
Short Paper: Dynamic leakage – a need for a new
quantitative information flow measure

Nataliia Bielova
Université Côte d’Azur, Inria, France

nataliia.bielova@inria.fr

ABSTRACT
A number of measures for quantifying information leakage
of a program have been proposed. Most of these measures
evaluate a program as a whole by quantifying how much
information can be leaked on average by different program
outputs. While these measures perfectly fit for static pro-
gram analyses, they cannot be used by dynamic analyses
since they do not specify what information an attacker learns
through observing one concrete program output.
In this paper we study the existing definitions of quanti-

tative information flow. Our goal is to find the definition
of dynamic leakage – it should evaluate how much infor-
mation an attacker learns when she observes one program
output. Surprisingly, we find out that none of the existing
definitions provide a suitable measure for dynamic leakage.
We hence open a new research question in quantitative in-
formation flow area: which definition of dynamic leakage is
suitable?

1. INTRODUCTION
Information flow security is an important problem in to-

day’s information systems. It enforces limits on dissemina-
tion of secret information and is often formulated as a confi-
dentiality property – it requires that an untrusted program
should not “leak” secret information into publicly observed
outputs. This requirement, formalised as noninterference,
is often too restrictive in practice since it works in all-or-
nothing setting: either all or none of information flows from
secret to public are allowed.
To achieve a more flexible security requirement, the re-

searchers in quantitative information flow field have pro-
posed a number of measures to evaluate how much infor-
mation about the secret a program leaks. If the quantity
of information is equal to zero, then noninterference holds.
Otherwise, the measure provides a number of information
bits that evaluates how much information about the secret
is being leaked by the public output.
The most popular definitions are based on measuring the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PLAS’16, October 24 2016, Vienna, Austria
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4574-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2993600.2993607

decrease in attacker’s uncertainty about the possible values
of the secret and use Shannon entropy [10], Min entropy [20],
Guessing entropy and g-leakage [1]. An interesting aspect
of the proposed definitions is that all of them measure a
program as a whole. In other words, they evaluate how much
information is leaked on average by all possible program
outputs. We will call these measures “average measures”.
To analyse the leakage of a program as a whole, average
measures were previously used by a number of works on
static program analysis [5, 16] and even approximated by a
dynamic analysis [18].

An alternative approach to measure information leakage
is to reason about attacker’s accuracy in his belief about the
secret [9]. This belief tracking measure evaluates the leakage
for a concrete secret, and a concrete program output. Belief
tracking has been used in evaluating the worse case leakage
through the static program analysis [17].

We graphically show the difference in the definitions of
existing measures in Figure 1. We present a program that
maps secret input values into output values. The average
measures (such as the ones based on Shannon entropy, Min
entropy etc.) evaluate how much information from all se-
cret input values flows into all possible output values – we
graphically show it by highlighting all secret inputs and all
outputs of the program. Belief tracking measure instead
only evaluates the flow of information about one secret in-
put into one concrete output – we graphically show it by
highlighting only one concrete secret value and one output
value.

In the past, the existing measures were used mostly by
static program analysis. However, some dynamic program-
ming languages, such as JavaScript, are very hard to anal-
yse statically. Such languages are usually analysed either
dynamically [15] through monitoring only one program ex-
ecution, or through some form of hybrid analysis [14, 19]
where non-executed branches can be also analysed. Such
analyses have a potential capability to evaluate how much
information is leaked by the current program output.

In our previous work [6, 7] we have proposed a hybrid
analysis that computes the knowledge of the attacker. Our
modelling of attacker knowledge is more general than the
existing works on dynamic or hybrid analyses that enforce
an all-or-nothing requirement of noninterference [22, 3, 11,
4, 8]. Instead, we follow the definition of knowledge from [2]
and compute the attacker knowledge as a set of initial secrets
that can lead to the currently observed output. We graph-
ically show our modeling in the rightmost part of Figure 1
– the highlighted secret input values that can lead to one

Figure 1: Different measures of information leakage.

concrete output should be analysed in order to measure the
dynamic leakage to the attacker. We cannot use the belief
tracking measure to measure the leakage associated to one
output, because it applies only to a concrete secret input,
which is not known to the attacker.
What we think is missing in the field of quantitative in-

formation flow is the measure of dynamic leakage associated
to one program output. Intuitively, such definition evalu-
ates an attacker’s knowledge and should not be bounded to
a concrete secret since it tries to evaluate the knowledge of
the attacker who does not know the secret value.
In this paper, we investigate the current definitions of in-

formation leakage and find out that

• for the static case, when the program is evaluated as a
whole, many existing average measures can be applied,
such as Shannon entropy, Min entropy etc.;

• for the dynamic case, when only one program output
should be evaluated, only the belief tracking definition
provides a suitable evaluation of leakage, but only for
deterministic programs.

2. BACKGROUND
For simplicity of demonstration, in this work we consider

total programs c with just one input S, which is secret, and
one output O, which is a publicly observed by an attacker.
Thus, we do not consider programs that receive both secret
and public inputs, or programs that do not terminate. The
attacker provides an untrusted program c, and her goal is to
guess the secret S by observing a program output O.
The variable S ranges over some finite set of possible val-

ues S and we assume that the a priori probability distri-
bution of S is correct and publicly known to the attacker.
We denote the a priori distribution of S by π. Similarly, an
output variable O ranges over a finite set of values O. The
program c may be deterministic or probabilistic.
Information leakage from the secret input S to a pub-

licly observed output O is usually seen as a difference in the
uncertainty an attacker has about the possible values of S
before and after observing the program output O:

information leaked =
initial uncertainty - remaining uncertainty

Following [20], we can model a program c using a matrix
whose rows are indexed by S and whose columns are indexed
by O, where the (s, o) entry specifies the conditional proba-
bility of a program output o given a secret input s, formally

p(O = o|S = s). Each row of the matrix has to sum up to
1. In the future notations, we will denote the program c us-
ing its matrix over input S and output O by pO|S, therefore
pO|S(o, s) = p(O = o|S = s).

An a priori distribution π on S and a program pO|S uniquely
determine (i) the distribution of the possible program out-
puts p(o) =

∑
s p(s, o) =

∑
s π(s)pO|S(o, s); (ii) a posteriori

distribution of the secret S given the program output value
o, denoted by pS|o:

pS|o(s) =
p(s, o)

p(o)
=

π(s)pO|S(o, s)

p(o)

Intuitively, information leakage should be measured as a
difference in the knowledge about the secret an attacker can
derive from an a priori distribution π (initial uncertainty
before observing any program output), and the knowledge
she obtains from the a posteriori distribution pS|o (remaining
uncertainty after observing a program output value o).

Most of the proposed definitions in the literature mea-
sure how much information is leaked for the whole program,
meaning that the knowledge about the a priori distribution
is compared against the knowledge an attacker may get from
an a posteriori distribution, averaged among all possible pro-
gram outputs. We present the mostly used definitions based
on Shannon entropy and Min entropy and demonstrate that
they cannot be adapted to measure leakage associated to
one program output. We then discuss whether belief track-
ing measure is suitable for deterministic and probabilistic
programs.

3. EXISTING DEFINITIONS FOR THE
WHOLE PROGRAM

Shannon entropy. Several definitions have been pro-
posed to measure the amount of information in the given
distribution π. The most natural way is given by infor-
mation theory – the amount of secrecy is computed as an
amount of uncertainty an attacker has about the possible
value of secret S. Shannon entropy [10] measures such un-
certainty1:

H(π) = −
∑
s∈S

π(s) log π(s).

After an attacker observed some program output value o, the
remaining uncertainty is computed by a Shannon entropy of

1In all the definitions logarithms are base 2.

a posteriori distribution after observing o:

H(pS|o) = −
∑
s∈S

pS|o(s) log pS|o(s).

To evaluate the remaining uncertainty of the whole program,
this entropy is averaged among all possible program outputs,
weighted by their corresponding probabilities2:

H(pS|O) =
∑
o∈O

p(o)H(pS|o)

Finally, information leakage of the program is measured as
a difference between the initial and final uncertainty:

L(π, pS|O) = H(π)−H(pS|O)

Example 1 (Deterministic program). Consider the
following program:

if S = s1 then O = a else O = b

with three possible values of secret S that we denote by s1,
s2 and s3. The a priori distribution π, and the a posteriori
distributions after observing outputs a and b are:

π
s1 0.875
s2 0.0625
s3 0.0625

pS|a
s1 1
s2 0
s3 0

pS|b
s1 0
s2 0.5
s3 0.5

Notice that after observing an output a, an attacker uniquely
identifies the value of the secret, which in this case is s1.
Naturally, since an attacker has learnt the secret value, or
in other words, she has no doubts about the value of S, the
remaining uncertainty in this case is equal to zero: H(pS|a) =
−1 · log 1 = 0 bit. In case an attacker observes output b, an
attacker believes that s2 and s3 are equally possible, there-
fore her uncertainty is measured to be 1 bit: H(pS|b) =
−0.5 · log 1

2
− 0.5 · log 1

2
= 1 bit.

These measures are very intuitive since they reflect the un-
certainty of the attacker after she observes a concrete pro-
gram output. However, standard Shannon entropy-based
leakage metric averages among all possible outputs, thus
computing H(pS|O) = p(a)H(pS|a)+p(b)H(pS|b) = 0.125 bit.
This measure takes into account the probability of each out-
put for the program, where p(a) = 0.875 and p(b) = 0.125
– this is why the final entropy is biased towards a more
probable output a, which leaks 0 bits. Since the initial un-
certainty is H(π) = 0.67 bits3, the leakage of the program is
L(π, pS|O) = 0.67− 0.125 = 0.54 bit.
This leakage only computes an average leakage for all pro-

gram executions. We can try to apply the same reasoning
and compare the initial and final entropy after one observa-
tion, proposing a definition of dynamic leakage4:

Ldynamic(π, pS|o) = H(π)−H(pS|o)

Applying this definition to our example and output b, we
get the negative reduction in uncertainty:

2By pS|O we denote that the measure takes into account all
the possible values of O, while by pS|o we denote that the
measure takes into account one concrete value o of O.
3For readability, we round numbers up to 2 decimal places.
4The notion“dynamic leakage” is taken from [12], who stud-
ied this definition for min entropy.

H(π) H(pS|b) Ldynamic(π, pS|b)
0.67 1 -0.33

Since negative leakage is usually interpreted as absence of
information, we conclude that this definition is not appro-
priate: it conveys that an attacker did not learn anything
while observing output b, which is not true – he now con-
cludes that secret s1 is impossible.

Min entropy. Min entropy definition [20] focuses on the
vulnerability of the secret being guessed by the attacker in
one try. Given a distribution π, it is simply a maximum
probability in π (the best strategy for the attacker is to pick
the most probable secret):

V(π) = max
s∈S

π(s)

A min-entropy of π is given by H∞(π) = − logV(π).
After an observation o, an a posteriori distribution pS|o

is also measured using the notion of vulnerability, which
evaluates how likely an attacker will guess the secret in one
try after she observed o:

V(pS|o) = max
s∈S

pS|o(s)

Similarly to Shannon entropy, in order to evaluate the
leakage of the whole program, the vulnerability is averaged
for all possible outputs:

V(pS|O) =
∑
o∈O

p(o)V(pS|o)

The final min-entropy is H∞(pS|O) = − logV(pS|O), and the
difference between the initial and final min-entropy com-
putes the leakage of the program:

L∞(π, pS|O) = H∞(π)−H∞(pS|O)

Coming back to Example 1, the initial vulnerability of the
distribution π is V(π) = 0.875. After an observation a, an
attacker can efficiently guess the secret in one try, therefore
V(pS|a) = 1, while after observing b, she will guess the secret
with 50% chance: V(pS|b) = 0.5.

However, if we follow the definition and average these vul-
nerabilities, we will get V(pS|O) = 0.975 which shows that
there is a big chance to guess the secret (we get a bias to-
wards output a because it’s much more likely than b). Fi-
nally, the leakage is L∞(π, pS|O) = 0.1 bits. Intuitively, the
leakage is so small because it was easy to guess the secret be-
fore the program runs (vulnerability is 0.875) and also after
the program runs (vulnerability is 0.9375).

Again, we can adapt this definition of leakage in order
to evaluate what an attacker learns when she observes a
concrete output o:

Ldynamic
∞ (π, pS|o) = H∞(π)−H∞(pS|o)

And again, applying it to output b we get a negative leakage:

V(π) H∞(π) V(pS|b) H∞(pS|b) Ldynamic
∞ (π, pS|b)

0.875 0.19 0.5 1 -0.81

An intuition behind min-entropy is that an attacker should
always increase his chances to guess the secret in one try af-
ter some output observation, however in this example the
vulnerability of guessing the secret in one try has dropped

from 0.9 before any observation to 0.5 after the observation
b. This is the reason why the measure becomes negative. We
therefore conclude that this definition is not appropriate to
measure dynamic leakage of one program output.
Channel capacity. Given a program, and a certain av-

erage leakage measure, channel capacity evaluates the max-
imum leakage over all possible a priori distributions. This
measure does not require a fixed a priori distribution and
hence can be applied in cases when this input distribution is
unknown. Channel capacity for Shannon entropy and Min
entropy based leakages, L and L∞, was proven to be equal
to − log |O| in case of deterministic programs [21].
For Example 1, this measure would evaluate the leakage of

the whole program being equal to − log 2 = 1 bit since only
two output values are possible. This measure was used in the
dynamic analysis [18], where another intuitive explanation
of channel capacity is given: if the measure counts that an
output o leaks k bits, then there should be a coding of o
that is not bigger than k bits. In our example with only
two possible outputs, the best coding would amount to 1 bit
of information, however, as we will see in the next section,
the amount of information that an attacker learns from one
concrete output can exceed this average measure.

4. EXISTING DEFINITIONS FOR SECRET/
OUTPUT PAIR

Belief tracking. An alternative definition of quantita-
tive information flow has been proposed [9]: instead of rea-
soning about the decrease in uncertainty of the attacker, it
suggests to reason about the change in the accuracy of the
attacker’s belief about the secret.
It was proven [9, Thm. 4] that belief tracking definition

of information leakage is always positive for deterministic
programs (differently from the proposals on dynamic leakage
discussed in the previous section), however this approach has
another limitation: it obliges us to choose a concrete secret
for which we measure the leakage, otherwise the measure
can give us different evaluations for different secrets in case
of probabilistic programs.
Given a concrete value of a secret, that we denote by ṡ, the

approach first defines a reality probability distribution where
the secret value ṡ has probability 1, while all the others are
zeros. We denote this distribution5 by pṡ.
The definition is based on a notion of distance D between

two distributions, and is proposed to be evaluated via rela-
tive entropy [13] that quantifies the difference in two proba-
bility distributions:

D(p _ p′) =
∑
s∈S

p′(s) log
p′(s)

p(s)

The amount of information flow provided by one program
output value o is then defined as

Lbelief (π, pS|o, pṡ) = D(π _ pṡ)−D(pS|o _ pṡ)

Intuitively, given a concrete secret value ṡ, belief tracking
measures how much closer (in terms of distance) an attacker
gets to the secret ṡ when he observes some output.
We come back to Example 1, when a secret value is s2

and an attacker observes an output b. Before any observa-
tion the chance to guess this secret is defined by π(s2), which
5This distribution is denoted by σ̇ in [9] and is called point
mass distribution.

is 0.0625 and it corresponds to D(π _ ps2) = log 1
0.0625

= 4
bits of information. After an observation b, a posteriori
distribution defines that the probability of guessing s2 be-
comes pS|b(s2) = 0.5 and therefore conveys D(pS|b _ ps2) =
log 1

0.5
= 1 bit. Therefore, the leakage is a difference in these

two distances, which is now 3 bits.
In the following table we compute the belief tracking leak-

age for different initial realities:

pṡ D(π _ pṡ) D(pS|b _ pṡ) Lbelief (π, pS|b, pṡ)
ps1 0.193 - -
ps2 4 1 3
ps3 4 1 3

We do not evaluate the leakage for s1 because this input
is impossible for the output b. Notice that the leakage for
both realities where s2 is the secret value and where s3 is
the secret value, are the same. We generalise this in the
following theorem6.

Theorem 1. Given an a priori distribution π, a deter-
ministic program pO|S, and a concrete program output o, the
leakage for all possible secrets ṡ that may lead to o, is:

∀ṡ ∈ S.pO|S(o, ṡ) = 1 ⇒ Lbelief (π, pS|o, pṡ) = − log p(o).

Therefore, for deterministic programs, the belief tracking
measure provides a reasonable evaluation of leakage: it does
not depend on the concrete value of the secret and is positive.

Notice that for a deterministic program from Example 1,
the channel capacity measure computes 1 bit of information
leakage, however the amount of information an attacker ac-
tually learns when she observes an output b can be much
bigger in case of our a priori distribution π7:

Lbelief (π, pS|b) = − log p(o) = 3 bits.

We now analyse this measure for probabilistic programs.

Example 2 (Probabilistic program). Consider the
following program, where c′α[]c

′′ is a probabilistic choice be-
tween commands c′ and c′′ with probability α:

if S = s1 then O= a 0.81[] O= b
else O= a 0.09[] O= b

where the secret variable S can take only two possible values,
s1 and s2. An a priori distribution π and a posteriori dis-
tributions pS|a and pS|b are:

π
s1 0.25
s2 0.75

pS|a
s1 0.75
s2 0.25

pS|b
s1 0.065
s2 0.935

Notice that when attacker observes an output a, an a posteri-
ori distribution is simply a shuffle of an a priori distribution.

6The proof of the theorem can be found in the appendix.
7In the notation Lbelief (π, pS|b) we do not denote a concrete
reality anymore since we have proven in Theorem 1 that this
leakage is equal for all possible realities in case of determin-
istic programs.

The beliefs tracking approach provides us with a mean
to measure whether attacker’s knowledge about a concrete
secret has become more accurate when an attacker has ob-
served one program output. We therefore are obliged to
choose a reality against which we want to quantify the leak-
age.
For Example 2, we analyse the case when an attacker has

observed an output a. We show how we computed the leak-
age for both realities: one where the secret value is s1, and
another one where the secret value is s2:

pṡ D(π _ pṡ) D(pS|a _ pṡ) Lbelief (π, pS|a, pṡ)
ps1 2 0.415 1.58
ps2 0.415 2 -1.58

Interestingly, depending on the concrete value of the se-
cret, we can have completely opposite results: in one case
an attacker gains 1.58 bits in accuracy, and in the other case
an attacker looses the same amount of information.
The belief approach provides a framework to reason about

each concrete secret and output separately, but it does not
provide any evaluation of the attacker knowledge of one pro-
gram output.
Even more interestingly, if we apply the dynamic leakage

definitions based on Shannon entropy for this probabilistic
program, we get zero-leakage because the overall distribu-
tion of secret values remains the same after the observation
a:

H(π) H(pS|a) Ldynamic(π, pS|a)
0.811 0.811 0

Min entropy also gives us a zero-leakage since the proba-
bility of guessing the secret in one try did not change:

V(π) H∞(π) V(pS|a) H∞(pS|a) Ldynamic
∞ (π, pS|a)

0.75 0.415 0.75 0.415 0

Usually, zero-leakage corresponds to noninterference – that
an attacked did not get any gain in reducing uncertainty,
however he has definitely learnt something! We therefore
conclude that none of the existing definitions is suitable for
probabilistic programs.

5. CONCLUSIONS
In this paper we analysed the existing definitions of infor-

mation leakage and found out that none of them can be used
to evaluate the amount of information an attacker learns
while observing one program output.
We therefore open a new research question in the field of

quantitative information flow: which definition of dynamic
leakage is suitable?

Acknowledgments
The author would like to thank Deepak Garg for his inputs
on the channel capacity definition, and Tamara Rezk for
her feedback on the earlier version of the paper. This work
has been partially supported by the ANR project AJACS
ANR-14-CE28-0008.

6. REFERENCES
[1] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and

G. Smith. Measuring information leakage using
generalized gain functions. In CSF’12, pages 265–279,
2012.

[2] A. Askarov and A. Sabelfeld. Gradual release:
Unifying declassification, encryption and key release
policies. In S&P’07, pages 207–221. IEEE, 2007.

[3] T. H. Austin and C. Flanagan. Permissive dynamic
information flow analysis. In PLAS’10, pages 3:1–3:12.
ACM, 2010.

[4] T. H. Austin and C. Flanagan. Multiple facets for
dynamic information flow. In Proc. of the 39th
Symposium of Principles of Programming Languages.
ACM, 2012.

[5] M. Backes, B. Köpf, and A. Rybalchenko. Automatic
discovery and quantification of information leaks. In
Proc. of the 2009 Symposium on Security and Privacy,
pages 141–153, 2009.

[6] F. Besson, N. Bielova, and T. Jensen. Hybrid
information flow monitoring against web tracking. In
IEEE Computer Security Foundations Symposium,
CSF’16, pages 240–254. IEEE, 2013.

[7] F. Besson, N. Bielova, and T. Jensen. Hybrid
information flow monitoring of attacker knowledge. In
IEEE Computer Security Foundations Symposium,
CSF’16, pages 225–238. IEEE, 2016.

[8] N. Bielova and T. Rezk. A taxonomy of information
flow monitors. In International Conference on
Principles of Security and Trust (POST 2016),
volume 9635, pages 46–67. Springer, 2016.

[9] M. R. Clarkson, A. C. Myers, and F. B. Schneider.
Quantifying information flow with beliefs. Journal of
Computer Security, 17(5):655–701, 2009.

[10] T. M. Cover and J. A. Thomas. Elements of
Information Theory (2. ed.). Wiley, 2006.

[11] D. Devriese and F. Piessens. Non-interference through
secure multi-execution. In Proc. of the 2010
Symposium on Security and Privacy, pages 109–124.
IEEE, 2010.

[12] B. Espinoza and G. Smith. Min-entropy as a resource.
Inf. Comp., 226:57–75, 2013.

[13] Gareth A. Jones and J. Mary Jones. Information and
Coding Theory. Springer, 2000.

[14] D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive
Hybrid Information Flow Control for a JavaScript-like
Language. In Proc. of the 28th Computer Security
Foundations Symposium. IEEE, 2015.

[15] D. Hedin and A. Sabelfeld. Information-flow security
for a core of JavaScript. In Proc. of the 25th Computer
Security Foundations Symposium, pages 3–18. IEEE,
2012.

[16] B. Köpf and A. Rybalchenko. Approximation and
Randomization for Quantitative Information-Flow
Analysis. In CSF’10, pages 3–14. IEEE, 2010.

[17] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa.
Dynamic Enforcement of Knowledge-based Security
Policies. In CSF’11, pages 114–128. IEEE, 2011.

[18] S. McCamant and M. D. Ernst. Quantitative
information flow as network flow capacity. In Proc. of
the ACM 2008 Conf. on Programming Language

Design and Implementation, pages 193–205. ACM,
2008.

[19] J. F. Santos, T. Jensen, T. Rezk, and A. Schmitt.
Hybrid typing of secure information flow in a
javascript-like language. In Trustworthy Global
Computing TGC’15, pages 63–78, 2015.

[20] G. Smith. On the Foundations of Quantitative
Information Flow. In Foundations of Software Science
and Computational Structures, volume 5504 of LNCS,
pages 288–302. Springer, 2009.

[21] G. Smith. Quantifying information flow using
min-entropy. In 8th International Conference on
Quantitative Evaluation of Systems, pages 159–167,
2011.

[22] S. A. Zdancewic. Programming languages for
information security. PhD thesis, Cornell University,
2002.

APPENDIX
A. PROOFS

Theorem 1. Given an a priori distribution π, a deter-
ministic program pO|S, and a concrete program output o, the
leakage for all possible secrets ṡ that may lead to o, is:

∀ṡ ∈ S.pO|S(o, ṡ) = 1 ⇒ Lbelief (π, pS|o, pṡ) = − log p(o).

Proof. Consider an arbitrary secret ṡ ∈ S that leads
to an output o, then according to the definition of belief
tracking measure,

Lbelief (π, pS|o, pṡ) = D(π _ pṡ)−D(pS|o _ pṡ)

where the distance between the distributions is

D(π _ pṡ) =
∑
s∈S

pṡ(s) log
pṡ(s)

π(s)

By the definition of reality pṡ, there exists only one secret
value ṡ, such that pṡ(ṡ) = 1 and ∀s′ ̸= ṡ, we have pṡ(s

′) = 0.
Therefore,

D(π _ pṡ) = 1 · log 1

π(ṡ)

Similarly,

D(pS|o _ pṡ) = log
1

pS|o(ṡ)

Then,

Lbelief (π, pS|o, pṡ) = log
1

π(ṡ)
− log

1

pS|o(ṡ)
= log

pS|o(ṡ)

π(ṡ)

By the definition of conditional probability,

pS|o(ṡ) =
p(ṡ, o)

p(o)
=

π(ṡ)pO|S(o, ṡ)

p(o)

Since the program pO|S is deterministic, and ṡ may lead to

output o, we have pO|S(o, ṡ) = 1. Therefore, pS|o(ṡ) = π(ṡ)
p(o)

and

Lbelief (π, pS|o, pṡ) = log
pS|o(ṡ)

π(ṡ)
= log

1

p(o)
= − log p(o).

