Survey on JavaScript Security Policies and their Enforcement
Mechanisms in a Web Browser

Nataliia Bielova

INRIA Rennes Bretagne Atlantique
Campus universitaire de Beaulieu
835042 Rennes Cedex, France
Email: nataliia.bielova@inria. fr

Abstract

We observe a rapid growth of web-based applications every day. These applications
are executed in the web browser, where they interact with a variety of information
belonging to the user. The dynamism of web applications is provided by the use of web
scripts, and in particular JavaScript, that accesses this information through a browser-
provided set of APIs. Unfortunately, some of the scripts use the given functionality in
malicious ways. Over the last decade, a substantial number of web-based attacks that
violate user’s privacy and security have been detected.

For this reason, web script security has been an active area of research. Both computer
security researchers and web developers have proposed a number of techniques to enforce
different security and privacy policies in the web browser. Among all the works on web
browser security, we survey dynamic techniques based on runtime monitoring as well
as secure information flow techniques. We then combine and compare the security and
privacy policies they enforce, and the way the enforcement is done.

We target two groups of readers: 1) for computer security researchers we propose an
overview of security-relevant components of the web browser and the security policies
based on these components, we also show how well-known enforcement techniques are
applied in a web browser setting; 2) for web developers we propose a classification of se-
curity policies, comparison of existing enforcement mechanisms proposed in the literature
and explanation of formal guarantees that they provide.

1. Introduction

We observe a rapid growth of web-based applications in all the aspects of the citizens
life, ranging from banking and medical applications to social networks. The goal of these
applications is to provide high-quality functionality and quick performance, and one of
the main requirements to achieve this goal is to access the information belonging to its
users. Depending on the application, this information varies a lot: financial (e.g., credit
card numbers, or account information), health records, personal information (e.g., marital
status, religious views, personal choices and preferences), etc. The web applications run
in a web browser environment where the dynamism of an application is provided by the

Preprint submitted to Journal of Logic and Algebraic Programming March 4, 2013

scripts. In particular, JavaScript is one of the most used scripting languages on the
today’s web.

JavaScript can be inlined into a web page, or can be fetched from a remote server.
When a remote JavaScript code is included into a web page, it gets the same privileges
as any other code originally inlined in the page. These privileges give JavaScript code
the power to perform malicious actions, violating the user’s privacy and security. For
example, malicious scripts can access the secret user data on the web page and send it
to remote servers, or hijack the user’s session and perform requests on behalf of the user.

In a recent survey on remote JavaScript inclusions, Nikoforakis et al. [46] found that
out of Alexa [2] top 10,000 websites, 88.45% of sites had at least one remote JavaScript
inclusion (different from the website domain), while the number of JavaScript inclusions
per domain reaches 295 for some of the websites. Also, the number of new JavaScript
inclusions per domain grows every year: the authors found that there were 24.48% new
inclusions in 2001, and this number grew to 45.46% in 2010. These numbers show that
more and more remote JavaScript programs get included into trusted web pages.

JavaScript security is a large field of research, hence it is not possible to cover the
whole area in a single survey. In this survey we will talk about security enforcement rather
than verification. The main difference is that verification techniques give a yes/no answer
to the question ”Does your program comply with the security policy?”, while enforcement
techniques are more powerful in a sense they not only answering this question, but can
also fiz the program on the fly such that the program execution does comply with the
security policy. More discussion on the verification vs. enforcement is given in [22].

In this survey we describe two groups of security enforcement techniques. Dy-
namic techniques based on runtime monitoring observe the program execution and check
whether this execution satisfies the security policies in question. These techniques are
known to enforce a class of security policies that are based on a single program execu-
tion. Secure information flow control techniques propose program analysis (either static,
dynamic or both) to find the flows of information inside the program. A particular defi-
nition of security policy enforced by these techniques is non-interference. It states that
no secret inputs to the program can influence publicly observed outputs. Since it is not
possible to detect such information flows by observing only one program execution, the
definition of non-interference is based on two program executions.

We analyse and compare these two groups of techniques applied to JavaScript pro-
grams given the security policies, and map these techniques into the theory of runtime
enforcement and theoretical results in information flow control. As far as we know,
this is the first survey that covers both theoretical aspects of enforcement and practical
considerations of the web browser architecture. The contributions of this survey are:

e identification of web browser security-relevant APIs, on which all the security poli-
cies in the literature are based,

e comparison of dynamic techniques based on runtime monitoring and secure infor-
mation flow control techniques in the web browser setting in the following form:
— description and capabilities of the mechanism,
— a set of security policies it enforces,
— formal guarantees that the enforcement mechanism provides,
2

— implementation strategy,

e classification of useful security policies for JavaScript applications based on the set
of APIs

There are a couple of related surveys on web application security, however these sur-
veys either cover a broader area thus not comparing and analyzing enforcement mecha-
nisms in details, or do not describe all the techniques we analyse in this survey because
they were done several years ago. De Ryck et al. [16] published a survey on mashup
security in 2010. The paper analyses the security requirements for separation and ag-
gregation of mashup components, and mentions some, but not all, of monitoring and
information flow control techniques that we analyse in this survey. De Groef et al. [15]
briefly surveys the solutions for web script security including a subset of dynamic tech-
niques and information flow techniques that we analyse in detail in this survey. Since the
publication of De Groef et al.’s survey (2011), several new approaches for information
flow control for JavaScript have been published. We cover all these works in this survey.

We start with the background on web browser architecture and security mechanisms
already present in the current browsers, following by the description of JavaScript secu-
rity problems in Section 2. Next, in Section 3 we identify a set of security-relevant APIs
available to JavaScript programs that are used in the security policies of the mechanisms
that we analyse in this survey. Then we compare the security enforcement techniques for
JavaScript and the security policies. The dynamic techniques based on runtime monitor-
ing are analysed in Section 4, while secure information flow techniques are compared in
Section 5. Each of these two sections contains a collection of useful security policies for
JavaScript found in the literature. Section 6 mentions other techniques for JavaScript
security that are not analysed in this survey, such as static analysis of JavaScript libraries
and widgets, and finally Section 7 concludes the paper.

2. Background on JavaScript Security

In this section, we give a brief overview on the web browser architecture and JavaScript!,
the access-control mechanisms present in the current browsers, and the security problems
related to JavaScript programs.

Web Browser is a client-side application, and its basic function is to fetch the content
from the web servers and display it in the browser’s windows. Web browsers implement
the HyperText Transfer Protocol (HTTP) and its secure version (HTTPS), that speci-
fies the form of requests and responses between the browser and the web server. Every
HTTP request to a server contains several HTTP headers: a domain and path to access
the server, a content access method, and other kind of data. The web server responds
with an HTTP response containing the state (such as “200 OK”), the content requested,
and other headers.

Hnterested readers can find more information about browser architecture and web browser secu-
rity in Michael Zalewski’s “Browser Security Handbook” [72] and the documentation about client-
side JavaScript as it is implemented in the browsers in David Flanagan’s “JavaScript - The Definitive
Guide” [23].

3

Once the content is fetched from the server by means of this protocol, it is displayed
by the browser. Originally web pages were simple HTML pages containing simple ele-
ments such as paragraphs, buttons, input boxes etc. With the evolution of the web, the
new type of web applications appeared: mashups. These applications include the content
from multiple sources, for example a housing rental website combines the information
about the houses and maps them to Google maps. The inclusion of the remote content
is usually implemented by the use of iframes, that separate this content from the main
page. Internally, the browser implements the Document Object Model (DOM), that is a
tree representation of the fetched web pages.

JavaScript is a widely used scripting language on the web today. Even though there
exist other web scripting languages, whenever we write “script” we will mean JavaScript
in this survey. JavaScript program is executed by the JavaScript interpreter of the web
browser and can access a set of available APIs implemented by the browser. These APIs
allow the script to communicate with other elements of the page (by DOM APIs), local
browser data (such as cookies) or remote servers (by several communication APIs), and
to manipulate the web page elements and other browser events. Except for the standard
APIs, the new HTML5 standard [66] defines a set of additional APIs, and even though
HTML5 is not yet officially accepted, most of the web browsers today have a partial
support for HTML5 APIs. We will discuss security-relevant APIs in more details in the
following sections.

Same-origin policy (SOP) is an access control policy which restricts the content of the
web page that JavaScript code running on that page can interact with. SOP basically
says that the script can read properties of windows and iframes that have the same origin
as the document containing the script (and not the origin of the script itself).

An origin is a a protocol, domain and port of the URL. For example, in a URL
http://www.example.com:81/dir/page.html, a protocol of this URL is “http”, a do-
main is “www.example.com” and a port is 81. This definition is used in most of the
popular browsers, except from Internet Explorer: there, an origin is just a protocol and
domain. There are more inconsistencies in the SOP implementation in different browsers,
for example, a script can access unrelated local files via DOM using the “file” protocol
in Internet Explorer and Opera, but not in other browsers.

An iframe has an important property with respect to SOP: differently from remote
scripts, the content and scripts of iframe is assigned an origin from which it is fetched.
Hence, if the origin of an iframe is different from the one of the including page, the scripts
of an iframe cannot access the DOM of the page. However, browser implements several
communication APIs that allow components from different origins to communicate with
each other. Notice that in addition to DOM access, SOP applies to other browser com-
ponents. It was found that SOP implementations have a number of problems [56].

Malicious script inclusion and Content Security Policy. In addition to inclusion of
remote scripts and iframes by a web developer, JavaScript code can be executed on a
page as a result of an attack, such as Cross-site Scripting attack (XSS). A basic type of
XSS is a vulnerability of the web server when it allows an attacker to store the malicious
script on the server side, and then get executed in the user’s browser. In this survey we
are not going to discuss different ways of script injection on a page, but rather discuss

4

the security issues that occur when a JavaScript code is already running on the page.
In order to protect from the attacks like XSS, W3C proposed a Content Security
Policy (CSP) [63]. This policy should be written by a web page developer and contains
a set of sources from which the remote content can be loaded and executed on the page.
The CSP applies to scripts, objects, style sheets, images, media, iframes, and fonts.
Since CSP is oriented on disallowing to fetch the content from the forbidden sources, the
enforcement of CSP described in the draft does not forbid to make an HTTP request,
just the HTTP response should be seen by the browser as an empty response. It does
not seem a completely secure solution since the HTTP requests (that may contain some
information belonging to the user) can anyway be sent to arbitrary remote servers.

JavaScript security and privacy problems. Back in 2010, Singh et al. [56] were the first
to point out that the implementation of SOP is incoherent for different browser objects
and APIs, and revealed a number of vulnerabilities related to this fact. In the last couple
of years more objects and APIs were specified and implemented, and hence in this survey
we will describe a superset of such objects and APIs with respect to the one of Singh et
al. [66]. It was also noticed by several authors that SOP does not prevent the leakage
of sensitive user information: once malicious JavaScript accesses this information, it can
easily transmit it to remote servers by a number of ways [9, 15, 33, 60].

Jang et al. [32] analysed several kinds of attacks from the literature and have collected
them into several groups of vulnerabilities called privacy-violating information flows:

1. Cookie stealing. Since a remote script included in a web page can access all the
browser objects that the original page can access, such script is able to access
cookies, that may contain a session identifier or other sensitive information. The
script afterwards can transmit the value of the cookies to an arbitrary remote
website by a number of ways (we shall discuss the communication APIs in the
following section).

2. Location hijacking. An untrusted JavaScript code can either influence the docu-
ment’s location directly or the string variables that are forming a URL. As a result,
the script can navigate the page to a malicious website without the knowledge of
the user.

3. History sniffing. In this attack a malicious script can check whether the user has
ever visited a specific URL. JavaScript code can create an invisible link to the target
URL and then use the browser’s interface to check how this link is displayed. Since
the browser displays visited and unvisited links in different colours, JavaScript
program can deduce whether the URL has been visited by the user or not.

4. Behavior tracking. A script running on a web site can gather precise information
about the user’s mouse clicks and movements, scrolling behaviour, what parts of
the page are highlighted, and clipboard content. Such capability of JavaScript can
be useful for the user’s interaction with the website, however a malicious script can
also leak this information to the remote servers.

In the next section we are presenting a set of APIs that are used in these classes of
privacy attacks and also in the security policies that we have found in the literature on
JavaScript security.

3. Security-relevant browser APIs

Singh et al. [56] proposed a comparison between different browser objects APIs and
the corresponding principals who owe the information stored in those objects. Inspired
by their work, we present the summary of the standard and HTML5 resources and
the corresponding access-control policy in Table 1. These APIs were collected from the
literature that we later present in this survey. In this Table with ”*” we mark the objects
for which there is no access-control policy in place.

We divide the resources in two groups: standard browser objects and APIs that have
been implemented several years ago and nowadays are present in all of the widely used
browsers; and a large set of new HTML5 APIs [66] some of which are already available
to scripts. On one hand, this set of HTML5 APIs allows the web developers to write
much richer and interactive applications, but on the other hand, more security concerns
come with the new functionality available to JavaScript programs.

Table 1: Objects and APIs and their corresponding access control policy

l Resource [Access control policy
Standard objects and APIs
Core DOM objects SOP
Domain SOP
Window SOP
Cookies domain/path
Referrer SOpP
History not well-defined
Location SOP
XmlHttpRequest SOP (except for CORS)
XDomainRequest (Internet Explorer) *
HTML5 APIs
Web Storage SOP
Cross-origin messaging *
WebSocket *
Server-Sent Events SOP
IndexedDB SOP
Geolocation “first requested”
Web Workers SOP

3.1. Standard security-relevant APIs

Core DOM objects are all the nodes of the HTML document, with the document
node at the root of the tree. A malicious script can get an access to a document object
by a number of other ways. An example used in the reviewed literature is an iframe
creation using document . createElement. With this method a script can create an iframe
element, and then access the window (and hence the document object) through the
contentWindow property of an iframe.

Core DOM objects are accessible to scripts running within the origin of the page
according to SOP.

Domain. A script may change the current SOP by changing the domain of the
application: it is technically possible by changing document.domain to its valid domain
suffix. For example, scripts running in the origins with domains login.example.com and
payments.example.com can change its domain to example.com, but cannot change it to
ample. com or top-level domain com. If the origins of these two scripts also have the same
protocol and port (or just protocol in case of Internet Explorer), they will start running
in the same origin and access each other’s DOM. Notice that it does not mean that they
can now also access the DOM of the page at http://example.com even if they have
the same protocol and port. If a page at http://example.com needs to exchange some
information with payments.example.com , it should perform an explicit assignment of
document.domain = "example.com" [73]. Notice also, that it is possible to relax the
document .domain, but it is not allowed to restrict it (set it to login.example.com on a
page at http://example.com).

Singh et al. found out that changing the document.domain affects the SOP for DOM
access, but not for other objects, such as cookies, XmlHttpRequest, postMessage and
localStorage [56]. In addition, even though the well-known books on JavaScript and
Web Browser security [23, 73] claim that it is not possible to set the document .domain
to a top-level domain such as com, Nick Nikiforakis? recently found that in WebKit (a
layout engine of Chrome and Safari) it is actually possible to make such assignment to a
top-level domain.

Window. The window object represents an open window (or tab) in the browser.
When a page contains iframes, a separate window object is created for each iframe. The
window object is accessible to scripts running in the same origin.

Cookies. The HTTP(S) protocol is stateless by design, meaning that a a web server
cannot define whether two HT'TP requests are coming from the same client unless it adds
a separate mechanism to track the clients. The most commonly used tracking mechanism
is session identifiers. A session identifier is a unique random string that is generated by
a web server and is sent to the client’s browser usually by the means of cookies. A web
server sends the cookies in the HT'TP response header Set-Cookie. Once a web browser
receives such a response, it sets the cookies in the browser, and now every HT'TP request
to that web server will contain the cookies in the HTTP request header Cookie®.

Sessions are used in e-commerce applications, web-mails, and basically any other
applications that need to provide an access control to the users. Session identifiers are
a prime attack target since an attacker who accesses such identifier is able to have the
same session as a user and hence access all sorts of information that belong to the user.
The most common way to steal the session identifier is through the XSS.

Another common usage of cookies is in web tracking techniques [43]. In order to track
it’s users, the websites have to distinguish the users from each other. The simplest form

%http://blog.securitee.org/7p=208
3In the past, the HTTP standard also contained the headers Cookie2 and Set-Cookie2 that were
supposed to be used

7

of tracking is made by storing a unique identifier in the user’s browser cookies. Later,
when the same user (using the same browser) comes back to this website, the cookies
are automatically sent and hence the web server can recognise the same user (even if she
does not log in this website). More complicated forms of tracking are classified in the
recent paper by Roesner et al. [50].

Cookies are accessible to JavaScript programs through the document.cookie DOM
API. In order to protect cookies from being stolen, Microsoft developers introduced the
notion of Http-0Only cookies and added support for them in Internet Explorer 6, SP1 [45].
Http-Only is an HTTP response header and it means that cookies will be included in
every HTTP request and response to the web server, however they are not accessible to
any script running in the browser.

Unfortunately, Http-only cookies are not widely used. Several groups of researchers
showed that Http-only header is rarely set for the session identifiers. As such, Nikiforakis
et al. [47] analysed Alexa top 500 websites and found out that only 22.3% of them are
using Http-only cookies for session identifiers. In parallel with Nikiforakis et al., Tang
et al. [568] proposed heuristics to detect cookies that contain session identifiers and add
an Http-Only header to them.

Cookies’ lifetime is not limited by a session: cookies can be stored in the user’s
browser for a much longer time, until they expire. That is why cookies are also widely
used for different web tracking techniques [50].

The access control policy applied to cookies is different from SOP [56]. It allows
scripts to access cookies only when the script is being executed in the context with the
same domain and path as the cookies (without the protocol and port number as in SOP).
Moreover, a cookie creator can set the cookie’s domain to a postfix domain or the path
name to a prefix path (similar to modifying document.domain in case of SOP for DOM
access).

Referrer. Another HT'TP header that is automatically added by the browser to all
outgoing requests is a “Referer”® header. This header indicates the URL from which
the current request originated. For example, imagine a user visiting a website located
at www.example.com/index.html1?id=42 and is clicking on a link www.shopping.com.
Then her browser would send an HTTP request containing a “Host” header set to
www . shopping. com and referrer header set to www.example.com/index.html?id=42 [48].
Notice that this header is sent not only when the user clicks on the link, but also in all
the requests initiated by the browser while fetching the remote content (such as images,
scripts, embedding objects, etc.). Hence, the remote servers learn about the user brows-
ing history (and also user’s id if it is specified in the URL) in this way. Referrer is
accessible to JavaScript through document.referrer DOM APL

In HTML5 a web developer can add a special noreferrer attribute to the selected
link tags, that will cause the browser not to add the referrer header to all the outcoming
requests when this link is clicked. This technology is not implemented yet in most of
the browsers and for this reason, is not widely used by web developers [48]. Similarly to
other DOM objects, when referrer header is accessible to JavaScript, the SOP applies.

4The correct spelling is “referrer”. The misspelling “referer” was introduced by mistake by Phillip
Hallam-Baker [42] and later incorporated into the HT'TP specification.

8

History. Currently the browser history is accessible to JavaScript only through the
window.history object. For security reasons, JavaScript code is not allowed to access
the array of all the URLs visited by the user through the history object. However,
there are other history detection techniques [31]. One well-known technique is based on
Cascading Style Sheets (CSS) :visited selector. It styles visited links differently from
unvisited ones. Then, using the function getComputedStyle(link, "").color, it is
possible to establish the colour of the given link 1link, and hence to conclude whether it
was visited before. David Baron proposed a solution for this attack [7] based on rewriting
the :1ink and :visited selectors so that they are no longer based on user’s history, but
return the style of unvisited link. It seems that the major browsers have implemented
this solution. However, there are still other ways to (partially) access user’s history: Jang
et al. [32] describes other techniques based on user interation, while Roesner et al. [50]
discusses how an attacker can learn about user’s history through web tracking techniques
that use the cookies or referrer header. The access control policy for browser history is
not well defined.

Location bar is used to type, change and show the URL of the navigated page, but
can also be used to run the JavaScript code. It is possible to access the location
object from JavaScript program as a property of a window object or of a document:
document.location == window.location. Moreover, a location object has a number
of methods that allow JavaScript code to redirect the page.

Changing the location of the page that the user visits can be potentially dangerous:
a malicious JavaScript code running on the page could redirect the user to an attacker’s
page. For this reason, some browsers today do not allow the redirection, or alert the
user. The Same-Origin Policy applies to the location bar.

XML HttpRequest object (known as XHR®) provides a way of communication between
a client and a server [64] via the HTTP and HTTPS protocols. XMLHttpRequest objects
provides a method open() to start a communication and a method send() to send the
needed request.

Normally, SOP applies to the URLs of the requests made by the XHR objects. The
scripts running in one origin are allowed to make requests only to the server with the same
origin. However, differently from SOP for DOM objects, SOP for XHR does not change
when the document .domain is changed. It was also found, that in Internet Explorer even
though SOP for DOM does not contain the port, SOP for XHR contains it.

However, with the new Cross-Origin Resource Sharing (CORS)® technology, XHR is
also used to make cross-origin requests when a target server explicitly allows such re-
quests. For security reasons, it is not allowed to send cookies and other user credentials,
however a malicious JavaScript can save the cookies as a parameter of a URL and then
make a cross-origin request. In Internet Explorer this technology is implemented with
XDomainRequest object.

SHistorically, there were two specifications: XHR level 1 and XHR level 2. In the end of 2011 the
two specifications were merged into a single XHR specification.
Shttp://dvcs.w3.org/hg/cors/raw-file/tip/Overview.html

9

3.2. HTMLS security-relevant APIs

Web Storage draft specification [69] defines two properties of the window object:
localStorage and sessionStorage. Both of them allow to store some data in the
browser that can be retrieved next time the user visits the page. The difference between
the two objects is that the localStorage permanently stores the data in the browser
while the sessionStorage has the same life-time as a top-level window or browser tab in
which the script that created it is running. The data in storages is separated per-origin
in a sense of the Same-Origin Policy.

Cross-origin messaging API allows asynchronous message passing between scripts
running in different origins. A script running in one origin can invoke a postMessage
method to send the message to another origin. A new DOM event message is fired when
the new message is received by a target origin. The sender origin is stored in the source
property of the message object and is recommended to be checked upon receival.

Differently from XHR, SOP does not apply to the requests made by postMessage
because the purpose of this cross-document messaging method is to allow the documents
from different origins to communicate with each other.

WebSocket API allows a bidirectional message exchange over socket-type connections.
It uses ws:// protocol or wss:// for secure connection. Notice that WebSocket enables
communication between parties on any domain. The server decides whether to make its
service available to all clients or only those that reside on a set of well defined domains.
This can be used by the web attackers: they can first inject their script into a page, and
then make it communicate easily to the attacker’s server using WebSockets. Notice that
SOP does not apply to WebSockets.

Server-Sent Events API” provides a one-direction protocol that allows the server to
communicate back to the client and is supposed to be used to update the client with some
information from the server. Differently from WebSockets, it uses traditional HTTP.
However, SOP applies to Server-Sent Events API: the script can only use this API to
send messages to the server that has the same origin as the context in which the script
is running.

IndexedDB APIs [65] provides an object database records holding simple values and
hierarchical objects. Comparing to Web Storage APIs, IndexedDB is more powerful and
efficient. However, IndexedDB is not widely implemented in the current browsers. As of
the day of writing this paper, only FireFox and Chrome have implemented it.

Like Web Storage, the SOP is an access control policy for IndexedDB. Moreover,
each origin can have a number of IndexedDB databases, while each database must have
a unique name within the origin.

Geolocation API [67] allows JavaScript to access the user’s current location via
navigator.geolocation property. Browsers nowadays either ask permission before ac-
cessing it or deny it (either hardcoded in the browser or the user specified it in the

"http://dev.w3.org/html5/eventsource/
10

preferences). However, when a page contains several frames from different origins, and
all of them are asking for a user’s permission at the same time, the script that succeeds
in invoking the permission window first wins, while all the other scripts are prevented
from accessing the geolocation [56]. Once this permission is granted, JavaScript code is
able to monitor the user’s location every time it changes significantly.

Web Workers API® is a way for browsers to run JavaScript in the background. Orig-
inally, JavaScript was single-threaded, but with web workers this is no longer the case.
The web workers are running in parallel threads, with no access to the DOM, the window
and document object of the main thread. However, just like the third-party JavaScript
application running on the page, web workers are able to access cookies, web storages,
navigator object, location object (read-only). Web worker can communicate to the
main thread via postMessage or XHR, or execute setTimeout and setInterval func-
tions that can execute dynamically generated JavaScript. Moreover, web workers can
import external scripts using the importScripts method, and spawn other web workers.
The only argument to the Web Worker constructor is a URL that specifies the JavaScript
code from which the worker is created. SOP applies to Web Workers: the web worker
can be created only from the URL that has the same origin as the execution context
where it is created.

3.3. Other analysis of security relevant APlIs

In their recent ENISA report [17], De Ryck et al. have presented an abstract model
of emerging web standards, and later grouped them into categories of security-sensitive
APIs in the following paper including the same authors [60]. We show this model in
Figure 1.

Ul & Rendering
(Drag/Drop events, Clipboard
events, Notifications, History API)

1
Media ! sandbox N Inter-Window
(Audio, Video, > Window < Communication
Media Capture) _ [<7 (Cookies, Location) (Web messaging)

1

1 I

1 1
Device Access _): PN Client-side storage
(System Information, ||| Event Handlers DOM < (Web Storage,
I 1
L :

Geolocation, Crypto) IndexedDB, File API)

External Communication
(CORS, UMP, XHR 1+2,
WebSockets)

Figure 1: The categories of the emerging web standards [60]

8http://dev.w3.org/html5/workers/

11

4. Dynamic techniques based on runtime monitoring

In this section we present the dynamic techniques based on runtime monitoring for
JavaScript security. We provide a collection of safety properties that were enforced in
the literature for a better understanding of the problems of JavaScript security. These
techniques implement runtime monitors that intercept the API calls made by JavaScript
program and check whether the sequence of such calls complies with the given security
policies. Some works in this area do not provide any formal guarantees, however, since
the web browser is a very complex system and has a number of inconsistencies, formal
proofs and methods are particularly important in this area of research.

This section is organised as follows: we start with the background on runtime mon-
itoring theory, security policies and possible formal guarantees, and proceed with the
analysis of monitoring techniques for JavaScript. Description of each technique starts
with the main idea of the mechanism, then clearly states the security policies it enforces
and finished with the provided formal guarantees. We finish this section with the collec-
tion of all the examples of security policies enforced by the dynamic techniques discussed
in this section.

4.1. Background

Runtime monitoring is a common technique to observe the execution of the program
and check whether it satisfies the desired security policies. The first formal model of
runtime monitor was proposed by Schneider [55] and is called security automaton. It
recognises legal (allowed by the policy) run of the program and halts it as soon as its
behaviour violates the policy. These monitors are provably enforcing a restricting class of
security policies called safety properties. The later works of Bauer, Ligatti and Walker [8]
proposed another model of runtime monitor, called edit automaton. These monitors are
able not only halt the execution of illegal program, but also to fiz it (change it) at
runtime. Edit automaton is able to enforce a bigger class of security policies, called
renewal properties that are also based on a reasoning about a single program execution.

4.1.1. Security policies

Informally, safety property is defined as “nothing bad ever happens”, meaning that if
a sequence of actions is legal, then it does not have any illegal prefix. Safety properties
have this nature: as soon as a sequence becomes invalid, no following continuations of
this sequence can ever become valid. Therefore, the only way to enforce a safety property
is to halt an execution of the program as soon as it violates the safety property.

An informal definition for renewal property is less straightforward. It is stated as a
property in which "every valid infinite-length sequence has infinitely many valid pre-
fixes” [36]. Notice that this definition differs from safety, because it allows a valid
sequence to have some finite number of invalid prefixed. In this setting if a program
execution does not satisfy the policy so far, it does not mean that this execution will not
become legal later on. The authors also have shown that decidable renewal properties
can be enforced by some edit automaton.

Both safety and renewal properties represent a property of one sequence of actions.
In case of JavaScript, an action can be represented by an API call (possibly with some
restrictions on arguments).

12

4.1.2. Formal guarantees

These works on runtime monitoring have the same goal: to enforce the security poli-
cies in question. However, the guarantees of enforcement that different techniques pro-
vide, sometimes varies. The main guarantee of enforcement is soundness. It states that
the result of the enforcement is compliant with the security policies. Notice that sound-
ness by itself can mean that a runtime monitor halts all the executions of the program
and thus satisfies the security policy (that considers non-execution as a good behaviour).
Hence, there is another important guarantee called transparency. Transparency means
that if the program execution already satisfies the security policy, its behaviour should
not be modified by the runtime monitor.

4.2. First monitoring technique for JavaScript

The first implementation of dynamic monitoring and logging of JavaScript code exe-
cution was done by Hallaraker and Vigna [28]. They were the first to describe in details
the architecture of Mozilla FireFox and the way the JavaScript engine SpiderMonkey
interacts with the DOM and other components of the browser. The FireFox browser
is partially implemented in JavaScript, and hence the JavaScript engine executes both
the “native” scripts and the scripts from the downloaded HTML page. The authors
implemented an auditing mechanism that is able to distinguish the execution of these
two classes of scripts and to audit only the scripts running on the page.

The auditing mechanism detects two kinds of behaviour: the deviation from high-level
security policies and recognition of predefined attack scenarios (“signatures”). The high-
level security policies are safety properties based on the state recorded by the mechanism.
The signature for a simplified version of a cross-site scripting attack is hardcoded into
the auditing mechanism (for example, do not redirect the page after cookie access).

Security policies (safety properties) presented in the paper are:

1. Do not open more than n windows,
2. Auditing a frequency of a window.alert method call,
3. After reading document.cookie, do not set a document.location

Formal guarantees No guarantees are provided.

4.8. JavaScript instrumentation

Yu et al. [71] proposed an instrumentation technique for a CoreScript language, which
reflects the core features of JavaScript. This instrumentation is represented as a set of
formal rewriting rules, that are based only on the syntax of the language. The idea of
such rewriting is that the execution of instrumented code is compliant with the security
policies.

The formal model behind the instrumentation is based on edit automata [8], and
hence theoretically it should be able to enforce a class of renewal properties. However in
the paper the examples of security policies are safety properties, while an edit automaton
model helps to enforce these properties differently than just halting the execution. For
example, a simple policy "Do not open more than n windows” is enforced in a following
way: whenever an n + 1th window is about to be opened, an enforcement mechanism
suppresses this action and waits for the opened windows to be closed first.

Security policies (safety properties) described in the paper:

13

1. Do not open more than n windows,
2. No foreign links after a cookie access

Formal guarantees The soundness and transparency of the rewritten programs are
proved.

4.4. Lightweight Self-protecting JavaScript

Phung et al. [12] propose an inlining technique for JavaScript based on aspect-oriented
programming. The security policy and the enforcement mechanism are implemented as a
remote JavaScript script and hence can be added to any HTML page. Like in a previous
approach [28], the security policies are stateful, and this mechanism is able to modify
some of the actions at runtime, hence it is potentially able to enforce renewal properties.
The authors, however, prove their results for safety properties and show the connection
between their model and security automaton.

Security policies (safety properties) given in this paper:

1. Only up to n pop-up windows can be opened, URL must be from a whitelist

2. Disallow iframe creation via document.createElement

3. If the sensitive data (such as cookie, history object, and the values of the values
of window.location , document.URL and document.referer) have been read,
disallow setting of document.location, windows.location, and src property of
the instances of frames, images, forms.

4. Disallow setting of document.location, windows.location, and src property of
the instances of frames, images, forms except if the new URL is in a whitelist.

5. Disallow XMLHttpRequest to open and send data except for the URIs that are in
the whitelist

6. Disallow pop-up windows without location and status bar

7. Disallow window.alert and window.prompt methods (can case resource abuse)

Formal guarantees The authors prove the soundness and argue that transparency
does not hold.

The problem is that JavaScript can inspect the source of the page in which it is
embedded. Hence, a script can detect that it is being monitored, because in this technique
a monitor is implemented as a remote script. The authors discuss a possibility that a
script might behave well when is not watched, and behave badly when monitored.

4.5. ConScript: Applying client-side deep advice for security

Meyerovich and Livshits introduced the CONSCRIPT [44] framework, a client side im-
plementation for fine-grained security policies based on aspects [21]. The authors make
modifications to the JavaScript engine of Internet Explorer 8, changing the original im-
plementations of the security-relevant functions. Later this implementation was repeated
by De Groef [13] on top of Mozilla Firefox browser.

CONSCRIPT policies are either written manually or can be generated through static
analysis of server-side code or runtime analysis of client-side code. The authors also
present a type system to ensure correctness of the CONSCRIPT policies, but do not
provide formal guarantees of the enforcement mechanism.

Security policies (safety properties) The authors present 17 security policies
grouped in 4 classes, some of which are taken from [34, 12]. Here we do not present all

14

the policies, but only flexible policies that are comparable to the security policies in the
other works on dynamic techniques. For example, we do not include very strict policies,
such as ”disable dynamic scripts”, and omit policies specific for the behaviour of jQuery
library. The chosen security policies are:

1. Disallow string arguments to setInterval, setTimeout (because these functions
run callbacks in response to passing of time),

2. XMLHttpRequest is restricted only to HI'TPS connections,

HTTP-only cookies: script cannot access cookies,

4. postMessage function may transmit primitive values only to origins in a whitelist
of URIs,

5. XDomainRequest for communicating to foreign servers is checked against a whitelist

of URIs.

No foreign links after a cookie access,

Limit the number of popup windows opened,

@

Disable dynamic <iframe> creation,
Whitelist URL redirections,
10. Prevent abuse of resources like modal dialogs.

© N>

Formal guarantees No guarantees are provided.

4.6. WebJail: Security architecture for mashups

Van Acker et al. [60] proposed WeblJail, a new client-side security architecture that
enables least-privilege integration of components into a web mashup, based on aspect
weaving [21] (similar to CONSCRIPT [44]) while the security policies are specified for
every iframe of the page.

The language of the security policy is relatively simple and is similar to the Content
Security Policy (CSP) [63]. The authors first defined categories of security-sensitive APIs
that we presented in Figure 1. Then, the security policy specifies a self-defined whitelist
for every category of APIs. For example, ”extcomm : [google .com, youtube .com |”
means that external communication are only allowed to the given domains.

Security policies The policy is a new attribute of an iframe in a mashup, which
means that a mashup integrator can impose restrictions on the behaviour of untrusted
third-party components. In the iframe policy, particular security-sensitive events can be
fully enabled, fully disabled or enabled only for a self-defined whitelist.

Formal guarantees No formal guarantees are provided.

This approach is different from the other dynamic techniques presented in this section
because it enforces specific policies for mashup integration, however the policies are still
safety properties: the JavaScript programs are not allowed to invoke the APIs that
contradict the security policy.

4.7. Summary of security policies

In Table 2 we present an extensive summary security policies enforced by dynamic
mechanisms presented in in this section (while only omitting some strict policies or very
specific policies, such as for jQuery library). These policies are stateful policies that
reason about one execution of the program. Some of the techniques [12, 71] are able to

15

Table 2: Safety properties enforced in the literature

Corresponding | Related properties | Security Policy Hallaraker Yu et | Phung | Meyerovich
APIs and methods and al. [71] | et and
Vigna [28] al. [12] | Livshits [44]
Window window.open Limited number of popup | v/ v v v
windows opened
Core DOM ob- | document.cookie, No foreign links after a | v v v v
jects, Cookies, | window.cookie; cookie access
Location, document .location;
src property of nodes
Window window.alert, Prevent abuse of resources | v v v
window.confirm, like modal dialogs
window.prompt
Window window.open No popup windows without v
location and status bar
Core DOM ob- | document.createElement| No dynamic iframe creation v v
jects
Core DOM ob- | src property of nodes No setting of src property v
jects of frames, images, forms
Location document .location, No setting of location v v
window.location property
Location document.location, Redirections are allowed v N
window.location only for a whitelist of URLs
XmlHttpRequest | Xm1HttpRequest.open, No open and send methods v v
XmlHttpRequest.send of XHR object
XmlHttpRequest | Xm1HttpRequest.open XHR is restricted to HTTPS v
connections
XDomainRequest| XDomainRequest.open XDomainRequest URL is v
checked against a whitelist
Cross-origin window.postMessage postMessage can only send v
messaging to the origins in a whitelist
JavaScript spe- | setInterval, No string arguments to v
cific setTimeout setInterval, setTimeout

functions

16

Table 3: Comparison of dynamic mechanisms based on runtime monitoring for JavaScript

Hallaraker Yu et al. [71] Phung et | Meyerovich
and al. [12] and
Vigna [28] Livshits [44]
Security properties
safety v v v v
renewal v
Formal guarantees
soundness X v v X
transparency X v X X
Implementation auditing code rewriting | code rewriting | JS engine
strategy interactions modification

enforce renewal properties, however the examples of the policies we found in the paper
are safety properties.

We list the papers in the columns in a chronological order showing how the set of
security policies in the papers grew with the evolution of the research field. When we
mark a particular policy and a paper by a tick “v"”, we mean that the authors have
presented such policy in their paper explaining how their mechanism would enforce it.
Whenever there is no tick in the table, it does not mean that the give technique is
not able to enforce the given policy, it just was not presented in the paper. Overall,
those mechanisms that were formally proven to be able to enforce safety properties (such
as [71, 12]), are also able to enforce all the policies from Table 2.

Notice that some of the policies, like “No foreign links after a cookie access” were
presented in all the papers in one form or another. However, the authors proposed to
monitor different properties or methods when they defined “foreign links”. Also notice
that all of the listed enforcement mechanisms are able to enforce policies with whitelisted
exceptions. We do not add the examples of WebJail policies [60] because they put
restriction on a category of APIs, and thus cannot be compared to more specific policies
proposed in previous papers.

4.8. Comparison of enforcement

In Table 3 we compare the above mentioned techniques by the following parameters:
the security properties they potentially enforce (safety or renewal properties), the formal
guarantees they provide (soundness and transparency) and the implementation strategy.

When we specify security properties, we mean that a mechanism marked by “v'” is
in theory capable of enforcing a given class of properties. However, as mentioned earlier,
all the proposed approaches show to enforce policies that are safety properties.

When it comes to formal guarantees, we marked an approach by “v”” when the guar-
antee was proven in the corresponding paper. Notice that our marking by “X” does not
mean that the formal security guarantee does not hold for a given mechanism, but it
just shows the fact that in the original paper no proofs of such guarantees were given.
The only mechanism, for which soundness and transparency is proven is a JavaScript in-
strumentation by Yu et al. [71]. The authors considered these formal guarantees because

17

this mechanism is modelled as an edit automaton. The other proposed mechanisms were
not considered to be modelled as runtime monitors, but the novel technology for security
enforcement in the web browsers was proposed.

The implementation strategy differs in these mechanisms. Hallaraker and Vigna [28]
were the first to introduce a mechanism that logs all the interactions between the
JavaScript engine and the other components of the web browser. This log was then au-
dited against some malicious behaviors (in Table 3 we denote this strategy by “auditing
interactions”). Yu et al. [71] proposed a rewriting technique for a subset of JavaScript,
instrumenting it with security checks. Phung et al. [12] adapted an inlining reference
monitor approach for JavaScript by implementing it using aspects. Hence, both of these
latter mechanisms use code rewriting techniques. The CONSCRIPT [44] framework is
radically different from the other approaches. It proposes to modify only the JavaScript
engine of the web browser, thus implementing security checks. In Table 3 we denote it
as JS engine modification.

5. Information flow security analysis for JavaScript

Information flow security for programming languages have been studied for decades
and now it is a large field of research. We start this section with the definitions of infor-
mation flow security policies, and give a brief introduction to information flow analysis.
We then proceed with the main achievements in applying information flow analysis to
JavaScript, and conclude by a comparison of these techniques with respect to the secu-
rity policies they enforce, the formal guarantees they provide and the implementation
techniques applied.

5.1. Background

There are two main security properties that can be enforced by information flow
control: confidentiality and integrity. Confidentiality defines that the private information
should not be revealed to the public observer, while integrity means that the public
entities should not influence the private information. Both properties can be enforced
by information flow analysis. For this reason, researchers build their analysis around
confidentiality policies, claiming that the same approach can be applied for integrity.

For programming languages, the notion of confidentiality has been redefined into the
notion of non-interference. It specifies that no public outputs of the program depend on
secret inputs (which means no public observer can deduce anything about the private
information). In the language-based security community, information flow analysis is
implemented for a given programming language and it insures that there is no leakage
of private information into the public outputs of the program.

The first extensive survey on language-based information flow was given by Sabelfeld
and Myers [53]. After their publication there has been a number of important results in
the information flow analysis, and currently it is often classified according to the following
parameters.

5.1.1. Explicit and implicit information flows
There are two basic kinds of information flows: explicit and implicit. Information is
passed from the right-hand side of an assignment to the left-hand side forms an explicit

18

flow. For example, a statement public:=secret represents an explicit flow from a
variable secret to a variable public. Tuaint analysis is a well-known technique that
handles only explicit information flow. Implicit flows occur when the information is
passed through the control flow structure. For example, if secret then public:=1
represents an explicit flow from a boolean variable secret to public.

The later works by Austin and Flanagan have proposed a dynamic mechanism for
dealing with implicit flows with no-sensitive upgrade (NSU) semantics [4], and later they
presented permissive-upgrade (PU) semantics [5].

5.1.2. Formal guarantees

An information flow analysis should be sound, meaning that all the programs accepted
by the analysis are noninterferent. There are several notions of noninterference proposed
in the literature. Termination-insensitive noninterference [53] only gives a guarantee
about terminating programs, ignoring that non-termination may leak some confidential
information. Time-sensitive noninterference reasons about programs that terminate in
a given number of steps, and hence it is a stronger notion that termination-insensitive
noninterference.

Proving the soundness of information flow analysis is not enough: an analysis can
reject all the programs, and still be sound. The notion of transparency (or precision) was
introduced to specify how many secure programs got rejected by the analysis. Notice
that this definition differs from paper to paper, and it is based on the number of secure
programs that do not get rejected by the analysis. The size of this set of good programs
is usually evaluated by the authors, and often it is a set of programs accepted by some
security type system, such as the one by Volpano et al. [62].

5.1.3. Flow-sensitivity

Another important property of the information flow analysis is flow-sensitivity. The
analysis is flow-insensitive if it does not take into account the order of execution, so the
analysis results for C; Cs are the same as for Cy; C7. In this respect, the security type
system of Volpano et al. [62] is flow-insensitive. If the analysis takes into account the
execution order, then it is flow-sensitive. As a result, in flow-sensitive information flow
analysis the variables can store information of different sensitivity (secret and public).

Consider a program secret := 0; if secret then public:=1. Flow-insensitive
analysis rejects this program because public depends on the secret value of secret.
However, flow-sensitive analysis accepts this program since the security level of secret
is changed to low after the first assignment.

5.1.4. Static vs. dynamic vs. hybrid analysis

Initially, the enforcement techniques for secure information flow were based on purely
static analysis, like Denning-style enforcement [18] and it was proven to be a sound
technique for explicit and implicit flows. We are not going to discuss these techniques
in details, but rather point interested readers to a survey of Sabelfeld and Myers [53].
Another way is to dynamically monitor the execution of the program, this approach was
reopened in Le Guernic’s PhD thesis [26], where he gave an extensive survey on the field.

19

5.1.5. Declassification

It has been repeatedly shown in the literature, that non-interference is too strong for
real life systems. A well-known example of password checking shows it: the password is
a secret information and hence, it cannot influence public outputs of the program, but
on the other hand, it should be sent to the remote server (which is usually considered
public). Declassification is an exception mechanism, that allows secret inputs to influence
public outputs under certain conditions. We will show which of the techniques for secure
information flow, that we survey here, support declassification.

5.1.6. Relations between the analysis

Hunt and Sands [30] have proven that static flow-senstive analysis generalises static
flow-insensitive analysis, and accepts more secure programs.

Sabelfeld and Russo [54] have proven that sound purely dynamic information-flow
enforcement is more permissive than static analysis in flow-insensitive case (dynamic
enforcement rejects less good programs than static analysis). The authors have also
shown that both dynamic and static analysis guarantee the same security property:
termination-insensitive noninterference.

In case of flow-sensitive analysis, Russo and Sabelfeld [51] have proven that one has to
choose between soundness and permissiveness guarantees for purely dynamic monitors:
the authors claimed that having both is impossible. However, the later work by Devriese
and Piessens on secure multi-execution [19] demonstrated that there exists another purely
dynamic technique, that is not based on monitoring, and has both soundness and per-
missiveness guarantees. Russo and Sabelfeld [51] have also shown though that a hybrid
analysis (combining static and dynamic analysis) can be both sound and permissive. Sev-
eral hybrid flow sensitive analysis were later introduced in the literature [61, 11, 19, 6]
and we are going to discuss and compare them in this section.

5.2. Dynamic Data Tainting and Static Analysis

Vogt et al. [61] were the first to introduce a hybrid information flow analysis in the
web browser setting. The dynamic component is the taint analysis that deals only with
explicit flows. The static analysis component is invoked for implicit flows and it analyses
the scope of every branch in the control flow that depends on tainted values. This analysis
ensures that all the assigned variables in both executed and not executed branches are
tainted accordingly.

Security policies enforced The sources of sensitive information are the sources
containing “information that could be abused by an adversary to launch attacks or to
learn information about the user”, for example document . cookie, properties of history
object, location information and others. To ensure that the tainted data does not leave
the page it belongs to, authors monitor a set of data transmission operations that might
send the data to a third party:

e changing the location by setting document.location;
e changing the source of the image on the page;
e submitting a form in the page;

e using special objects, such as Xml1HttpRequest object.
20

The security policy is hence a type of information flow policy: no tainted data influences
the data being sent by the operations specified above.
Formal guarantees No formal guarantees provided.

5.8. Staged Information Flow

Chugh et al. [11] proposed a staged technique to enforce information flow properties
of JavaScript. The idea is to perform heavyweight static analysis of information flow of
the available JavaScript code on the server side, and then use the results of this analysis
in the succinct residual checks that are done dynamically on the client side.

This technique has one important assumption: the inlined scripts are fully trusted
and are used to compute the residual policy, while the external scripts are potentially
malicious. The residual check is then just a syntactic check whether the external scripts
comply with the residual policy.

Security policies enforced A security policy is a confidentiality or integrity policy
represented by a set of pairs for which the flow is disallowed. For example,

o Integrity policy: The first parameter in the function post must not be affected
by any variable declared within an untrusted part of the webpage. For example,
variables declared within the external script must not flow into the value of the
location bar : (*, document.location).

e Confidentiality policy: The sensitive data must not affect variables within the ex-
ternal script. For example, cookies must not flow into any variable within untrusted
code: (document.cookie, *)

Notice that nowadays more and more scripts are added to the web application as
external script, and even W3C suggests to move the inlined scripts and style out-of-
line in its Content Security Policy specification [63]. Consider that there is no inlined
script on a page, then no static information flow analysis will be done on the server
side, and hence the residual policy will be identical to the original policy. Then, the
residual checks that will be done on the external scripts are simple safety policies, like
“JavaScript code cannot read document . cookies” or “JavaScript code cannot write into
document.location”.

Formal guarantees No formal guarantees provided.

5.4. Information flow control for Mashups

Mash-IF [35] is a hybrid technique for information flow control within mashups. Mash-
IF consists of a labelling tool (to mark sensitive data), a reference monitor (to prevent
leakage of sensitive information within the mashup) and a declassification tool based on
a static analysis of the mashup components.

The static data flow analysis is done for a subset of JavaScript language named
JavaScriptga, that was used in the GATEKEEPER framework [25]. Whenever a script
reads a sensitive data, a static analysis tool identifies all the execution paths that could
propagate the sensitive information to the other parts of a mashup or to remote servers.
These paths are recorded by their corresponding function calls. The reference monitor
then compares these sequences with the monitored script’s call sequences to find the
potential information leakage.

21

Mash-IF is hence implemented as an add-on for the Mozilla Firefox and evaluated
using 10 real mashups. The performance overhead for static analysis and monitor ranges
from 50% to 500%, while the monitor only (assuming that the static analysis for the
script has been done in the past) ranges from 7% to around 40%.

Security policies enforced The information that should not be leaked to unautho-
rised third parties is separated into sensitive and highly sensitive. The information flow
security policy in its usual sense is applied to sensitive information, while highly sensi-
tive information should not be accessed from other domains even locally. For example,
to protect from the cross-site request forgery, cookies in Mash-IF are considered highly
sensitive information since they contain user’s session identifier.

Formal guarantees No formal guarantees provided.

5.5. Secure multi-ezecution (SME) and FLOwWFOX

Devriese and Piessens proposed a novel technique called Secure multi-ezecution (SME)
[19]. SME runs the original program multiple times, once per each security level, using
special rules for I/O operations and synchronisation of communication between the runs.
The authors originally proposed SME for a simple programming language, but since
SME does not depend on the language semantics, it can be applied to any programming
language .

The first advantage of this approach is that it has two formal guarantees: soundness
guarantee in a sense of time-sensitive noninterference (which is stronger than termination-
insensitive noninterference) and precision. The second advantage is that it automatically
fixes the execution of the program, silently substituting secret values with dummy values
in illegal flows.

The technique was tested on the benchmarks of the JavaScript engine. Similar ap-
proach was taken by Louw et al. [59] applied to the web advertisements. Bielova et al. [9]
implemented the SME for the Featherweight Firefox model [10].

De Groef et al. [14] present an implementation of SME based on the Mozilla Firefox
browser, called FLOWFOX. An interesting part of this implementation is the security
policy language: it is able to model such policies as “Xm1HttpRequest.send method has
a level H in case the origin to where the request is sent is the same as the origin of the
document the script is part of”. De Groef et al. have shown the feasibility of FLowFox
on Alexa top 500 websites: the behaviour of FLOWFOX was indistinguishable from the
behaviour of FireFox with around 20% or performance cost and 88% of memory overhead
(due to a double execution of the same JavaScript program).

Security policies enforced A generic information flow security policy: the security
lattice can be an arbitrary lattice of security levels, and the DOM APIs are marked with
security levels.

Formal guarantees This approach guarantees soundness in a sense of time-sensitive
noninterference and a good precision, meaning that the technique does not change the
original I/0O relation for terminating runs of time-insensitive noninterferent programs
except for some re-ordering.

5.6. Multiple Facets for Dynamic Information Flow

Inspired by the secure multi-execution approach, Austin and Flanagan [6] proposed
a novel technique that combines the benefits of multi-execution with the efficiency of

22

a single execution. They introduced faceted value that contains raw values for each
security level, and by manipulating these faceted values, a single process can simulate
several processes of multi-execution approach. In case the raw values at different levels are
identical (e.g., after exiting the scope that depends on a secret value), the two executions
collapse into one, thus reducing the overhead.

Faceted evaluation is implemented in a Narcissus [20] JavaScript engine that is in-
stalled in the browser using Zaphod Firefox plugin [3]. The original formalisation of
faceted evaluation presented in the paper is given for a simple programming language
with references and without while loops. The ZaphodFacets implementation extends the
faceted semantics to handle additional complexities of JavaScript.

Security policies enforced Similar to secure multi-execution, faceted evaluation
enforces generic information flow policies.

The authors introduce a declassification mechanism based on robust declassifica-
tion [74], which guarantees that an active attacker, who is able to introduce the code,
is not more powerful than a passive attacker. In order to provide such declassification,
every principal P has two associated labels: secret to P and untrusted by P. The idea is
that the corresponding execution (if you think about an execution corresponding to one
view) labeled as untrusted by P cannot downgrade the data that is secret to P.

Formal guarantees Soundness for termintation-insensitive non-interference, how-
ever no precision or transparency guarantees are given.

5.7. Dynamic type system for Information Flow Security

Hedin and Sabelfeld [29] introduce a dynamic type system that guarantees informa-
tion flow security for JavaScript. The authors first propose a core of JavaScript that
is interesting for the information flow perspective: objects, higher-order functions, ex-
ceptions, eval. A dynamic type system supports the security label upgrades similar to
Austin and Flanagan’s [4] no sensitive upgrade (NSU) discipline.

The technique also handles a number of JavaScript features, that were not covered
in other language-based information flow analyses. The dynamic type system halts the
program execution whenever an illegal information flow is found.

This approach is being implemented in a JavaScript interpreter written in JavaScript.
However, as of the day of writing this paper, the implementation results have not been
published yet.

Security policies enforced Differently from previous works on information flow
security in the web browser settings, Hedin and Sabelfeld proposed to extend the notions
of information that can be marked as a secret (in the other works only variables or APIs
are marked by security labels):

e the information about the structure of the objects in JavaScript or about existence
of particular fields;

e an existence of a variable in a particular scope.

Formal guarantees Soundness for termintation-insensitive non-interference and
transparency are proven.

23

5.8. Comparison of enforcement

In Table 4 we compare the techniques by the following parameters: the security policy
they enforce (explicit vs. implicit information flow), the formal guarantees they provide
and the implementation strategy. In the first row we shown how different techniques deal
with implicit and explicit flows: statically (stat) or dynamically (dyn).

Table 4: Comparison of information flow security analysis for JavaScript

Vogt et | Chugh | Li et | Devriese and | Austin Hedin
al. [61] | et al. [35]| Piessens [19], | and and
al. [11] De Groef et | Flanagan | Sabelfeld
al. [14] [6] [29]
Information flow
explicit flow dyn stat stat dyn dyn dyn
implicit flow stat stat X dyn dyn dyn
Formal guarantees
termination-insensitive | X X X v v v
noninterference
time-sensitive X X X v X X
noninterference
precision or X X X v X v
transparency
Implementation
strategy
browser extension v v
JavaScript engine v v v v
Notations:

stat = static analys
den = dynamic analysis

The Vogt et al. [61] approach was the first technique for JavaScript information flow,
and did not provide any formal guarantees. Later on, Russo et al. [52] found unsound
aspects in this work related to the structure and navigation on DOM trees. Staged
information flow (SIF) [11] was a novel approach to JavaScript security, however, since
most of the analysis is done statically, it is not very precise and moreover, no formal
guarantees are provided. Notice that both Mash-IF and SIF are using static analysis,
and both techniques are implemented as a separate tool, while a browser extension only
monitors all the requests for an external script in case of SIF and all the function calls
in case of Mash-IF.

The most recent and promising enforcement mechanisms for JavaScript information
flow security are secure multi-execution (SME) [19, 14], faceted evaluation [6] and dy-
namic type system for information flow [29]. Let us compare these techniques in more
details.

Implicit flows In order to deal with implicit flows dynamically, Hedin and Sabelfeld
[29] use an approach similar to no-sensitive upgrade (NSU) semantics [4], while faceted
evaluation was proven to generalize NSU and permissive upgrade [5] semantics. SME is

24

incomparable since executing the same program multiple times while filtering I/O does
not impose any restrictions on the semantics that should be used.

Formal guarantees All techniques provide termination-insensitive noninterference
soundness guarantee, but moreover, SME is proven to have a stronger guarantee: time-
sensitive noninterference. SME also has a precision guarantee in a sense that if the
program is time-insensitively noninterferent, then SME does not change its I/O relations.
Dynamic type system [29] approach proves transparency: if the program is able to run
(be noninterferent) in the instrumented semantics, then the run is consistent with the run
of the un-instrumented semantics. Faceted evaluation approach does not have a proof of
transparency or precision.

Language features SME does not have to deal with the specific features of JavaScript
language because it only handles the I/O of the program. Multiple facets were modelled
for a simple programming language with references and without while loops and it is not
clear how many JavaScript language features can be supported. For example, it seems
that exceptions cannot be handled in this approach. Dynamic type system works for a
core of JavaScript that is carefully chosen: it contains higher-order functions, exceptions,
eval, with and other specific JavaScript features.

Type of enforcement SME proposed a novel approach where the program execution
is not halted because an illegal information flow is found. Instead, this approach fizes
the illegal flows at runtime. Faceted evaluation technique was inspired by SME, and
hence performs a similar kind of enforcement. Hedin and Sabelfeld [29] technique, being
a dynamic approach, stops the execution of the program when an illegal flow is found.

Declassification Faceted evaluation introduced robust declassification mechanism
claiming that other kinds of declassification can be easily integrated into their semantics.
SME and Dynamic type system do not discuss declassification, however both groups
of authors described how useful policies can be enforced by their techniques without
declassification. As such, Hedin and Sabelfeld discuss scenarios of malicious online ad-
vertisement and user password tracking and explain how their approach would work. De
Groef et al. (SME) have implemented FLOWFOX browser and have practically shown
that their technique is able to enforce such useful policies as non-leaking of session cook-
ies, history sniffing and tracking libraries almost without effect on the behaviour of the
Alexa top 500 [2] websites.

Performance overhead While SME and Faceted evaluation approaches are cur-
rently implemented and available for download, Dynamic type system implementation
is an unpublished work as of the day of writing this paper. Faceted evaluation was
compared with the original SME implementation in case of different number of security
levels. As expected, the performance overhead of SME grows exponentially with respect
to the number of levels, while Faceted evaluation does not. However, before making any
comparison of the performance overhead, it would be interesting to know: how many
security levels are needed for the security of the current web applications?

5.9. Summary of information flow policies
In Section 5 we have presented and compare the main works on information flow
security mechanisms for the web browser applications and JavaScript. In this section we
gather the information flow policies that were enforced in these works. Most of the works
are based on confidentiality policies and only Chugh et al. [11] discusses some integrity
policies.
25

In Table 57 we present objects and APIs that we split into two groups: APIs that
can be/are used to store sensitive information and APIs that provide communication.
The idea of confidentiality policy is that the data that has been read from sensitive
information APIs should not be sent by the communication APIs to the remote servers
that do not owe this information. For example, we can use SOP to define a remote server:
the sensitive information that was read in one origin cannot be sent to another origin by
the communication APIs.

Table 5: Sensitive information APIs and Communication APIs for Confidentiality Policy.

APIs \ Related properties

Sensitive information APIs (high input)
Core DOM objects

Domain document.domain

Window window.status, window.getSelection,
window.clipboardData

Cookies window.cookie, document.cookie

Referrer document .referrer

History document.title, history.current,

history.next, history.previous,
object.getProperyValue

Location document.location, window.location,
document . URL

Web Storage localStorage, sessionStorage

IndexedDB

Geolocation

Mouse data MouseEvent.clientX,

MouseEvent.clientY

Communication APIs (low output)

Core DOM objects assign src property of a node
XmlHttpRequest XmlHttpRequest.open,
XmlHttpRequest.send
submit() a form

Cross-origin messaging | window.postMessage
WebSocket
Server-Sent Events

Integrity policy was shown to be dual to a confidentiality policy, and hence many
authors of the surveyed papers did not try to discuss or implement it in the web browser
settings. Chugh et al. [11] gives some examples of integrity with respect to the location
property of the window. High Integrity objects contain information that should not be
modified by the JavaScript program. Integrity policy claims that low integrity values

9object.getProperyValue is used for history sniffing via CSS, and window.clipboardData is used to
set and get the clipboard data in Internet Explorer starting from version 5.0

26

should not flow into high integrity objects. Low integrity values are all the variables of
the JavaScript program, while high integrity objects are presented in Table 6.

Table 6: High Integrity objects for Integrity Policy.

’ APIs \ Related properties
High Integrity objects (high output)
Domain document .domain
Location document.location, window.location,
assign and replace methods of the location
object

6. Other related work on JavaScript Security

There is a number of other works done in the area of JavaScript security, and applying
formal analysis to web applications and JavaScript programs. We will discuss here some
of such works.

6.1. Static analysis of widgets

One of the first proposals on static analysis for JavaScript was done by Guarnieri
and Livshits [25] in their framework called GATEKEEPER. They modelled the safe subset
of JavaScript, the inference rules and the security policies in Datalog, and then applied
bddbddb solver [68] to produce policy violations. The authors propose a flow- and context-
insensitive points-to analysis for a subset of JavaScript, and several security policies that
they consider important in JavaScript widgets. In this framework the security policies
reflect the safety properties enforced by dynamic techniques.

As a follow-up of their work, Guarnieri and Livshits propose a staged static analysis
framework GULFSTREAM [24]. The motivation for the staging approach is that the
JavaScript application is never available in its entirety: as the user interacts with the
application, more code is sent to the browser. With the small updates of the code,
GULFSTREAM updates the results of the static analysis made for the previous version of
the code. This framework proposes an implementation of a hand-coded point-to analysis
using graph-based representation of the program.

6.2. Static analysis of sandboxing libraries

In order to protect its users from malicious JavaScript code, companies propose
the developers to use their sandboxing libraries that would restrict the capabilities of
JavaScript. As an example, FBJS was a sandboxing for Facebook, AdSafe for Yahoo!,
Google Caja and Microsoft Web Sandbox for their companies. Researchers have tried to
analyse the code of these libraries to see whether there implementation corresponds to
the guarantees these libraries should provide.

First of all, sandboxed code should not be able to access security-critical resources.
To enforce this policy Maffeis and Taly propose a language-based isolation of untrusted

27

JavaScript [41] and together with Mitchell they proposed isolating JavaScript with fil-
tering, rewriting and wrapping in [39]. This work was done for JavaScript operational
semantics defined in their earlier publication [38].

Different sanboxed codes should be isolated from each other, or more precisely “one
third-party component must not write to a heap location that the other third-party
component can read from. This policy is weaker than non-interference. It only prevents
the communication via the heap.” To enforce inter-component isolation Maffeis et al.
proposed an object capabilities model [40].

The access to some particular resources should be given, and the hosting page can
create trusted APIs for such resources. The sandboxed code should access these re-
sources only through trusted APIs. This policy also leads to API Confinement problem:
verification that sandboxed code cannot obtain a direct access to the security critical
resources. Taly et al. propose an API analysis for a version of JavaScript strict mode by
context-insensitive and flow-insensitive points-to analysis [57]. They were able to catch
several bugs in the ADsafe library.

Independently, the group of Krishnamurthi proposed another technique to analyse
JavaScript sandboxing libraries [49] and specifically address the security of ADsafe. Their
analysis is based on the type system for JavaScript where the authors encode and verify
sandboxing properties. This type system is based on the semantics of JavaScript called
Ass defined in Guha et al. earlier work [27]. The definition of security in this work is
related to ADSafe sandbox. The safety definition says: if all the embedded widgets pass
the ADsafe’s static checked JSLint, then 1) widgets cannot load new code at runtime,
or cause ADsafe to load new code on their behalf; 2) widgets cannot affect the DOM
outside of their designated subtree; 3) widgets cannot obtain direct references to DOM
nodes; and 4) multiple widgets on the same page cannot communicate. The authors
prove that if a widget is well-typed in their type system, then properties 1 and 3 are
preserved. However, it is not possible to prove property 2 with their tool, and while
verifying property 4 a bug in ADsafe library was found.

6.3. Other approaches to Mashup security

The security of web mashups is an active field of research that is strongly related to
JavaScript security. We refer interested readers to the survey on web mashups by De
Ryck et al. [16]. The recent sandbowing libraries techniques described above contribute
to this area, however, they are sometimes not practical due to the fact that static analysis
only covers a subset of JavaScript. A recent contribution to this field is due to Luo and
Rezk [37], that presented Mashic Compiler.

The mashup consists of an integrator code and the gadgets to be added. Luo and
Rezk consider the gadgets that are added by a <script> tag. In this case, the gadget
and the integrator would get assigned the same origin (according to the Same Origin
Policy) and hence, if the gadget is non-benign, it can break the security of the mashup
(for example, a gadget can redefine a function and execute arbitrary malicious code).

Given the gadgets code and and the integrating code, Mashic compiles the integrating
code in such a way that each gadget and the integrator run in their own iframe. A small
library is also added to each gadget, which are otherwise unmodified. This novel approach
allows the integrators to write secure mashups where security is achieved via the Same
Origin Policy.

28

The authors prove that the compiled code is equivalent to the original code, when the
gadgets are benign. The definition of a benign gadget is a novel notion that is defined
through a decorated semantics. It is proven that 1) the gadgets only learn what is being
sent to them by the integrator, 2) the gadgets may only interact with the integrator by
replying to its messages, therefore they cannot directly modify the heap of the integrator.

6.4. Formal models of the web browsers

Bohannon and Pierce proposed Featherweight Firefox (FF) browser model [10] that
includes many browser features such as multiple browser windows; cookies; sending
HTTP requests and receiving HT'TP responses; essential HTML elements; building doc-
ument node trees, and also the basic features of JavaScript. It is is implemented as an
executable model in OCaml, and in Coq. FF is a reactive system, with a detailed defini-
tion of the input and output events, and the internal state of the browser. Input events
can either come from the user (loading a URL in a new window load_in new_window, enter-
ing text in a text box input_text, etc.), or from the network (receiving an HT'TP response
receive). Output events can be sent to the user (web page is updated page_updated, win-
dow is opened window_opened) or to the network (sending HTTP request send). The FF
browser model defines precisely how the browser will react to these inputs by emitting
outputs. The FF model is surprisingly rich. It can represent the execution of event
handlers implemented as scripts in an html page.

Akhawe et al. [1] proposed a novel way to formally analyze security on the web plat-
form. It is implemented a subset in Alloy and supports the features like browsers with
script contexts per origin, DNS, HTTP requests and responses, redirects, etc. Alloy
implementation allows to translate the declarative object-modeling syntax into proposi-
tional input to a SAT solver. The SAT solver then finds the counterexample (interactions
between the site and the browser) that violates the specified security goal. Using this im-
plementation Akhawe et al. were able to find two known vulnerabilities for Origin header
and Cross-Origin Resource Sharing and three new vulnerabilities for Referer Validation,
HTMLS5 forms and WebAuth.

7. Conclusions

JavaScript security is a new area of research that grows rapidly. The first paper on dy-
namic techniques for JavaScript security appeared in 2005 [28], and the first information
flow control for JavaScript was proposed in 2007 [61]. Because of the youth of this field,
the number of contributions is relatively small, however many impressive solutions have
been proposed so far and their number increased in the last couple of years. We foresee
even more techniques for JavaScript security coming in the future, especially with the
acceptance of HTML5 standard and new standard of JavaScript language EcmaScript-6.

In this survey we proposed a detailed comparison of the existing techniques for
JavaScript security, that are based on runtime monitoring or information flow control.
Both techniques first appeared as a reaction to the Cross-Site-Scripting (XSS) attacks,
trying to monitor the behaviour of JavaScript programs and reveal the malicious ones.
However, since for the moment of writing this paper, researchers did not come up with
the definition of XSS [70], these solutions do not solve completely the XSS problem,
however they still provide very good theoretical and practical results.

29

The security enforcement mechanisms we describe in this survey were proposed both
by researchers and industry. Therefore, not all of the approaches were easily fit into the
theoretical framework of runtime monitors and information flow control. Moreover, we
have been rigorously analysing formal properties of the mechanisms and implementation
strategies. Tables 3 and 4 and corresponding sections present our findings. Since these
mechanisms were implemented for different versions of the web browsers and in different
ways (often as a browser extension or as a modification of a JavaScript engine), it is very
hard to compare their effectiveness and practicality. For more practical discussion on
JavaScript security mechanisms, we invite the future authors to accurately compare their
novel enforcement mechanisms with the existing ones by 1) following our schema: security
policies enforced, formal guarantees provided, implementation strategy; 2) comparing
implementation characteristics, such as runtime overhead, and, importantly, evaluation
on how well the proposed techniques will work with the current websites.

Acknowledgements

We thank Tamara Rezk, Alan Shmitt, Frédéric Besson and Thomas Jensen for their
valuable suggestions and feedback. We would also like to thank the anonymous referees
for comments that have helped improve the paper.

References

[1] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D., 2010. Towards a formal foundation of
web security, in: Proceedings of the 23rd Computer Security Foundations Symposium (CSF’10),
pp. 290-304.

[2] Alexa.com, . Alexa top websites. Available at http://www.alexa.com/topsites.

[3] Austin, T., . Zaphod add-on for the firefox browser. Available at https://addons.mozilla.org/

en-us/firefox/addon/zaphod/.

Austin, T.H., Flanagan, C., 2009. Efficient purely-dynamic information flow analysis, in: Proceed-

ings of the 2009 workshop on Programming Language and analysis for security, pp. 113—-124.

[5] Austin, T.H., Flanagan, C., 2010. Permissive dynamic information flow analysis, in: Proceedings of

the 2010 workshop on Programming Language and analysis for security, ACM Press. pp. 3:1-3:12.

Austin, T.H., Flanagan, C., 2012. Multiple facets for dynamic information flow, in: Proceedings

of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM

Press. pp. 165-178.

[7] Baron, D., April 2010. Preventing attacks on a user’s history through css :visited selectors. Online:
http://dbaron.org/mozilla/visited-privacy.

[8] Bauer, L., Ligatti, J., Walker, D., 2005. Edit automata: Enforcement mechanisms for run-time

security policies. International Journal of Information Security 4, 2-16.

Bielova, N., Devriese, D., Massacci, F., Piessens, F., 2011. Reactive non-interference for a browser

model, in: Proceedings of the 5th International Conference on Network and System Security (NSS

2011), IEEE Computer Society Press. pp. 97-104.

[10] Bohannon, A., Pierce, B.C., 2010. Featherweight firefox: Formalizing the core of a web browser,
in: Proceedings of the USENIX Conference on Web Application Development 2010.

[11] Chugh, R., Meister, J., Jhala, R., Lerner, S., 2009. Staged information flow for Javascript, in:
Proceedings of the ACM SIGPLAN 2009 Conference on Programming Language Design and Im-
plementation, ACM Press. pp. 50-62.

[12] iD-d;Phung, P., Sands, D., Chudnov, A., 2009. Lightweight self-protecting javascript, in: Proceed-
ings of ACM Symposium on Information, Computer and Communications Security (ASIACCS’09),
ACM Press. pp. 47-60.

[13] De Groef, W., 2010. Conscript for firefox - developer report. Abvailable at http://www.cqrit.be/
conscript/report/conscript.pdf.

4

6

9

30

(14]

(15]

[16]

(17]
(18]
(19]

[20]
21]

(22]
(23]

[24]

25]

(26]
27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F., 2012. Flowfox: a web browser with
flexible and precise information flow control, in: Proceedings of the 19th ACM Conference on
Communications and Computer Security (CCS’12), ACM Press. pp. 748-759.

De Groef, W., Devriese, D., Piessens, F., 2012. Better security and privacy for web browsers: A
survey of techniques, and a new implementation, in: Proceedings of the 8th International Workshop
on Formal Aspects in Security and Trust, Springer-Verlag. pp. 21-38.

De Ryck, P., Decat, M., Desmet, L., Piessens, F., Joosen, W., 2010. Security of web mashups:
a survey, in: Proceedings of The 15th Nordic Conference in Secure IT Systems (NordSec’10),
Springer-Verlag. pp. 223—-238.

De Ryck, P., Desmet, L., Philippaerts, P., Piessens, F., 2011. A security analysis of next generation
web standards. Technical Report. European Network and Information Security Agency (ENISA).

Denning, D.E., Denning, P.J., 1977. Certification of programs for secure information flow. Com-
munications of the ACM 20, 504-513.

Devriese, D., Piessens, F., 2010. Non-interference through secure multi-execution, in: Proceedings
of the 2010 IEEE Symposium on Security and Privacy, IEEE Computer Society Press. pp. 109-124.
Eich, B., . Narcissus-js implemented in js. Available on https://github.com/mozilla/narcissus.
Elrad, T., Filman, R.E., Bader, A., 2001. Aspect-oriented programming - introduction. Communi-
cations of the ACM 44, 29-32.

Falcone, Y., 2010. You should better enforce than verify, in: Proceedings of the 9th International
Workshop on Runtime Verification (RV’10), Springer-Verlag Heidelberg. pp. 89-105.

Flanagan, D., 2011. JavaScript: The Definitive Guide. O’Reilly Media. 6 edition. Print ISBN:978-
0-596-80552-4, ISBN 10: 0-596-80552-7, Ebook ISBN:978-1-4493-0212-2, ISBN 10: 1-4493-0212-2.

Guarnieri, S., Livshits, B., 2010. Gulfstream: staged static analysis for streaming javascript appli-
cations, in: Proceedings of the USENIX Conference on Web Application Development 2010, Usenix
Association. pp. 6—6.

Guarnieri, S., Livshits, V.B., 2009. Gatekeeper: Mostly static enforcement of security and reliability
policies for javascript code, in: Proceedings of the 18th USENIX Security Symposium (USENIX
Security’09), Usenix Association. pp. 151-168.

Guernic, G.L., 2007. Confidentiality Enforcement Using Dynamic Information Flow Analyses. Ph.D.
thesis. Kansas State University.

Guha, A., Saftoiu, C., Krishnamurthi, S., 2010. The essence of javascript, in: Proceedings of the
24rd European Conference on Object-Oriented Programming, pp. 126—-150.

Hallaraker, O., Vigna, G., 2005. Detecting malicious javascript code in mozilla, in: Proceed-
ings of the 10th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’05), pp. 85 — 94.

Hedin, D., Sabelfeld, A., 2012. Information-flow security for a core of javascript, in: Proceedings of
the 25rd Computer Security Foundations Symposium (CSF’12), IEEE Press. pp. 3-18.

Hunt, S., Sands, D., 2006. On flow-sensitive security types, in: Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, New York, NY,
USA. pp. 79-90.

Janc, A., Olejnik, L., 2010. Feasibility and real-world implications of web browser history detection,
in: Proceedings of WEB 2.0 Security and Privacy 2010 Workshop.

Jang, D., Jhala, R., Lerner, S., Shacham, H., 2010. An empirical study of privacy-violating in-
formation flows in javascript web applications, in: Proceedings of the 17th ACM Conference on
Communications and Computer Security (CCS’10), ACM Press. pp. 270-283.

Johns, M., 2008. On javascript malware and related threats. Journal in Computer Virology 4,
161-178.

Kikuchi, H., Yu, D., Chander, A., Inamura, H., Serikov, 1., 2008. Javascript instrumentation in
practice, in: The Sixth ASIAN Symposium on Programming Languages and Systems, Springer-
Verlag. pp. 326-341.

Li, Z., Zhang, K., Wang, X., 2010. Mash-IF : Practical Information-Flow Control within Client-side
Mashups, in: Proceedings of the 40th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2010), IEEE Press. pp. 251-260.

Ligatti, J., Bauer, L., Walker, D., 2009. Run-time enforcement of nonsafety policies. ACM Trans-
actions on Information and System Security 12, 1-41.

Luo, Z., Rezk, T., 2012. Mashic compiler: Mashup sandboxing based on inter-frame communication,
in: IEEE (Ed.), Proceedings of 25th IEEE Computer Security Foundations Symposium, Cambridge,
MA, USA. pp. 157-170.

Maffeis, S., Mitchell, J., Taly, A., 2008. An operational semantics for JavaScript, in: The Sixth

31

(39]

(40]

[41]
42]
(43]

[44]

[45]
[46]

[47]

(48]

(49]

[50]

[51]

52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

ASIAN Symposium on Programming Languages and Systems, Springer-Verlag. pp. 307-325. See
also: Dep. of Computing, Imperial College London, Technical Report DTR08-13, 2008.

Maffeis, S., Mitchell, J., Taly, A., 2009. Isolating javascript with filters, rewriting, and wrappers, in:
Proceedings of the 14th European Symposium on Research in Computer Security, Lecture Notes in
Computer Science. pp. 505-522.

Maffeis, S., Mitchell, J.C., Taly, A., 2010. Object capabilities and isolation of untrusted web appli-
cations, in: Proceedings of the 2010 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press. pp. 125-140.

Maffeis, S., Taly, A., 2009. Language-based isolation of untrusted javascript., in: Proceedings of the
2009 IEEE Computer Security Foundations Symposium, IEEE Computer Society Press. pp. 77-91.
ietf-http-wg mailinglist, 1995-03-09. Re: Referer: (sic). In reply to Roy Fielding, http://lists.
w3.org/Archives/Public/ietf-http-wg-01d/1995JanApr/0109.html.

Mayer, J.R., Mitchell, J.C., 2012. Third-party web tracking: Policy and technology, in: Proceedings
of the 2012 IEEE Symposium on Security and Privacy, IEEE Computer Society Press. pp. 413—427.
Meyerovich, L., Livshits, B., 2010. ConScript: Specifying and enforcing fine-grained security policies
for Javascript in the browser, in: Proceedings of the 2010 IEEE Symposium on Security and Privacy,
IEEE Computer Society Press. pp. 481-496.

Microsoft, . Mitigating cross-site scripting with HTTP-only cookies.

Nikiforakis, N., Invernizzi, L., Kapravelos, A., Acker, S.V., Joosen, W., Kruegel, C., Piessens, F.,
Vigna, G., 2012a. You are what you include: Large-scale evaluation of remote javascript inclusions,
in: Proceedings of the 19th ACM Conference on Communications and Computer Security (CCS’12),
ACM Press. pp. 736-747.

Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W., 2011. Sessionshield: Lightweight
protection against session hijacking., in: Proceedings of the International Symposium on Engineer-
ing Secure Software and Systems 2011, Springer-Verlag. pp. 87—100.

Nikiforakis, N., Van Acker, S., Piessens, F., Joosen, W., 2012b. Exploring the ecosystem of referrer-
anonymizing services, in: Proceedings of the 2012 Privacy Enhancing Technologies Symposium,
Springer-Verlag. pp. 259-278.

Politz, J.G., Eliopoulos, S.A., Guha, A., Krishnamurthi, S., 2011. Adsafety: Type-based verification
of javascript sandboxing, in: Proceedings of the 20th USENIX Security Symposium (USENIX
Security’11), Usenix Association.

Roesner, F., Kohno, T., Wetherall, D., 2012. Detecting and defending against third-party tracking
on the web, in: Proceedings of The 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’12).

Russo, A., Sabelfeld, A., 2010. Dynamic vs. static flow-sensitive security analysis, in: Proceedings
of the 23rd Computer Security Foundations Symposium (CSF’10), IEEE Computer Society Press,
Washington, DC, USA. pp. 186-199.

Russo, A., Sabelfeld, A., Chudnov, A., 2009. Tracking information flow in dynamic tree structures,
in: Proceedings of the 14th European Symposium on Research in Computer Security, Springer-
Verlag. pp. 86—103.

Sabelfeld, A., Myers, A.C., 2003. Language-based information-flow security. IEEE Journal on
Selected Areas in Communication 21, 5-19.

Sabelfeld, A., Russo, A., 2009. From dynamic to static and back: riding the roller coaster of
information-flow control research, in: Proceedings of the 7th international Andrei Ershov Memorial
conference on Perspectives of Systems Informatics (PSI’09), Springer-Verlag, Berlin, Heidelberg.
pp. 352-365.

Schneider, F., 2000. Enforceable security policies. ACM Transactions on Information and System
Security 3, 30-50.

Singh, K., Moshchuk, A., Wang, H.J., Lee, W., 2010. On the incoherencies in web browser access
control policies, in: Proceedings of the 2010 IEEE Symposium on Security and Privacy, IEEE
Computer Society Press. pp. 463-478.

Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J., 2011. Automated analysis of
security-critical javascript apis, in: Proceedings of the 2011 IEEE Symposium on Security and
Privacy, IEEE Computer Society Press. pp. 363-378.

Tang, S., Dautenhahn, N., King, S.T., 2011. Fortifying web-based applications automatically, in:
Proceedings of the 18th ACM Conference on Communications and Computer Security (CCS’11),
ACM Press. pp. 615-626.

Ter Louw, M., Ganesh, K., Venkatakrishnan, V., 2010. AdJail : Practical enforcement of confiden-
tiality and integrity policies on web advertisements, in: Proceedings of the 19th USENIX Security

32

[60]

[61]

[62]
[63]
[64]
[65]
[66]
[67]

(68]

[69]
[70]

(71]

[72]
[73]

(74]

Symposium (USENIX Security’10), Usenix Association. pp. 371-388.

Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W., 2011. Webjail: Least-privilege
integration of third-party components in web mashups, in: Proceedings of 27th Annual Computer
Security Applications Conference, ACM New York. pp. 307-316.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G., 2007. Cross-site scripting
prevention with dynamic data tainting and static analysis, in: Proceedings of the Symposium on
Network and Distributed System Security (NDSS’07), The Internet Sociery.

Volpano, D., Smith, G., Irvine, C., 1996. A sound type system for secure flow analysis. Journal of
Computer Security 4, 167—187.

W3C, a. Content security policy 1.1. W3C Editor’s Draft 02 August 2012. Online: http://dvcs.
w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html.

W3C, b. XMLHttpRequest Level 2. W3C Working Draft. Retreived on 2012-02-20 at http:
//www.w3.org/TR/XMLHttpRequest/.

W3C, 24 May 2012. Indexed database API. W3C working draft. http://www.w3.org/TR/
IndexedDB/.

W3C, 29 March 2012. A vocabulary and associated apis for html and xhtml. Online: http:
//dev.w3.org/html5/spec/single-page.html#history.

W3C, May 2012. Geolocation api specification. Available at http://dev.w3.org/geo/api/
spec-source.html.

Whaley, J., Avots, D., Carbin, M., Lam, M.S., 2005. Using datalog with binary decision dia-
grams for program analysis, in: The ASTAN Symposium on Programming Languages and Systems
(APLAS’05), Springer. pp. 97-118.

WHATWG, . HTML Living Standard. Web Storage. Last Updated 29 June 2012. http://www.
whatwg.org/specs/web-apps/current-work/multipage/webstorage.html\#webstorage.

Wilander, J., 2012. Is XSS solved? Available at http://appsandsecurity.blogspot.fr/2012/11/
is-xss-solved.html.

Yu, D., Chander, A., Islam, N., Serikov, 1., 2007. Javascript instrumentation for browser security,
in: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM Press. pp. 237-249.

Zalewski, M., 2011a. Browser security handbook part 1-3. Online: http://code.google.com/p/
browsersec/wiki/Main.

Zalewski, M., 2011b. The Tangled Web: A Guide to Securing Modern Web Applications. ISBN
9781593273880.

Zdancewic, S., 2003. A type system for robust declassification. Electronic Notes in Theoretical
Computer Science 83.

33

