are following: we introduce a new kind of property called
iterative property. Loosely speaking, it captures the practical intuition of repeat-
ing good transactions. This property corresponds more accurately than renewal
and safety property to the actual traces that are used in practice. In our practical
example it covers all properties of interests with the exception of liveness.

Then, we also show the relation between iterative properties to all other
classical security properties and show how to represent it with simple policy
automata (§4). Finally, we show which mechanisms can concretely enforce this
property and how to construct them (§6) and conclude (§7).

As a simple example, we have shown in [3] that the example of Fig.2 in [2]
could not be generated from the proof of Thm.8. In this paper, this example
can be automatically generated from the specific automata corresponding to the
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Fig. 1. BPMN model drug dispensation process

policy by our algorithm in §6 if, whenever there is an attempt to violate the
policy, we emit a warning instead of silently suppressing the action.

2 Running example

The case study in this paper is based on a healthcare process of drug dispensa-
tion. Private Hospitals accredited with the Public National Health Service are
charged with administering drugs or with providing diagnostic services to pa-
tients that use their structure and then are authorized to claim the cost of drug
dispensation or diagnostic provisioning to the Regional Healthcare Authority.

In particular, there is a mechanism called File F that allows hospitals to
refund the drugs administered and/or supplied in the hospitals’ outpatient de-
partments to the patients that are not hospitalized. Here we describe the drug
dispensation process consisting of the following main steps: the doctor identi-
fies the patient; the doctor selects the drugs, registers the dispensation, takes
the drugs from the stock and prints the dispensation sheet; doctor signs the
dispensation sheet and delivers drugs to the patient.

In Fig. 1 we present a BPMN diagram of drug dispensation process empha-
sizing the drug selection subprocess3. According to this subprocess, the doctor
retrieves patient’s prescription and dispensation historical data, selects the drugs

3 We would like to thank ANECT for developing original BPMN diagrams of the full
drug dispensation process.
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Abbreviations

Dis = Drug is selected

Tnn = Therapeutical notes needed

Rtn = Review therapeutical notes

TnNn = Therapeutical notes Not needed

Dr = Drug is for research

Irpn = Insert research protocol number

DNr = Drug is Not for research

Ipd = Insert prescription details

DNas = Drug is Not available in the stock

Dpew = Drug physically exists in the ward

Das = Drug is available in the stock

Fig. 2. Policy automaton for iterative drug selection subprocess

by existing prescription, by repeating dispensation or from the stock. Then, for
each selected drug the following procedure holds:

1. First the doctor should select the drug.
2. If the therapeutical notes needed, doctor reviews them in this step.
3. If patient is using prescribed drug for the research program purposes (i.e.,

the patient has been enrolled in the clinical trial for the testing of that drug),
doctor has to insert the research protocol number into the prescription form.

4. Doctor has to insert all the other prescription details.
5. The availability of the drug in the stock is checked. If it is not available the

next check is made, otherwise the process succeeds.
6. Doctor checks the drug availability in the ward. If it is available the process

succeeds, otherwise fails.

In this paper we want to define how the executions where “something locally
bad may happen” can be enforced. Let us come back to the Fig. 1 and assume
that each choice in BPMN diagram corresponds to the action in resulting process
execution that communicates the choice, e.g., if the drug is for research then the
corresponding event is “Drug is for research”, similarly, if drug is not for research
then the event is “Drug is not for research”. To ease the comparison with other
papers on enforcement [2, 12] we give in Fig. 2 automaton corresponding to the
BPMN process. Formal definition will be given later in the section 3. Intuitively
an acceptable iteration requires following the edges of the automaton and end
in the state q0 without skipping steps.

Example 1. Let us assume the following execution of the process, which consists
of 3 iterations for three different drugs. At first the drug is selected, therapeutical
notes are not needed, the drug is not for research, we insert prescription details,
the drug is available at the stock. The first part is correct. The second iteration
is: drug is selected, therapeutical notes not needed, the drug is for research, insert
prescription details, the drug is available at the stock. In this iteration the drug
is for research but the research protocol number is not inserted, therefore it is not
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correct. The third iteration is drug is selected, therapeutical notes needed, review
therapeutical notes, the drug is not for research, insert prescription details, the
drug is available at the stock. This iteration is also correct. ♦

Even if we accept the idea that incorrect execution should be dropped, the
acceptable behavior for the administrators of the e-health system is just to drop
the second part of the execution.

3 Security Properties

Following the standard notation on run-time security policies [11, 5, 2] we denote
the set of observable program actions by A. An execution, or a trace, is a finite
or infinite sequence of actions; the set of all finite executions over A is denoted
by A∗, the set of infinite executions is Aω, and the set of all executions is A∞.
We write τ ;σ to denote concatenation of two sequences and τ must be finite. By
τ � σ, or σ � τ we denote that τ is a finite prefix of finite sequence σ.

A security property is a predicate P̂ over traces or, equivalently, a set of traces
Σ ⊆ A∞ such that ∀σ ∈ Σ. P̂ (σ). Schneider only considered infinite traces (by
extending finite traces by the repetition of the last action) but we prefer to
distinguish between finite and infinite traces. In the sequel the execution σ that
satisfies the property P̂ is called valid, legal or good. Similarly, the execution
that does not satisfy the property will be called invalid, illegal or bad.

There are several classes of properties. The property “nothing bad ever hap-
pens” is called safety property and formally defined by Lamport [8]. Additional
to safety properties, there are liveness properties [1] that claim that “something
good eventually happens during any execution” or in the other words any finite
execution can always be extended to satisfy the property.

However, except for safety and liveness properties there are more general
properties, which allow executions to alternate between satisfying and violating
security property. Renewal property presented in [10] is such a property. Ac-
cording to it, every infinite-length sequence has infinite number of valid finite
prefixes and every invalid sequence has only a finite number of valid prefixes.

Definition 1. Property P̂ is renewal if the following holds:

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) (1)

According to [10] every decidable renewal property can be enforced by a
Ligatti automata (a particular kind of edit automata [3]). These automata will
always output only the longest valid prefix of the input. The renewal property,
similar to liveness property, implicitly assumes that “nothing irremediably bad
happens in any finite execution”. It is obviously implied by the fact that the
valid execution must have infinite number of valid prefixes. Therefore if the
valid execution has something irremediably bad appeared in a finite prefix, then
the number of valid prefixes is finite.
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Example 2. Let us expand the Ex. 1. Result of the drug selection process exe-
cution for three drugs is a following trace, which consists of three iterations:

1. The first iteration is Dis; TnNn; DNr; Ipd; Das, which is a valid execution.
2. The second attempted iteration is Dis; TnNn; Dr; Ipd; Das, which is an invalid

execution. It means that the drug is for research (Dr action) but the research
protocol number is not inserted (there is no action Irpn after Dr).

3. The third iteration in the trace consists of Dis; Tnn; Rtn, DNr; Ipd; Das,
which is a valid iteration.

The resulting trace is invalid since it has an invalid second part after which the
trace can never become valid again. What kind of behavior is expected from the
enforcement mechanism in this case? ♦

The Ex. 2 clearly presents a renewal property, since if the infinite sequence is
valid (always contains action Irpn after Dr or contains action DNr) it has infinite
number of valid prefixes. Moreover, it can be enforced by Ligatti Automaton by
outputting the longest valid prefix. In this case the resulting execution will be a
first iteration of the process execution.

However, the administrators of the e-health system might expect a resulting
trace to be longer. Since the drug selection process for the third drug is valid by
itself, they would like to have this iteration in the resulting trace. Therefore an
excected behavior of the system is following: to delete the second invalid iteration
of the execution, and to output the first iteration followed by a third iteration.
However, this trace correction is not provided by existing techniques [10].

The iterative drug selection process used in Ex. 2 shows that there exists a
class of properties that accept set of traces consisted of repeated executions. In
our example the trace is legal if it consists of iterations that are representing all
the paths from state q0 to state q0 in Fig. 2. We define this class as iterative
properties (like in [10] assuming that empty trace is always valid).

Definition 2. Property P̂ is a iterative property iff

∀σ, σ′ ∈ A∗. P̂ (σ) ∧ P̂ (σ′) =⇒ P̂ (σ;σ′) (2)

Notice that given an infinite sequence of the form (σ)∞, it can satisfy some
iterative property, which accepts σ. By this example we want to emphasize, that
iterative property is defined over finite and infinite sequences.

We present several examples of the iterative properties that are also renewal
properties as well as some others that are not renewal and not even liveness. The
relationship between safety, liveness and renewal properties is taken from Fig. 1
of [10]. We add their relationships with iterative properties in Fig. 3.

Properties 3-7 are iterative properties since by concatenating two valid se-
quences a valid sequence is always obtained. The trivial property 9 is iterative as
well. The property 8, which was defined as non-renewal and non-liveness in [10],
is an iterative property. If we concatenate two valid executions that are termi-
nated and never access private files then the resulting execution will also be
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Legend

1 Nontermination

2 Resource availability

3 Stack inspection

4 Log out and never open files

5 Property 4 on system without file-open actions

6 Eventually audits

7 Transaction property

8 Termination + file access control

9 Trivial

10 All sequences with fixed length

11 Increasingly longer sequences

12 Termination

Fig. 3. Relationships between security properties

valid. We similarly explain the property 12: since all finite sequences are valid,
the resulting concatenated finite-length sequence is valid as well.

The property 10 is non-iterative. However, it is a safety property – if the
sequence is invalid and its length is bigger than some fixed number n, then there
exists a prefix of length n+1 such that any continuation of this prefix is an invalid
sequence. The property 11 states that the sequence is valid iff it is infinite or its
length belongs to the following set of numbers {Fi}: F0 = 1, Fi+1 = 2Fi + 1.
This property is not iterative: by concatenating two valid sequences a new invalid
sequence is obtained. Yet, this is a renewal property, because every valid infinite-
length sequence has an infinite number of valid prefixes.

4 Iterative property representation

For finite representation of the security policies we use a variant of automata
without loss of generality. Indeed, it was shown in Proposition 6.24 of [12] that
edit automata can only enforce properties represented by Büchi automaton.

Definition 3 (Policy automaton). A Policy automaton is a 5-tuple of the
form 〈A, Q, q0, δ, F 〉, where A is a finite nonempty set of security-relevant pro-
gram actions, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×A → Q
is a labeled partial transition function, and F ⊆ Q is a set of accepting states.
The initial state is always an accepting state (q0 ∈ F ) and Policy automaton
satisfies the following properties:

1. It does not have any dead-ends.
2. All the states of automaton are reachable.
3. It is a deterministic automaton.

For the drug selection subprocess from Fig. 1 we constructed the Policy
automaton from Fig. 2. In the following we will use this Policy automaton.

The Policy automaton can have accepting and non-accepting states. In our
example, if the action Dr (“Drug is for research”) happens, then the subsequent
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state must be non accepting and only after action Irpn (“Insert research protocol
number”) the next state may be accepting.

Definition 4 (Run of a Policy automaton). Let A = 〈A, Q, q0, δ, F 〉 be
a policy automaton. A run of A on a finite (respectively infinite) sequence of
actions σ = 〈a0, a1, a2, . . .〉 is a sequence of states q|σ| = 〈q0, q1, q2 . . .〉 such
that qi+1 = δ(qi, ai). A finite run is accepting if the last state of the run is an
accepting state. An infinite run is accepting if the automaton goes through some
accepting states infinitely often.

Definition 5 (Property represented as Policy automaton). Some prop-
erty P̂A is represented as a Policy automaton A if and only if:

∀σ ∈ A∞ : P̂A(σ) ⇐⇒ A accepts σ (3)

The Policy automaton combines the acceptance conditions of Büchi Au-
tomata and finite state automata. Some iterative properties can be represented as
a Policy automaton. For example, a predicate P̂ corresponding to drug selection
subprocess is an iterative property and it is represented by Policy automaton.

5 Effective vs. Iterative enforcement

Once we have designed the security policy we can define an enforcement mech-
anism. Runtime enforcers transform the program executions of an untrusted
application to ensure that they do not violate security property. For example,
the enforcer can be formally modeled as security automata [11] (for safety prop-
erties), or as edit automata [10] (for renewal properties).

For the sake of simplicity, we only reason only about finite executions. We
assume that enforcement mechanism E given some input execution sequence τ
transforms it into the output sequence E(τ).

Traditionally, an enforcement mechanism should satisfy (at least) two prop-
erties: soundness and transparency. Soundness says that all the output of the
enforcement mechanism should be legal. An enforcement mechanism obeys trans-
parency if all the good sequences are output without changes. Enforcement mech-
anism provides “effective=enforcement” [9] if it obeys both of these properties.

Definition 6. An enforcement mechanism E effectively=enforces a property P̂
on the system with action set A iff

1. ∀σ ∈ A∗ . P̂ (E(σ))
2. ∀σ ∈ A∗ . P̂ (σ) ⇒ E(σ) = σ

The definition of effective=enforcement is enough if we deal only with valid
input. Formally speaking, a mechanism that transforms every invalid trace to an
empty trace will also satisfy the property of “effective=enforcement”. However,
none of our references from the hospital will consider an “effective enforcement”
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mechanism that will stop drug selection subprocess and whole dispensation pro-
cess because the doctor failed to insert a research protocol number. Therefore,
sequences are not wholly good or wholly bad. They are composed by fragments
that can be good or bad. The removal of a bad fragment from an otherwise good
sequence can make it good.

In Thm. 4 of [3] it is shown that Ligatti automaton is specific type of edit au-
tomaton that has an all-or-nothing behavior and delayed precisely enforces given
property. All-or-nothing means that it always outputs all the read actions that
are not output so far or does not output anything. Delayed precise enforcement
means that only the longest valid prefix is output. We give a formal definition of
the longest valid prefix and type of enforcement that Ligatti automaton provides.

Definition 7. The prefix σo (o for “output”) is a longest valid prefix of the
sequence of actions σ with respect to the property P̂ iff

P̂ (σo) ∧ (∀σ∗.σ∗ � σo ∧ σ∗ � σ =⇒ ¬P̂ (σ∗)) (4)

Definition 8. An enforcement mechanism E all-or-nothing delayed precisely
enforces a property P̂ on the system with action set A iff

1. ∀σ ∈ A∗ . P̂ (σ) ⇒ E(σ) = σ

2. ∀σ ∈ A∗ .¬P̂ (σ) ⇒ E(σ) = σo, where σo is a longest valid prefix of σ.

Let us define another type of enforcement, which is able to output longer
acceptable sequences than just a longest valid prefix.

Definition 9. An enforcement mechanism E iteratively enforces by suppression
an iterative property P̂ on the system with action set A iff

1. ∀σ ∈ A∗. P̂ (σ) ⇒ E(σ) = σ, and
2. ∀σ ∈ A∗.¬P̂ (σ) ∧ ∃σ∗ � σ .P̂ (σ∗) ⇒ E(σ) = σo, where σo is the longest

valid prefix of σ, and
3. ∀σ ∈ A∗.¬P̂ (σ) ∧ ∀σ∗ � σ .¬P̂ (σ∗) ∧ ∃σb. σ = σo;σb;σr ∧ σb is the smallest

sequence s.t. after deleting it from σ the resulting trace can become good
again ⇒ E(σ) = σo;E(σr), where σo is the longest valid prefix of σ.

The example of market policy (Fig. 2 of [2]) shows exactly iterative en-
forcement by suppression. The only difference is that the edit automaton from
Fig. 2 does not simply suppress the bad sequences but gives a warning to the
user. Hence, the Ligatti automaton [3] provides all-or-nothing delayed precise
enforcement, while edit automaton from Fig. 2 of [2] provides iterative enforce-
ment by suppression. However, it is not clear how the latter automaton can be
automatically constructed for given policy.

6 Iterative enforcement mechanism

We take the definition of edit automata from [3]. Generally speaking, edit au-
tomaton can suppress actions without further insertion, but this power of edit
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automaton was not used to enforce renewal properties. It happened because
the sequences corresponding to renewal property do not contain any bad parts
that make them not able to become good again in the future. We present such
sequence in Ex. 2, where bad part is a second iteration.

Definition 10. An edit automaton E is a 5-tuple of the form 〈Q, q0, δ, γo, γk〉
with respect to some system with actions set A. Q specifies possible states, and
q0 ∈ Q is the initial state. The partial function δ : (Q × A) → Q specifies the
transition function; the partial function γo : (Q × A∗ × A) → A∗ defines the
output of the transition according to the current state, the sequence of actions
that has been read before the current action and the current input action; the
partial function γk : (Q × A∗ × A) → A∗ defined the sequence that will be kept
after committing the transition. The dependence between the transition, output
and keep function is following: if δ(q, a) is defined then γo(q, σ, a) and γk(q, σ, a)
must be defined for all σ.

Considering σ as a sequence of actions read so far and a as input action, we
write an assignment of a transition from state q to state q′:

〈δ, γo, γk〉(q, a) = q′ σ′ σ′′

where δ(q, a) = q′, γo(q, σ, a) = σ′, γk(q, σ, a) = σ′′.
In order for the enforcement mechanism to be effective all functions δ, γk

and γo should be decidable.

Definition 11. Let A = 〈Q, q0, δ, γo, γk〉 be an edit automaton. A run of au-
tomaton A on an input sequence of actions σ = 〈a1, a2, . . .〉 is a sequence
of pairs 〈(q0, ε), (q1, σ1), (q2, σ2), . . .〉 such that qi+1 = δ(qi, ai+1) and σi+1 =
γk(qi, ai+1, σi). The output of automaton A on input σ is sequence of actions
σo = 〈σo

1, σ
o
2, . . .〉 such that σo

i+1 = γo(qi, ai+1, σi).

In the sequel we use ∗ as an abbreviation for the sequence of actions kept in
memory so far (actions that were read but not output yet). Then we use ∗; a as
an abbreviation for the concatenation of the current memory and action a. So
〈δ, γo, γk〉(q, a) = q′ ε ∗; a means that δ(q, a) = q′, γo(q, σ, a) = ε for all σ ∈ A∗

and γk(q, σ, a) = σ; a for all σ ∈ A∗. In order to farther simplify the reading of
the figures we use boolean expressions on the edges of the automaton. So that if
we label an edge with !(a∨ b) it means that it can only take any action different
from a or b. We use > for any action; Add for adding an input action to the
memory: a ε Add is an abbreviation for a ε ∗; a.

Let us come back to our Ex. 1 and to drug selection process representation in
Fig. 2. First we will show how it can be all-or-nothing delayed precisely enforced
and iteratively enforced by suppression. Then we compare the input and output
of both types of enforcement.
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Algorithm 1 Ligatti automaton Algorithm
Input: Policy automaton AP =

〈
A, QP , qP

0 , δP , F P
〉
;

Output: Ligatti automaton E = 〈Q, q0, δ, γo, γk〉;
1: q0 = qP

0 ; Q = QP ∪ {q⊥};
2: for all q ∈ QP ∪ {q⊥} do
3: for all actions a ∈ A do
4: if δP (q, a) is not defined then
5: 〈δ, γo, γk〉(q, a) := q⊥ ε ∗; a;
6: else
7: if δP (q, a) /∈ F P then
8: 〈δ, γo, γk〉(q, a) := δP (q, a) ε ∗; a;
9: else

10: 〈δ, γo, γk〉(q, a) := δP (q, a) ∗; a ε;

6.1 Ligatti automaton construction

Ligatti automaton is a specific kind of edit automaton that is constructed ac-
cording to the proof of the theorem about effective=enforcement (Thm. 8 of [2]).
In this section we want to show how to build such automaton, which moreover
provides all-or-nothing delayed precisely enforcement.

In Alg. 1 we present our construction. As a result, we obtain an automa-
ton which has the same behavior as an automaton constructed by the proof
of Thm. 8 [2]. This proof gives a construction of infinite state automaton that
keeps in the state the sequence read so far but not valid yet. Since we represent
the policy as a Policy automaton, we can know whether the sequence can ever
become good again. It can if transition function is defined for current state and
incoming action. Otherwise the trace can never become valid again. Considering
this, we show an algorithm of automaton construction that always outputs the
longest valid prefix, thus providing all-or-nothing delayed precise enforcement.

Alg. 1 works as follows. Suppose the state of the automaton after executing
sequence σ is q, the next incoming action is a. In line 4 we check whether there is
a path in the Policy automaton from the state q on action a. If there is no such
path (δP (q, a) is not defined) it means that there is no way to reach the accepting
state of the policy, therefore the sequence can never become valid again. Hence
the output done so far is the only output produced on σ and all its continuations,
therefore the next state is an error state: δ(q, a) := q⊥.

Otherwise (line 6) we can reach the next state. If the next state is non-
accepting, it means that possibly there is a path to the accepting state, so the
currently read sequence can become good. Therefore we simply keep the current
action in the memory (line 8). If the next state is accepting, then currently read
input σ; a is accepted by the Policy Automaton. Therefore, we output all the
actions read so far followed by the current action (line 10). The resulting Ligatti
automaton for the Policy presented in Fig. 2 is partially shown in Fig. 4 (for the
sake of readability we only show outcoming edges from the states q4, q6, q⊥).

The behavior of the Ligatti automaton constructed by this algorithm is ex-
actly the same as of one constructed by the proof of Thm. 8. The only difference
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Fig. 4. Resulting Ligatti automaton for the Policy automaton from Fig. 2

is that in Thm. 8 the state contains all the read actions and if the trace can
never become good again there will be as many states as the length of the trace.
While in our construction, as soon as the trace cannot become good again, the
next state will be an error state and all the following input actions will be kept.

Theorem 1. A property P̂ represented by Policy automaton AP can be all-or-
nothing delayed precisely enforced

6.2 Iterative enforcement by suppression mechanism

We will use a following assumption for an iterative property P̂ represented by
Policy automaton. Let’s take all possible sequences of actions corresponding to
all the paths form one accepting state to another accepting state such that they
don’t contain any accepting states in the middle. Then we assume that each of
this sequences starts with a unique starting action which never appears in the
sequence again. Note that several sequences can have the same unique starting
action. Indeed, in the example of drug selection process (Fig. 1) every valid
sequence starts as soon as doctor chooses the drug and he can choose the drug
again only in the beginning of next sequence.

We can find a lot of real life examples of this kind of iterative process that
start with unique starting action. For instance, remaining in the healthcare world
we can consider the case when a nurse has to prepare a therapy for a hospital-
ized patient: once identified the specific therapy (unique starting action) the
nurse starts an iterative process. Another example is the reservation of a medi-
cal examination: once the administrative personnel receives a call from a person
(unique starting action), he starts a process in order to examine the request,
to evaluate availability and to confirm the reservation. All these processes are
repeated several times for different therapies, patients, etc.

Since every accepting sequence starts with a unique starting action, we can
define the smallest bad sequence σb from the definition 9. Suppose, that sequence
σ is executing and it corresponds to the 3rd clause of the definition. Then, as soon
as the longest valid prefix σo executes, it is output without changes. Then, there
are two possible options. First is if the next action is a unique starting action,
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Algorithm 2 Suppressing bad parts Algorithm
Input: Policy automaton AP =

〈
A, QP , qP

0 , δP , F P
〉
;

Output: Edit automaton E = 〈Q, q0, δ, γo, γk〉;
1: q0 = qP

0 ; Q = QP ∪ {q⊥};
2: for all q ∈ QP ∪ {q⊥} do
3: for all actions a ∈ A do
4: if δP (q, a) is not defined then
5: if ∃qA ∈ F P . δP (qA, a) = q′ then
6: if q′ ∈ F P then
7: 〈δ, γo, γk〉(q, a) := q′ a ε;
8: else
9: 〈δ, γo, γk〉(q, a) := q′ ε a;

10: else
11: 〈δ, γo, γk〉(q, a) := q⊥ ε ε;
12: else
13: if δP (q, a) /∈ F P then
14: 〈δ, γo, γk〉(q, a) := δP (q, a) ε ∗; a;
15: else
16: 〈δ, γo, γk〉(q, a) := δP (q, a) ∗; a ε;

then σb starts with this action; the enforcement mechanism keeps in σb all the
actions coming after it until the new unique starting action appears in the input.
At this point the new accepting sequence can start. Therefore, by deleting σb we
make the smallest possible suppression. Second option is that the next action is
not a unique starting action, then the enforcement mechanism keeps in σb all the
actions coming after last valid input. It happens until the new unique starting
action appears in the input, at this point the new accepting sequence can start.
Therefore, by deleting σb we make the smallest possible suppression.

In this section we show how to construct an edit automaton that provides iter-
ative enforcement by suppression of iterative property represented by Policy au-
tomaton. We propose to construct an edit automaton E = 〈Q, q0, δ, γo, γk〉 for it-
erative property P̂ represented by a Policy automaton AP =

〈
A, QP , qP

0 , δP , FP
〉

as shown in the Alg. 2. This algorithm is obtained from the Alg. 1 by chang-
ing the line 5 of the former algorithm to the lines 5-11 of the latter one. These
changes correspond to the case when the trace cannot become good again since
there are no transitions in the Policy automaton for the next incoming action.

Condition on line 5 corresponds to the case when the next incoming action
a is a unique starting action. Then, if only this action is accepted by the Policy
automaton, which means that P̂ (a) (line 6), this action is immediately output
and memory is empty; next state is an accepting state corresponding to accep-
tance of this action. If unique starting action a is not accepted, then the memory
is updated with the only this action and output empty sequence (line 9). If a is
not a unique starting action (line 10), there is a transition to an error state and
incoming action a is not kept in the memory. Notice, that an assumption about
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Fig. 5. Resulting edit automaton for the Policy automaton from Fig. 2

unique starting action is critical here, without this assumption in general case
the algorithm will not satisfy the 3rd clause of the definition 9.

One of the differences is that the constructed automaton will be able to come
back to the Policy automaton state from the error state as if no error happened.
By doing so we simply delete smallest bad sequences parts (σb in the definition 9,
which constructed automaton skips while being in the error state.

For the Policy automaton from our example an edit automaton is constructed
following the Alg. 2. This automaton has 9 states but 99 transitions. For the sake
of brevity we will use our abbreviations for reading the figures and show only
outcoming transitions of the states q4, q6, q⊥ in Fig. 5.

Theorem 2. An iterative property P̂ represented by Policy automaton AP can
be iteratively enforced by suppression by the edit automaton E constructed by
the Alg. 2.

Let us show in Fig. 6 the output of the Ligatti automaton (that all-or-nothing
delayed precisely enforces) and edit automaton (that iteratively enforces by sup-
pression) for the same Policy automaton. The input in the figure shows 5 itera-
tions corresponding to the drug selection process. The whole input is not valid
and can never become valid again because there is a second iteration inside the
trace that can never become valid again. However, third and fifth iterations are
valid, which means that doctor could successfully select the drugs he wanted.

First three input iterations in the Fig. 6 are iterations from the Ex. 2. Their
validity can be checked by the Policy automaton shown in Fig. 2. The Ligatti
automaton shown in Fig. 4 outputs the longest valid prefix, hence only the first
iteration. It means that doctor will successfully complete selection process only
for the first drug. Edit automaton shown in Fig. 5 will output all the successful
iterations, which means it outputs first, third and fifth iterations.
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Fig. 6. Output of Ligatti (LA) and edit (EA) automata

If in Alg. 2 at lines 7, 9 and 11 we prefix the current output with the “warning”
string we would get the edit automaton from Fig. 2 in [2]. This time it’s made
not manually but automatically.

7 Conclusions

Runtime enforcement is based on two simple ideas: the enforcement mechanism
should leave good traces without changes and make sure that the bad ones got
amended. From the theory side, a number of papers [6, 10, 12] provide the precise
characterization of good executions that can be captured by a security policy
and thus enforced by a specific mechanism. Unfortunately, those theories do
not distinguish what happens when an execution is actually bad (the practical
case). The theory only says that the outcome of enforcement mechanism should
be “good” but not how far should the bad execution be changed.

If we consider a real-life example of a drug dispensation process in a hospital
the notion of security automata or even edit automata would stop all requests
by all doctors on all drugs and all dispensation protocols, as soon as a doctor
forgot to insert the research protocol number.

In this paper we have shown a notion of enforcement that makes it possible
to overcome the distinction between bad traces and good traces. The theoretical
research on enforcement [6, 10, 12] only offered two properties: the mechanism
should leave good traces untouched and make sure bad traces got amended. How
they are amended was never formally specified. Notice that this was in contrast
to the actually implemented systems. For instance Polymer did allow traces to
be amended. But this was not reflected in the formal theory.

By revising the notion of good traces in terms of iterations we can offer a
formal characterization of how enforcement mechanism deals with the bad traces.

These are the first steps towards closing the gap between the current theo-
retical works and their practical implementations. As a modest, but still telling
example, the running example of Fig. 2 in [2] could not be generated from the
policy by any of the formal construction appeared in that paper, nor in the con-
structions appearing in later papers. In contrast, it can be obtained by our second
algorithm if, instead of suppressing every bad iteration, we emit a warning.
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As a future work we consider the following. There are some actions that
cannot be fixed in real life. We call these actions observable actions. This aspect
is very important in real life when it involves the interactions of an organization
with another one; for instance we can refer to the cases of outsourcing services
or to the cases in which some requests are done to external parties. Moreover it
is important to know that it is possible to have observable actions also within an
organization; for example there are some physical actions that cannot be deleted.
For instance when a doctor or a nurse, preparing a set of therapeutical drugs for
a specific patient, takes a wrong drug from a stock it is not possible to delete
this physical action with a given theoretical approach.

In the future a model for observable and fixable actions can be built, then
it should be decided how the enforcement can be done under this assumption.
For example, edit automaton can provide enforcement by insertion but cannot
suppress observable actions.

We will also consider the case of multiple users and behavior of enforcement
mechanism in that case. Indeed, many doctors may try to dispense drugs at
the same time, and construction of enforcement mechanism can be different. We
leave this problem for the future work.
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