
STRUCTURE OF THE MUL TICS SUPERVISOR

V. A. Vyssotsky
Bell Telephone Laboratories, Incorporated

Murray Hill, New Jersey
and

F. J. Corbat6, R. M. Graham
Massachusetts Institute oj Technology

Cambridge, Massachusetts

INTRODUCTION

This paper is a preliminary report on a system
which has not yet been implemented. Of necessity,
it therefore reports on status and objectives rather
than on performance. We are impelled to produce
such a prospectus by two considerations. First,
time-sharing and multiprogramming are currently of
great interest to many groups in the computing fra
ternity; a number of time-sharing systems are now
beinE; developed. Discussion of the issues and pres
entation of goals and techniques is valuable only if
it is timely, and the appropriate time is now. Sec
ond, every large project undergoes a subtle altera
tion of goals as it proceeds, extending its aims in
some areas, retracting them in others. We believe it
wiN prove valuable to us and others to have on rec
ord our intentions of 1965, so that in 1966 and
1967 an unambiguous evaluation of our successes
and failures can be made.

The scope of this paper is an operating system in
the strict sense. It is only slightly concerned with
the hardware of the GE 645, for which the system

203

is now being implemented. It is equally little con
cerned with the translators and utility programs
which make the system useful for computing. Fur
thermore, this paper pays little attention to the file
system, which is the largest single component of the
operating system, including well over half of the
total code. A separate paper is devoted to the file
system.

Much of the content of this paper is statements
of mechanisms or techniques for achieving particu
lar goals. In very few cases do we discuss proposed
alternative methods, or our reasons for choosing
particular methods. Such discussion would require
an extended treatise; such a treatise might be use
ful, but it does not exist, and is not likely to. We
hope to produce fragments of it in the future. In
every case, our choice of method is based on one or
more of four criteria. First, some of the mecha
nisms were adopted from previous systems because
they proved satisfactory there. Second, alternative
solutions to some of the problems were tried on
previous systems and found unsatisfactory. Third,
in some cases the merits and defects of alternative

From the collection of the Computer History Museum (www.computerhistory.org)

204 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE. 1965

methods have been vigorously debated and sub
jected to gedanken experiments; the chosen method
was that which appeared most satisfactory (or least
unsatisfactory). Finally, many approaches were cho
sen because they are evidently workable and are
well aligned with the overall approach advocated by
our firmly opinionated planning group. The strongest
opinion of our planning group is that consistency is
a virtue, and that general solutions are better than
particular ones.

VIEWPOINTS AND OBJECTIVES

We view an operating system as an evolving en
tity. Every operating system with which we have
been associated has been greatly modified during its
useful life. Therefore, we view the initial version of
MuItics not as a finished product to be cast in con
crete, but as a prototype to be extended in the fu
ture. In two ways this is an unhappy conclusion.
Users (except those users who benefit substantially
from a particular change) tend to resent bitterly
any fluidity in the tools with which they must work.
System programmers become satiated with rework
ing programs which they would like to forget. How
ever, the one thing which most users resent more
than a fluid system is a frozen system inadequate to
the users' expanding needs. So the system must
evolve.

Therefore, one of the primary objectives of Mul
tics is that it shall include any features that we can
clearly discern to be useful in allowing future
changes or extensions to be made with minimum
effort and minimum disruption of existing applica
tions. The initial cost of including such features is
suJstantial. We believe from past experience that
the initial cost will be more than repaid in reduced
future cost of reworking both the operating system
and the application programs that use the system.

We view the operating system as having an ill
defined boundary. The software field is replete with
examples of user installations or individual applica
tion programmers using a cutting torch and jack
hammer to break into a neatly defined software
package. The effort involved in many such cases is
so large as to constitute prima facie evidence that
the job was not done for frivolous reasons.

Therefore, Multics is designed to be a single-level
system. Most modules of the operating system
itself are indistinguishable from user programs, ex
cept that they are guarded against unintended or ill
advised changes by protective locks administered by

the user installation. Changes to the operating sys
tem can therefore be made by the same techniques
as are used to change user programs. A programmer
who wishes to change a module of the operating
system must be authorized to do so. He does not,
however, need a large "system edit" program, since
the format and conventions of operating system mod
ules are the same as those of user programs.

We view a large open-shop computer facility as a
utility like a power company or water company.
This view is independent of the existence or non
existence of remote consoles. The implications of
such a view are several. A utility must be dependa
ble, more dependable than existing hardware of
commercial general-purpose computers. A utility, by
its nature, must provide service on demand, without
advance notice in most cases. A utility must pro
vide small amounts of service to small users, large
amounts to large users, within very wide limits. A
utility must not meddle in its customers' business,
except by their request. A utility charges for its ser
vices on some basis closely related to amount of
service rendered. A utility must provide its product
to customers more cheaply or more conveniently
than they could supply it for themselves. Most im
portant of all, a utility must provide service to
customers who neither know nor wish to know the
detailed technology employed by the utility in pro
viding the service.

All of these considerations save played a role in
the design of Multics. The file system contains
elaborate automatic backup and restart facilities to
make the dependability of information storage
within the system greater than the dependability of
the media on which the information is recorded.
The operating system is designed to be dynamically
adjustable to compensate for temporary loss of one
or more hardware modules. Multics is designed to
provide service without batching or prescheduling,
although prescheduling facilities will be provided
for runs whose size and urgency dictates such treat
ment. Multics employs allocation and scheduling
algorithms intended to allow small and large jobs to
flow through the machine together, without dif
ferentiation' with any special priorities supplied by
human beings on the basis of urgency of jobs (or
categories of jobs), rather than built-in priorities
based on size or type of job. An explicit criterion
of MuItics is that computation center personnel
shall not be required to take cognizance of, or per
form any action whatsoever for, a routine job which

From the collection of the Computer History Museum (www.computerhistory.org)

STRUCTURE OF THE MUL TICS SUPERVISOR 205

does not demand unusual facilities. Multics is in
tended to accommodate within it standard (but re
placable) charging and accounting routines. Multics
will accommodate a variety of input-output termi
nats, ranging from Teletypes to line printers to lab
oratory measuring equipment for the convenience of
its users. The scheduling and allocation algorithms
are intended to run the installation with low house
keeping overhead, especially when the load is
heavy.

The most important consideration is the one
which Multics seems least likely to meet to the sat
isfaction of its designers. Most of the ultimate users
of a large-scale computer have no interest what
soever in computers or computer programming, let
alone the details of particutar machines, program
ming language and operating systems. They have
problems to which they wish answers, or data they
wish transformed or summarized in some particular
way. No computer shop can be considered to func
tion satisfactorily as a utility unless the users can
get results without having to formulate the prob
lems in an alien notation. In other words, the
system should be sympathetic to its users. Multics
provides no direct assistance toward this goal, and
little indirect assistance. Neither can any amount of
evolution of algebraic languages offer much assist
ance, since they are still programming languages
closely reflecting the structure of a digital com
puter, and most users are not interested in program
ming computers in the first place. Progress in this
area will require extensive effort in analysis of par
ticular application fields, and development of spe
cialized program packages relevant to the specialized
needs of the application fields. The only assistance
Multics provides is a framework within which a
user can conveniently interact with such a spe
cialized package if it exists, and a measure of isola
tion from detailed hardware eccentricities which
should very substantially ease the life of program
mers developing such packages.

We consider privacy of user information to be
vitally important. In many applications it is essen
tial that all authorized personnel, and no unauthor
ized personnel, should have easy access to programs
and data. Multics provides, in its hierarchial file
structure and its protection mechanisms, very sub
stantial aids to privacy. These aids, when intelli
gently used, should provide virtual certainty that
unintentional privacy violations will not occur, and
should provide excellent protection against inten-

tional, ill-advised, but unmalicious attempts to ac
cess or modify private information without permis
sion. Multics does not safeguard against sustained
and intelligently conceived espionage, and it is not
intended to.

ADMISSIBLE HARDWARE CONFIGURATIONS

The minimum hardware configuration with which
645 Multics can run is one 645 CPU, 64K of
core memory, one high-speed drum or one disc
unit, four tape units, and eight typewriter consoles.
However, Multics will not run efficiently on this
minimum configuration, and would normally be op
erated thus only when a substantial part of a larger
configuration was unavailable for" some reason.

A small but useful hardware complements woutd
be 2 CPU units, 128K of core, 4 million words of
high speed drum, 16 million words of disc, 8 tapes,
2 card readers, 2 line printers, 1 card punch and 30
consoles.

The initial implementation of 645 Multics soft
ware is designed to support a maximum configura
tion of up to 8 CPU's, up to 16 million words of
core, up to 2 high speed drums, up to 300 million
words of disc and disc-like devices, up to 32 tapes,
up to 8 card readers, 8 punches, 16 printers, and up
to 1000 or more typewriter consoles. It wilt not, of
course operate efficiently (or in some cases at all)
with an arbitrary and unbalanced mixture of these.
For instance, 645 Multics would not run well with
6 CPU's and 128K words of core.

TECHNICAL POLICY FOR WRITING
SOFTWARE

As stated earlier, Multics is intended to be a sin
gle level system, and an evolving system. In spite of
evolutionary tendencies, 645 Multics must be a use
ful product and it is to be in operational use in
1966. These factors combine to motivate a smal'l
but crucial body of technical policy for system pro
gramming. This technical policy differs from stand
ards of good practice in that technical policy is
mandatory and enforced upon system programmers
working on 645 Multics, and requests for excep
tions are skeptically reviewed by project supervi
sion.

Absolute mode (execution without relocation of
addresses) is used only

From the collection of the Computer History Museum (www.computerhistory.org)

206 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

a) for the first two instructions of each trap
answering routine

b) for startup of a cold machine
c) for the initial stages of catastrophe recovery

(e. g., recovery from a trouble fault), and
d) for appropriate product service routines

(hardware test and diagnostic routines).

Master mode (execution with unrestricted access
to privileged hardware features) is used only

a) for absolute mode execution
b) to exercise privileged hardware features
c) where temporary disabling of all interrupts

is required, and
d) for appropriate product service routines.

Code which is written in master mode be
cause its purpose is to exercise privileged
hardware features will be written as stand
ard subroutines. Each such subroutine may
perform only one function (e.g., issue an
I/O select). Each such subroutine will check
the validity of the call.

All operating system data layouts for the initial
implementation of 645 Multics wilt be compatible
with data layouts used by PL/I, except where hard
ware constraints dictate otherwise. All modules of
the initial implementation of the operating system
will be written in PL/I, except where hardware
constraints make it impossible to express the func
tion of the module in the PL/I language.

All procedures and data will be usable paged to
64 words, paged to 1024 words, or unpaged, except
for vectors and. data blocks which are inherently un
paged because of direct hardware access to them.

Since the PL/I translator which will be used un
til mid-1966 generates inefficient object code, it is
clear that 645 Multics in its first few months of
existence will be inefficient. This penalty is being
paid deliberately. After mid-1966, two courses of
action will be available: upgrade the compiler to
compile more efficient code, or recode selected mod
ules by hand in machine language. We expect that
both strategies will be employed, but we expect to
place preponderant emphasis on upgrading the PL/I
compiler; indeed, one subsequent version of PL/I is
already being implemented, and a second is being
designed.

PROCESSES

In Multics the activities of the system are di
vided into processes. The noJion of process is intui
tive, and therefore slightly ifuprecise. To convey the
notion we shall talk around it a bit, and then give a
reasonably exact definition.

When a signal from the external world (e.g., a
timer runout signal) arrives, and a CPU interrupt
occurs, what is being interrupted? Presumably a
"run." Observe that if a program is defined in the
usual way as a procedure plus data, there is no
meaning to the phrase "interrupt a program," if it
is taken literally. What is interrupted is the execu
tion of a program. In a time-sharing system this
distinction becomes so important, and ignoring the
distinction is so pernicious, that we shall use the
word "process" to denote the execution of a pro
gram, and reserve the word "program" to denote
the pattern of bits (or characters) which the hard
ware decodes.

In most cases a process corresponds to a job, or
run; it is a sequence of actions. Consider for exam
ple the sequence of action: build a source program,
compile it, execute it and the programs it requires,
produce output files including postmortem informa
tion and accounting data. This sequence of actions
would typically be a single process in Multics.

If the notion of process is to be useful, it must be
possible, given some action, to determine to which
process it pertains; that is, it must be possible to
distinguish unambiguously between processes. In
645 Multics we base our distinction on descriptor
segments. At any given moment a 645 CPU is using
one and only one segment as the descriptor seg
ment. At different times the CPU may use various
different descriptor segments. We define a process
to be all those actions performed by a CPU with
some given segment as descriptor segment, from the
first time that segment becomes the descriptor seg
ment until the last time the segment ceases to be
the descriptor segment. Thus a process has a very
definite beginning; if it ends, it has an equally defi
nite end.

For each process there is in addition to the de
scriptor segment a stack segment, for the user's pro
grams and most supervisory routines, and a con
cealed stack segment, used by some supervisory
routines to hold information such as charging data,
which must be safeguarded against garden variety
user program errors. There are also any other seg-

From the collection of the Computer History Museum (www.computerhistory.org)

STRUCTURE OF THE MUL TICS SUPERVISOR 207

ments (including supervisory segments) which are
required by the process. For each process there will
typically be many segments, containing the user and
supervisor programs and data, but most of the seg
ments will be attached to the process only as they
are dynamical'ly required.

Since we have already observed that almost no
procedures will run in absolute mode, and since the
operational definition of process places all master
mode and slave mode execution firmly in some proc
ess, it follows that almost all CPU activity occurs
as part of some process. Most processes will be ini
tiated by customers and charged to customers. Some
processes will be initiated by the installation apd
charged to overhead. An example is a process which
purges a disc unit.

STATUS OF A PROCESS

Any process that exists in 645 Multics is either
running, ready, or blocked. A process is running if
its descriptor segment is currently being used as the
descriptor segment for some CPU. A process is
ready if it is not running but is not held up await
ing any event in the external world or in another
process. A process is blocked if it is awaiting an
event in the external world or in another process
(e.g., arrival of input data, or completion of output,
or 3 PM, or retrieval of a page frQm drum, or re
lease of a data file by another process).

SEGMENTATION, PAGING AND
ADDRESSABLE STORAGE

A general principle in Multics is that programs
are written to reference locations in addressable
storage, rather than locations in core. An address
consists of a segment number and word number.
The address of an item is clearly important to the
program, and possibly to the programmer. There
fore, in Multics the division of programs and data
into segments, and the sizes, names and types of the
segments, are controlled (explicitly or implicitly)
by customers and customer processes.

Paging, on the other hand, is considered in Mul
tics to be the responsibility of the operating system.
The view of the designers of Multics is that pro
vided the customer gets his answers when he wants at
the price he expects to pay and agrees to pay, it is
none of his business where in core his programs
and data resided-nor, indeed, whether they were

in core at all. The 645 hardware was designed with
this philosophy, and the software is built to imple
ment this approach.

However, in some real-time applications it is
demonstrable that the application cannot be cor
rectly implemented unless certain programs and data
are in core when external signals arrive. In some
other applications reasonable efficiency may be at
tainable only if the user program can specify expli
citly what should be in core at which stages of exe
cution. Therefore, calls to the paging routines are
provided for specifying:

a) that certain procedures and data must be
"bolted to core" in order for the applica
tion to run,

b) that certain material is going to be accessed
soon, and should be brought into core if
possible,

c) that certain material will not be accessed
again, and may be removed from core.

It is expected that few application programs will
need to make use of such calls.

The paging routines will normally operate with
only three sources of input information.

The pager will know when a page must be
brought into core by the fact that a page-not-in-core
fault occurs. It will know which pages are candi
dates to be removed from core by a usage measure
it derives from the "used" bit of each page table
entry, and by a specification in the core map of
whether the page is accessed other than through a
page table (e.g., a page which is itself a page table,
and therefore is referenced directly by CPU hard
ware). The· pager will also know from specifica
tions in the core map which pages may not be re
moved from core at all (e.g., because they are cur
rently attached to peripheral devices).

A program such as the linker will deal with ad
dressable storage, and will not consider the place of
physical residence of any procedure or data block in
establishing a linkage. If the linker happens to ac
cess information which is not in core, the pager will
be invoked by a page-not-in-core fault, the process
in which the linker was working will be blocked un
til the page arrives, and will then be ready to re
sume.

SEGMENTS AND FILES

In 645 Multics, every segment is a file, and every
file is a segment. A reference to one of these ob-

From the collection of the Computer History Museum (www.computerhistory.org)

208 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

jects, however, may be made in two distinct ways:
by segment referencing and by file referencing. Seg
ment referencing is, by definition, referencing by
means of a 2-component numerical address, each
component consisting of 18 bits, of which the first
component specifies a word number in the descrip
tor segment and the second specifies a word number
in the referenced segment. File referencing is any
thing else. Every file is a segment to some proce
dure in some process at some time. Any file ref
erence which results in retrieval or modification of
any part of the contents of a file (except retrieval,
replacement or deletion of the entire file) is a call
to a procedure which references the file by segment
referencing. Thus, the question of whether a data
object is a segment or a file is a question about the
viewpoint from which some particular procedure
sees the file.

Segments (files) come in two varieties: bounded
segments and unbounded segments. A bounded seg
ment is a segment which is guaranteed to consist of
218 words or less. An unbounded segment may have
any number of words (e.g., 27), but is notguaran
teed to have no more than 218• You have to look at
it to find out. Segment referencing using the ap
pending hardware can only be done directly for
bounded segments. To each unbounded segment
there may be associated a bounded segment called a
"window"; the origin of the window segment may
be set, by a supervisor call, to any 1024 word bound
ary in the unbounded segment. More than one
window segment may be attached to a single un
bounded segment, if desired, and the windows may
be adjusted independently. In principle, the size of
an unbounded segment could be arbitrarily large.
However, the software of 645 Multics will limit the
size of unbounded segments to 228 words, and in
some installations storage limitations will hold the
maximum segment size even below 228 words.

PERIPHERAL DEVICES AND FILES

In 645 Multics, one of the kinds of file given
special recognition will be the serial file. In 645
Multics, unit record equipment and typewriter-like
consoles will be treated as serial files of restricted
capabilities. User programs will be able to know
that such hardware units are not serial fites, but it
will not normally be advantageous to make use of
that fact, and to use such knowledge may severely
restrict the applicability of a program. If a program

handling a peripheral device as a serial file attempts
1\ to perform an illegal primitive (e.g., rewind a card
. reader), then either

a) the effect on all ensuing processing will be
as if the primitive had been performed suc
cessfully (e.g., the input file copied from the
card reader will be rewound) or

b) a diagnostic wil occur (e.g., skip to the end
of file on typewriter input).

The effect of treating peripheral devices as serial
files is to make it possible for many programs to
run either with a typewriter console as a peripheral
device or with the console replaced by files on sec
ondary storage.

SCHEDULING

In Multics the system is regarded as having a
pool of anonymous CPU's; scheduling and dispatch
ing procedures are executed by each CPU when it
must determine what to do next. The only result
with any operational meaning that can ensue from
scheduling and dispatching in Multics is that CPU
number n resumes process p at time t . Further
more that process must have been in ready status.

We shall state here some fundamental assump
tions concerning scheduling which appear evident
to us, but some of which are not universally accept
ed. The goal of scheduling in an open-shop general
purpose computer system is to give good service to
customes at reasonable cost. When the offered load
is greater than system capacity, it is impossible to
give good service to all those who desire it. There
fore, on an overloaded system, scheduling should be
done so as to minimize overhead and to complete
the most urgent work first. Two basic techniques
for minimizing overhead are to employ service
denial rather than service degradation, and to mini
mize the number of times control is switched from
one process to another. That is, it is more efficient
to serve a few users at a time and do it well than it
is to serve all users poorly at once. A job is urgent,
in the last analysis, because it is costing someone
time and/or money not to have the results. The ur
gency of a job is only slightly correlated, if at all,
with the extent of its demands on such system re
sources as CPU time, core storage, secondary stor
age, and peripheral facilities. Hence, urgency of
work must be determined by human beings, not by
the computer.

From the collection of the Computer History Museum (www.computerhistory.org)

STRUCTURE OF THE MUL TICS SUPERVISOR 209

If offered load is less than system capacity, it is
possible in principle to give good service to all who
desire it. It may not be possible, however, to
achieve satisfactory service for all and still keep the
percentage of overhead low. A moderate increase in
overhead on a lightly loaded system is acceptable if
the increase permits improved service.

Switching between processes is mandatory when
a given process becomes blocked. Switching is done
at other times to meet explicit or implied service
guarantees. For example, placing a typewriter in a
customer's office implies a guarantee that response
times to simple requests will usually be short.
Therefore, frequent switching between processes
makes excellent sense when offered load is light,
although not when offered load is heavy.

Offered load will rarely be well-matched to sys
tem capacity. Any general-purpose open shop com
puting installation where offered load is at the same
approximate level at .3 a.m. Sunday and 3 p.m.
Wednesday is either employing load flattening
measures outside the computing shop (e.g., by hu
man prescheduling) or is so heavily overloaded that
offered load is almost always above system capaci
ty, and service denial is the rule of the shop.

We believe that a general-purpose open-shop
computing facility which is never (or almost never)
overloaded is spending too much money for com
puting hardware. It is cheaper to accept occasional
overloads. Further, we believe that any scheduling
technique for a time-shared multiprogrammed com
puter system which behaves satisfactorily during
overload will require at most a very slight modifi
cation to behave well under light load.

Hence, we contemplate an environment in which
offered load is almost always either substantially
above or substantially below system capacity. We
believe that scheduling algorithms should be de
signed with good performance during overload as
the primary objective, and good performance when
load is light as a criterion to be met within the frame
work imposed by the overload design. The scheduler
should get information concerning urgency of jobs
from human beings, and should not have any built-in
assumptions that console jobs are either more or
less urgent than absentee jobs, or that short runs
are either more or less urgent than long runs.

Unfortunately, in a multiprogrammed time-shar
ing system with dynamic storage allocation neither
the machine nor human beings can determine di
rectly how large the offered load is. How, for exam-

pIe, could one tell how many people at typewriter
consoles woulO type messages if you unlocked their
keyboards? Similarly, it is not possible in most
cases to predict with any accuracy what demands a
given process will make upon system resources dur
ing its next few seconds of running. Therefore, the
scheduling algorithm must base its action on
measurable quantities related to the unmeasurable
offered load.

Several such measurable quantities are conven
iently available. The most important of these ap
pears to be a running measure of the rate of prog
ress toward completion of processes, compared with
a "satisfactory" rate of progress determined by in
formation supplied by human beings about types of
procsses or individual processes. For example, if
there are exactly six processes to be considered each
requiring 20 seconds of CPU time and no I/O, all
with desired completion time 3 minutes away, and
if in one second each process has received 100 milli
seconds of CPU time, then each process at its cur
rent rate will require 3 minutes 20 seconds to com
plete. Presumably the system is overloaded, and one
or more of the processes should be postponed. This
is a fairly typical example; overloads in a system
with dynamic storage allocation tend to become
manifest by excessive overhead rather than by ex
cessive visible demand. The scheduling algorithms
for Multics will rely heavily on this fact.

The choice of which processes to postpone de
pends on several factors. If some processes have
higher priority than others, the lower priority proc
esses will be postponed. If, in the lowest priority
class which will continue to run, some processes
have been prescheduled for given completion times
or computing rates, the prescheduled processes will
be given preference. Finally, to make. a choice
among processes otherwise equal, the scheduler will
prefer a process currently using expensive facilities
(e.g., core) over one occupying inexpensive facili
ties (e.g., drum); the former is in some sense using
more system resources than the latter, so it is desir
able to move it toward completion.

DYNAMIC LINKING

In Multics linking of one procedure segment to
another, or of a data segment to procedures, is by
and large done dynamically. That is, if a translator
compiles symbolic intersegment references, these
will not normally be replaced by numerical interseg-

From the collection of the Computer History Museum (www.computerhistory.org)

210 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

ment references until the first time the reference
actually occurs during execution of the compiled
program.

The standard form of programs in Multics will be
common shared procedure. Code run as common
shared procedure may not be modified for execu
tion of anyone process. Hence, for each compiled
segment of code there will be an accompanying link
age section, which will be maintained on a per
process basis, and an modifications required to link
two segments together will be made in the linkage
sections rather than in procedure segments. A link
age section contains, among other things:

(a) the symbolic (character string) name of
each externally known symbol within the
segment to which the linkage section be
longs.

(b) for each symbolic reference from this seg
ment to some other segment, the symbolic
name of the foreign segment and the sym
bolic name of the referent within tp.e for
eign segment, plus an indirect word which
is compiled with a tag that will cause a trap
to occur when an indirection through it is
attempted.

When a procedure is attached ot a process, the
linkage segment of the procedure is copied into a
data segment of the process. If the procedure during
execution attempts to access a foreign segment by
indirection through the linkage section, a trap
("linkage fault") will occur. At this time the linker
will substitute the correct numerical value into the
indirect word. The reference will then be complet
ed; subsequent references, of course, will be com
pleted wi~hout occurrence of a trap.

The original symbolic information is retained in
the linkage section even after linking. Hence, it is
possible to break such a link after it has been estab
lished, and detach a segment from a process. This
will be done only upon explicit call to the unlinker,
and is expected to be infrequent.

TRAP HANDLING

The hardware traps on the 645 can be divided
into two categories. In one category are process
traps (e.g., overflow) which normally occur as a
consequence of action in the running process. Han
dling of these tralJs will be done as part of the run-

ning process, by supervisory routines attached to
the process. In the other category are system traps,
some of which are relevant to some process but
probably not one which is running (e.g., I/O termi
nation), and others of which indicate hardware or
software error (e.g., parity error in core) .

Some of the process traps, such as the illegal pro
cedure fault, will cause the process to be removed
from running state after a bit of initial flailing
around. The division between traps and system
traps is not based on whether the running process
will continue to run, but on whether the running
process is known to be responsible for the trap.

What happens when a trap occurs? It varies
somewhat, but generally speaking the status of the
running process is stored in its concealed stack seg
ment. Then, for system traps only, control switches
to a special trap process. Then the concealed stack
of the process (trap process for system traps, proc
ess which is still running for process traps) is
pushed one level, and the appropriate trap-handling
procedure is called. The supervisory routines have a
standard trap-handling procedure for each trap,
which discovers what caused the trap and takes ap
propriate action. However, for every trap there is at
least one point in the trap-handling procedure
where control will pass to some other routine in the
process if the process is administratively entitled to
provide alternative treatment for the trap. The ex
tent to which customer processes can provide non
standard trap handling is, of course, controlled by
the installation, but it will by and large vary from
complete freedom (for handling overflow) to very
strict control (for handling page-not-in-core faults
from the appending hardware).

Many traps will have several intercept points,
corresponding to different causes of the trap. It
should thus be possible for authorized processes to
selectively modify the handling of every process
trap. Only a restricted group of people will normal
ly be able to modify handling of system traps, since
these affect operation of the entire system. The
technique for making the modifications, however, is
the same as for process traps.

The work of the system trap process is to discov
er which processes are responsible for system traps.
It must, for example, decode words in the status
storage channels of the general I/O controller to
find out what device caused an I/O interrupt, and
then check status tables to discover which process
issued the select that resulted in the interrupt. The

From the collection of the Computer History Museum (www.computerhistory.org)

STRUCTURE OF THE MUL TICS SUPERVISOR 211

trap process can then bring the process responsible
for the trap into ready status for further treatment
of the particular interrupt; the trap process is then
finished with that particular interrupt.

The process responsible for the interrupt may be
a customer process; if not, it is a housekeeping proc
ess that behaves like a customer process. This proc
ess, when it enters running state,. will resume in an
interrupt routine exactly analogous to a process trap
routine, complete with intercept points.

To a very high degree of approximation, all I/O
for a process is handled within the process. This
does not imply that I/O for each process is handled
independently of I/O for other processes. The pro
grams and tables involved in input and output are
for .the most part common to all processes requiring
a given type of I/O activity, such as input from
magnetic tape. These programs and tables, however,
are attached to each of the processes which requires
them, so that they can be called by normal subrou
tine calls.

This makes it possible to insert special I/O rou
tines (e.g., for controlling a data line to a special
purpose device) in a particular customer process by
taking only two actions: get administrative authori
zation to call relevant master mode routines and to
intercept interrupts in: the process, and then link to
the I/O routines by calling with a standard call.
However, this technique places stringent restrictions
on timing-dependent I/O, and virtually eliminates
the possibility of certain data-dependent I/O tech
niques. These restrictions appear to be reasonable
in a system like Multics; we see no way to permit
complete control of I/O by one user program with
out danger to other user programs.

CREATION, BLOCKING AND
TERMINATION OF PROCESSES

Every process begins by being spawned from
some other process. In particular, certain system
processes exist for no end except to recognize cus
tomers' identification and spawn new processes for
the customers. However, any process may spawn
others by an appropriate call to the operating sys
tem. The call specifies what segments the new proc
ess is to share with its parent, what segments it
should receive copies of, what segments the new
process should not know, and at what point the new
process should resume.

A process may go into blocked state for many

reasons, such as waiting for 3 p.m., or waiting for a
page to arrive in core, or waiting for another proc
ess to release a file. In all of these cases, the proc
ess will indicate a particular flag w1;lich must be
reset before the process can resume, and the pre
sumption is that some other process (alarm clock
routine in the scheduler, or system trap process, or
process holding the file) will be cooperative enough
to reset the flag. There is, however, no guarantee
whatsoever that the flag will ever be reset.

It would be poor strategy to allow the blocked
process to remain in limbo forever. Therefore, each
process wilt have attached to it a maximum time
for which it may remain continuously blocked.
Multics will provide a default value of this time,
but a customer may specify a value other than the
default value for any particular process. A proce
dure in the scheduling process will occasionally
s~an the task list for processes which have been
blocked for more than the allowable time. If one is
found, a diagnostic message will be generated and
shipped off to the error message file for the blocked
process, if that can be found, and also to a standard
system file. The blocked process will then be com
pletely removed from the task . list and, although its
procedures and data are still intact, it will not re
sume if~ the condition on which it was waiting be
comes satisfied. Human intervention is now re
quired to retrieve it, either to attempt to resume it
or to obtain diagnostic information. If such human
intervention does not occur, the data segments of
the process win eventually be purged from the sys
tem.

This is also the chain of events which occurs
when a process violates some restriction. If, for ex
ample, a process attempts to execute a privileged
instruction in slave mode, the standard trap proce
dure will generate a diagnostic message and then
call a standard program to force out any relevant
output. The process will then go into blocked state
to allow a human attempt for further diagnostics or
a fixup. If the attempt is not made, the process will
then be removed from the task list, and eventually
purged.

Termination of a process may occur in two ways.
It may call a procedure in the operating system and
say "I am through," or some other process may
point at it and say "Get rid of him." The second
method is used by the scheduler in disposing of
processes which have been blocked for too long a

From the collection of the Computer History Museum (www.computerhistory.org)

212 PROCEEDINGS - FALL JOINT COMPUTER CONFERENCE, 1965

time. This second method may also be used by cus
tomer processes, subject to some restrictions.

Both methods may be employed with two degrees
of severity. The process may merely be removed
from the task list, or it may be marked as complete
ly dead and subject to immediate purging from the
system. In general, modules of the operating system
will only remove a process from the task list if
troubles occur, so that the customer may have a
reasonabte chance to come and rummage around in
the procedures and data of the process to find out
what happened.

PROTECTION AGAINST MACHINE ERRORS

Like all other systems, 645 Multics will suffer
from hardware and software failures. The goal of
dependable operation can be achieved only if the
effect of these failures can be limited. A companion
paper discusses methods for safeguarding of data in
the file system. Equally important and equally diffi
cult is the problem of keeping the system on the air,
or getting it back in a hurry, when a hardware fail
ure occurs. This breaks down into two parts: how
to run the system on a crippled machine, and how
to share the machine with product service routines.
We have no solutions to either problem, but some
fragments of solutions are developing.

First, the policy of running the CPU's symmetri
cally is expressly intended to allow any CPU to be
pulled at any time without stopping the system (al
though pulling a CPU at an arbitrary moment will
undoubtedly wreck a particular process and some
data files) .

Second, the policy of minimizing absolute mode
operation is designed to anow the system to resume
execution with core banks missing with somewhat
less agony than would otherwise be the case, and to
allow the system to abandon a core bank with very
little effort. I/O calls and fabrication of I/O data
control words will be concentrated in a few proce
dures, with the explicit intent of allowing easy
abandonment of a general I/O controller. For in
stallations which can afford the luxury of using tess
than full core interlace, 645 Multics will provide

the ability to pick up the pieces more or less auto
matically after loss of anyone core bank, but this
feature will probably not be included in the first
version of 645 Multics.

We do not know in general how to make the soft
ware cope with a berserk CPU, drum controner or
general I/O controller. In 645 Multics such a trou
ble will undoubtedly require a restart, the magni
tude of which will vary greatly depending on exact
ly what the sick hardware unit did before it was
caught.

The problem of coexisting with product service
routines will be partly solved by subordinating
some product service routines· to Multics, and partly
by the fact that Multics can easily abandon half the
hardware of a large enough system on request, so
that product service routines can test the other half.
It appears likely, however, that integration of prod
uct service routines into Multics will be the most
difficult aspect of the project, and the last to be sa
tisfactorily completed.

We have no very useful techniques for protecting
the system from software bugs. We are reduced to
the old-fashioned method of trying to keep the bugs
from getting into the software in the first place.
This is a primary reason for programming the sys
tem in PL/I, and for insisting that modules of the
operating system should conform to conventions for
user programs. The 645 lends itself exceptionally
well to being driven with repeatable sequences of
events, and this will help to find timing-dependent
software bugs. But some software bugs will survive;
they always do.

ACKNOWLEDGMENTS

It would be nearly impossible to name all those
who have participated in formulating the material
presented in this paper. All of the authors of the
other papers in this group have contributed substan
tially, as have many others of our colleagues and
friends. We are particularly grateful to Dr. E. Wol
man of Bell Laboratories for allowing us to para
phrase some of his concise observations about the
problem of scheduling.

From the collection of the Computer History Museum (www.computerhistory.org)

