
ISSUES IN DISCRETIONARY ACCESS CONTROL

Deborah D. Downs, Jerzy R. Rub, Kenneth C. Kung, Carole S, Jordan

Abstract

This paper discusses the types of mechanisms that can be used to

implement Discretionary Access Control (DAC). Itaiso covers the

access types that can be controlled by a DAC mechanism. and
includes a brief discussion of related topics including protected

subsystems; administering, auditing, andverifying DAC; and DAC
implemented as an add-on to an operating system. Finally this

paper discusses how the DAC information presented in this paper
will be used by the Department of Defense Computer Security

Center in the prepsration of a DAC Guideline to aid system
designers and developers in their selection of DAC mechanisms.

1. Introduction
One of the features required of a secure operating system is

discretionary access control (DAC) which is a means of restricting

access to objects baaed on the identity of subjects and/or groups

to which they belong. The controls are discretionary in the sense

that a subject with a certain access authorization may, at its

discretion, be capable of passing (perhaps indirectly) that access

type or a subset on to any other subject. The objective of this

paper is to provide information on the various DAC issues that are

of concern to computer
developers.

2. Terminology
Subjects are those-~ntitiea
information to flow between

vendors, system designers and

that initiate activities which cause

objects. Usually these entities are

persons, but processes or devices can &so be subjects. Hence, a
user who perfon’ns any actions on files is a subject a job, which
the user schedules to be run later, is a subject when it is running;

and a device such as a power sensing unit which initiates backup
routines upon detecting power failures can be a subject. In most
interactive systems a user logs on, and a process starts and does
work on behalf of the user. The process takes on the attributes of

the user, such as access rights, and the process associated with a

user is the subject. Generally, subjects are held accountable for

the actions that they have initiated, and the audit trail associates

with one sub~t any security relevant action performed on an

Obii.

Objects are those entiies that contain or receive information.

Depending on the system, objects may include, but are not limited
to, records, blocks, pages, segments, files, directories, directory

trees, mailboxes, messages, and programs, as well as bits, bytes,

words, fields, processors, communication lines, clocks, and

network nodes. Subjects may also be treated as objects. For

example, if a process may spawn chi Id processes, those
processes may be treated as objects.

In systems where the smallest amount of information that is

normally handled as a unit is a file, each file is an object. But if

each file can be broken into smaller pieces so that each piece can
be individually manipulated (such as segments or pages), then

each of these smaller pieces is an object. In addition, if the files
are organized into a tree structure, then the directories for these
files are also objects. In this guideline, “file” will be used as a

generic term for files, segments, etc.

In some systems all the ob]ects are treated logically as files, and

DAC is handled by associating the access information with these

files. Hence, each of the hardware devices (i.e. disks, terminals,

printers) is treated as a file, with access control information

associated with it. In order to access any of these devices a

subject must have the proper access rights, and the security

checking mechanism for the device is the same as the mechanism
used for standard files. For example, writing to a terminal involves
moving information to the file associated with this terminal. The

access control information associated with this file determines
which subjects are or are not allowed to write to this terminal.

Consistency in handling DAC objects leads to lees complexity in

the DAC implementation and, therefore, to more assurance in its

correct operation.

The number of objects to be protected by the DAC mechanism

depends on the environment for which the system is intended.
Almost all systems include in their DAC mechanisms fflea,

directories (if the file system is tree structured), communication

channels, and devices. General purpose operating systems trying
to provide a more complete and user friendly DAC interface afso

include objects such as mailboxes, messages, end bulletin boards

and their entries as objects protected by DAC. Again, the tradeoff

is user friendliness and broader security versus the complexity of

the DAC mechanism and the difficulty of assuring its corra@vesa.

3. An Inherent Deficiency in Discretionary
Access Control

OAC controls restrict a subject’s access to a subset of the

208
CH21 50- 1/85/0000/0208$0 1.00 ~ 1985 IEEE



protected objects on the system. The subject is also restricted to

a subset of the possible access types available for those protected

objects. The set of objects and access types can change

dynamically baaed on whatever criteria the subject and/or other

subjects wish to employ. Criteria such as “need to know” and
‘“who do 1like” are equally possible. Access is baaed entirely on

the subject’s identity and the mechanism has no knowledge of,

and bases no decisions on, the semantics of the data.

Therefore the identity of the subject is crucial, and if actions can

be performed using another person’s identity, then DAC can be

subverted. Thus the basic definition of DAC makes it vulnerable to

Trojan Homesf. On moat systems, any program which runs on
behalf of the subject acts with the subject’s identity and therefore
has cdl of the DAC access rights of the subject’s process.

The software produced by the computer system manufacturer,

especially if the system has a high EPL2 rating, should not contain
Trojan Horses. Configuration management, testing, and trusted

distribution should assure this. If a trusted user-created source

and/or object module haa been properly protected by DAC and

haa not executed in an environment with a Trojan Horae, it will

also be free of Trojan Horses. But software written by software

houses or by other untrusted users could easily contain Trojan

Horses. Software with a Trojan Horae, running on behalf of a

subject, not only could access the subject’s protected objects, but
also could copy the subject’s objects (those which have read

access) to a data space accessible to the subverter. The Trojan
horae could afso change the subject’s DAC so that the subverter

could have continuing access to the subject’s protected objects.
A Trojan Horae could afso append code to all of the subject’s

executable objects so that, when those objects were executed by

another user, the code would give the subverter access to afl
newly accessible objects and would attach the same code to

them. This haa beerr termed a “virus.”3

The DAC Trojan Horae problem could be restricted in a system

that implemented many domains (the set of objects that a subject

has the abilii to access) or dynamic small domains for each
process, such as a capability baaed system or protected

subsystems that supply a domain per process. In most systems

today, wfth only user and supervisor domains, all of a subject’s

objects are available to a process running on behsff of a subject.
If domains were created dynamically for a process, with only the

necessary objects available in that domain (implementing the least

prfvifege principle?, then a Trojan Horae woufd be limited to
accessing only those objects. In most current general purpose

computing environments, DAC cannot protect objects from uaera
who are determined to gain access to them.

4. DAC Mechanisms
In order to impfernent a complete DAC system the information that

fe represented by the access control matrix mode15 must be
retained in some form. An access control matrix has subjects

represented on the rowa and protected objects on the columns.
The entrtee in the mstrfx describe what type of access each

subject f’we to each object. Current operating systems have
attempted to retain the access control matrix using either row or

column based repmaantations since storing the entire matrix is
irrefffdent becauss ff is sparaefy populated. The implementations
of row-based reprwentatfons are, in some form, attaching to the
subject a Ifst of acceaafile objects and include:

- Capabilities

- Profiles

- Passwords,

The column-based representation that in some form attach a list

of ac~easing subjects to the object include

- Protection Bita

- Access Control Lists.

The following discussion deeorfbes each mechanism and presenta

its pros and cons.

4.1. Capabilities

CapafMity6 based systems provide dynamically changeable
domains (name spaces) for processes. Ability to access an object
is demonstrated when a subject hea a capability or “ticket” to the

object. This capability contains SflOwSble access rights (e.g.,

read, write, execute). Capabilities can be added to end deleted

from a process during its execution, thereby changing the size of

its name space. In some implementations, programs can contain

capabilities and capabilities can alao be stored in data files.
Hardware and software mechanisms or encryption provide

protection from alteration. Capabilities can be passed along to
other processes and can sometimes be either increased or

decreased in scope depending upon the access characteristics
they contain. Because capabiiitiea implement dynamic domains,
ideally, they can limit the objects accessible to any program to the
minimal set necessary for it to accomplish its task, This woukf
limit, to some extent, a Trojan Horse’s access to a subj~t’s

protected objects and to objects to which the stolen data could be

output.

Because the ability to paas capabilities is not controlled by any

policy, and because capabilities can be stored in fflee so that
giving access to a file may give access to many other objects, in
general one cannot determine for a particufsr object afl the

subjects that have access to it. Thus a complete DAC
implementation, including revocation and access review, fe

impossible with capabilities. At this time, few systems have been

implemented with capabilities and very few, if any, have attempted

to implement a complete DAC mechaniam. Some research has

been conducted in restricting capabilities by overlaying s DAC
mechanism.’

4.2. Profiles

profiles associate a list of protected objects and access rights with

each subject. When a subject attempts to access an object the
subject’s profile is checked for the required access rights. ‘Three
main problems with this mechanism ex~ reetrktfng the aim of
the profiles, distributing access when an object fa created or when

the access is changed, and determining aft the subjects that have

access to an object. Since object names are uauaffy not
consistent or amenable to grouping, the profffe for a subject that
has access to many protected objects can get vety farge end

difficult to menage. ALSOaff protected object narnea must be
unique, so fully qualified ob@t names must be used.

209



Creating, deleting, and changing access to protected objects may

require many operations since multiple subjects’ profiles may have

to be updated. When users create objects and want to give

themselves and others access to the object the profiles must be

updated in a secure manner. Users cannot be allowed to update

their own or other user’s profiles directly. CA-Sentinel’s

DOS/VSE8 security add-on uses profiles and onfy aflowa the

security administrator to change the profile. with such an

Implementation no user, including the creator, woufd have access

to a new object until the security administrator updated the

appropriate profiles, since as a general security principle access

to an object by a subject must be null unless specific access is

granted. Security administrator controlled profiles are extremely

restrictive and would not be usable m environments where objects

are created and/or access rights are changed frequently.

Timely revocation of access to an object is very difficult unless

subjects’ profiles are automatically checked on each access to an

object. Deleting an object requires some method of determmmg
which subjects have the object in their profile. In general, with
profiles as with capabilities answering the question of who has

access to this protected oblect is very difftcult. Since this question

is usually important in a secure system and management of

profiles is difficult. profiles are deficient as a DAC mechanism.

4.3. Passwords

Password protection of objects attempts to represent the access

control matrix by row and involves associating with an object a

password that must be presented to the operating system before
access is granted. If each subject possesses its own password to

each object, then the password is like a ticket to the object, similar
to a capability system (except, of course, no dynamic domams

exs.t). MOS DAC implementations using passwords allow only

one password per object or one password per ob]ect per access

mode. Passwords on protected ob]ects have been used m IBM’s

MVS9 and with other mechanisms in CDC’S NOSIO to implement

DAC.

Using a password protected DAC system poses many problems. It

is virtually impossible for a user to remember a password for each
protected object, especially if they have access to many objects,

and when the passwords are stored in programs or files they are
vulnerable since no hardware protection is provided. To restrict

access to certain access modes requires a password for each

combination of access modes. But in most systems that use

_ordS, SCCeSS to a protected object is either total or
nonexistent. In such implementations revoking a subject’s access

requires revoking access from afl other subjects with similar

access and then distributing a new password to those who are to

retain access. This procedure becomes afmost impossible when

paaeworda are stored in programs or files. To be secure,

passwords should be changed periodically, which is very difficult

to do in such password protected DAC systems. In systems such

as MVS, the default access to a file is unrestricted access. A file is
protected only when the password protection is initiated for that

file.

If passwords are used as in CDC’S NOS to supplement another

DAC mechanism they do have one positive aspect. If all objects

are protected with different passwords, a Trojan Horse can be
restricted to only the objects that are handed to it. An alternative

to passwords that has the same problems, but adds extra

protection when a DAC system w not trusted, IS the use of

encryption to protect objects.

4.4. Protection Bits
ProtectIon bits are an recomplete attempt to represent the access

control matrix by column. Implementations include systems such
Ss Unixll that use prot~tlon bits aaaocxated with obtects Instead

of a list of subjects thar may access an object. In the Umx case

the protection bits Indicate a set of access modes for all subjects
a single group and the owner of the protected object The sublect

that creates the object IS the owner, and ownersh!p can only be

changed through superuser privdeges. The owner IS the only one

(besides a superuser) who can change the protection b(ts

Subjects can belong to more than one group but they can only

belong to one group at a time (there IS a current active group)
The group name (the group in which the owner was achve at

creaticn of the object) and the owner name are listed with the
protection bits.

The problem with any implementation simdar to protection b!ts IS

that implementing the access control matrix model IS wrtually

impossible. The system cannot allow or disallow access to a

protected object on any single sublect basis. Groups set up to

specify any needed combination of subjects has been suggested.

but the combinatorics of such a solution are impractical. Since

groups are controlled by system administrators, such a scheme

would certainly require their full time attention. Also, since only

One group can be specif@cf per object, different, nonowner

sublects cannot be given different access types to an object.

4.5. Access Control Lists

Access Control Lists (ACLS) permit any particular subject to be

allowed or disallowed access to a particular protected object.

They Implement the access control matrix by representing the

columns as lists of subjects attached to the protected objects.

Each entry m the list is an identification of a subject(s) and Its

authorized access to the object The lists do not have to be

excesswely long if groups and wild cards are used.

Within the current technology, ACLS are the best way to

implement a DAC mechamsm. ACLS are the only mechamsm that

allows inclusion and exclusion of an individual subject. Therefore

the following discussion of ACLS is more detailed concermng

options than the previous sections, Also the discussion of DAC

access types will be couched in terms of ACLS.

4.5. I. Groups

Groups are a mechanism for representing sets of subjects. In the

ACL, multiple subjects can be identified by a group name. The

ACL is sorted so that access identified by specific subject-id is
ordered before access identified only by group. If more specific

subject identification exists, it is used to compute access. Before
implementing a group mechanism, the designers must decide
what the groups are to represent. A group can be a shorthand

way of referring to a set of subjects, an accounbng mechanism, a

structuring mechanism for the file system, a method of grouping

project work, a means of identifying and restricting the accessible

objects (implementing the least privilege principle), or a

combination of these and other concepts.

Honeywell’s Multics12 IS an example of a system that uses groups

210



to represent projects, for structuring the file system, to implement

the least privilege principle end for accounting. Multics

implements a group mechanism (called projects) that allows

subjects to be active in only one group at a time, although they

can be members of merry groups. Several reasons exist for this
requirement. Since Multics uses a group mechanism for

accounting and defining the storage hierarchy, allowing only one

active group simplifies the algorithm for determining whom to

charge for computer time and where in the storage hierarchy
segments are to be searched for and stored. Allowing a subject

only one active group aLso simplifies access decisions. A subject

could belong to two groups that have different access rights to the

same object. In the worst case, one group could have null access
to the object, while the other had full access to the object. If the

subject has only one active group at a time, decisions are not
required. Changing a subject’s active group on Multics requires a
log out and”a new log on because the process’ environment must

be reset. Maybe the most important reason to have only one

active group is to implement the least privilege principle. When a

subject logs on to a particular project, the subject is restricted to

only the objects accessible to the user by subject-id or through the
project groupid. At best, only the objects neceasa~ to do that
project’s work are accessible. To work on another project

requires essentially a new log on and a change of reference.

Unfortunately in Multics, since projects are also associated with
the accounting and file system, they may tend to be of larger
granularity than desired for least privilege.

If groups are used only as a shorthand way of referring to a set of

subjects, an efficient implementation of groups allows subjects to

always be active in all groups in which they have membership. In

other words, to specify an active group or to default to an active
group at log on is not necessary, and if the subject has

membership in any group on an ACL, it always has that access

right. The decision as to what access should be given when the

subject has current membership in multiple groups which have

different access rights should be based on the rights avaliable by

changing active groups on a Multics-like system. The union of the
access from all group memberships, with null access treated as
the empty set, should be given to the subject. Therefore if one
group has null access and another has read, the subject should be

given read access to the object. If the system supports other

negative access modes. the decision process becomes more

complicated. Implementing groups with this mechanism does

result in some acceas rights being different from a Multics. like

system. If a subject is a member of both group A, which has read

access to object 1, and group B, which has write access to object

1, under the Multics-like system the subject could never read and

write the object at the same time. However the subject could copy

the object and then give both groups read and write access to the
copy. On the other hand, in a system with multiple groups active
for access, the subject would be given read and write access to

the object. Using this method also means that after

unsuccessfully checking for the subject-id on the ACL, all of the
group entries must be compared to the list of groups of which the

subject is a member.

In a DAC implementation where subjects can have active

membership in many groups at once, the group mechanism could

still be used for accounting and/or storage hierarchy
management by specifying a specific group for only those
purposes. Such a change in a Multica4ike mechanism (still
restricting a subject to only one active group at a time for the leaat

privilege principle) would allow for a more flexible use of groups
with a finer granularity.

The Apollo’s Domain13 system haa a multiple, hierarchical group

mechanism. The ACL entry has the form “subject.

id.project.organization. node.” As in Multice, if the ACL specifies

access righta for the subject only (subject-id.*.*.*), then all

other group access righta are ignored. This allowa inclusion and

exclusion of any single subject. In the Apollo’s Domain system, as
with Multics, if a subject is not on the ACL by subject-id, but is a

member of a group that ia specified on the ACL with no subject-id

(+$project-id.*.*), the group rights are used, and organization

and node memberships are not examined. But with Domain, if the

subject is not identified by subject-id or groupid and the ACL
contains an entry that specifies the subject’s organization or
organization and node (*.*. organization.* or

*.* .organization,nocf e), the subject will be allowed the specified

access. The same process follows for the node entry in the ACL.
Multiple group mechanisms add more complexity that may

facilitate administrative control of a system, but do not affect the

basic utility of a DAC mechanism.

Controlling the creation of groups is important, since becoming a
member of a group can change the ability to access many objects.
In many systems, e.g., Multics, a subject must be a member of at
Ieaat one group. One detriment of any group mechanism is that

changing the members of a group results in changing the effective
access granted by every ACL containing that group name (usually
an unknown set). Creation of groups should be only a Systems
Administrator function or be distributed as a Project Administrator

type function. Problems result from allowing all subjects to create
groups and then be “owner” of that group. Subjects could

choose group names that would mislead other subjects that wish

to use that group on their ACL (e.g., “Top Secret”). Subjects

should not be allowed to list the members of groups because of

possible covert channels and privacy; therefore it is difficult to
determine which group is the correct one to use. Group names

and subject-ids must be controlled to prevent their re-use. Re-use

of a subject-id or group name could result in unexpected access
to objects.

Performance considerations exist in the design of the group

mechanism. If groups proliferate and afl groups on the ACL must

be searched for the subject’s membership, keeping a list of group
memberships with the subject will probably be necessary.

Otherwise a performance price is paid for searching the ACL for

the subject’s membership whenever the file is opened.

4.5.2. Wild Cards
A simple wild card mechanism allows the aubatitution of one or
more characters where the wild card ia specified. In ACLS wild

carda can be used in two basic waya. In the first, the entire

subject-id or group is replaced when the wikt card is specified.
For example in Multics, an ACL entry of “* .DODCSC” gives

access to any subject who is a member of the DODCSC group. An

ACL entry of “Downs.*” gives Downs access, no matter in what

group the subject Downa is currently active . An ACL entry of
“*.*” givea access to any subject in any group. The exclusion

capability is possible by specif@g a subject or group with an
access type of “no-access.” The group and wild card
mechanisms allow the ACL list to be kept to a reasonable size. In
fact, studies on the Multics system on ttre ARPAnet at MIT af’towed
that the average ACL length was about 3-4 entries, and only 2% of

211



the ACLS had over 10 entries, but some of the ACLS had as many

es 200 entries. On a system where the use of groups was not
restricted by requiring that only one group be actwe or by

accounting and storage system conslderatlons, as It IS m Multlcs,

the very large ACLS are not necessary,

The other use of wdd cards is to allow the wdd card to substitute

for a portion of the sublect-ld or ,group name. For example,

“DWO ● ” could allow all subjects access whose subject.id began
with Dwo (e.g. Dwons, Dwo, DWO11111 1) In some systems, this

use of the wild card substitutes for a group mechanism. Effectwe

use of this wild card mechanism requwes subject-ids to be chosen

so that the group is part of the name. For example, all members of

the security prolect could be gwen sublect.ld s that end with

“see” and the ACL could contain ““see “ Obviously choosing

sublect.lds. allowing membership In multiple groups. and revoking
someone’s membership from one group become very complicated

operations. Sorting the ACL entries to place the most restrictwe
entries first requires a complicated algorithm and ng!d subject-id
speciftcatton rules if a group mechanism IS avadable, allowing
wild cards to substitute for particular characters does not add

functionality and only complicates the use of the DAC mechanism,

Therefore, the use of wild cards should be restricted to complete

substitution for a subject-id or group name.

4.5.3. Default ACLS

Many side Issues exist with regard to the implementation of ACLS.

Default ACLS are usually necessary to ensure user friendliness m

the DAC mechanism. At the very least, in an owner type system

when an object is created by a subject, the subject should be

placed on its ACL by default. Some of the other possible default

mechanisms include a system-wide default, a subject-associated

default, or. if the file structure is a tree, a default associated with
the directory,

A system-wide default cannot be tuned to allow access

judiciously, but can be used as the default in cases where no other

default has been specified. A system-wide default might give

access only to the creating subject. A subject-associated default
works well on a system with a flat file structure. When a subject is

first entered on the system, its default ACL ISspecified.

For tree-structured file systems, a default(s) associated with the

directory is efficient. If the subject organizes Its directory

structure to represent project work or areas of interest, then the
ACLS for all objects in a sub-tree are similar, One default ACL in

the directory is for children that are files. For children that are

directories, either a separate sub-directory default ACL is

specified or the default ACL haa to be stated explicitly by the

subject. Otherwise, unless care is taken using this mechanism,

subjects with access to the root sections of the storage hierarchy

receives access by default to all of the storage hierarchy. The

overriding principle of least privilege im~lies that the use of
defaults should not inadvertently give away more access than the
subject intended. In other words, it is better to err on the
conservative side. In alf implementations some subject(s) must

have permission to change the ACLS after they have been set by
default, and a way to change the defaults must exist.

4.5.4. Named ACLS

An implementation of ACLS that is sometimes proposed is

“named” ACLS This mechanism IS Implemented by attaching to

the protected object either the ACL name or a pointer to the

named ACL. Thus a separate database of named ACLS is needed.

The difficulty with this implementation is that when the named ACL

gets changed. access to all of the objects pointing to that ACL

also get changed Determmmg all of the protected objects
affected by the change IS very difficult, The named ACLS

prohferate since many oblects need urwque ACLS Determmmg

whether the correct named ACL already exists may be d! fflcult,

and allowing subjects to search named ACLS may divulge

sensitwe mformatlon on access rights and provide covert

channels The named ACLS also have to be protected m the same

way as the real ACLS,

5. DAC Access Types
In this Section, access permissions and access modes for ob}ects

are discussed. In the access control matrix model, access

permissions and access modes are the entries that specify what
kmd of access rights the subject has to the object.

The access permiswons define who has the ability to change

access mcdes and/or the ability to pass to another subject that

aknllty. In other words, subjects that have an access permssion to

an object may change the ACL of that object and, perhaps, pass

this ability to other subjects. These two abilities, which should be

implemented as separate access permissions, are used to specify

the control of the DAC mechanism.

In contrast, access modes indicate a specific action that can be

apphed to the object. For example, the ‘execute’ mode allows the

object to be executd. Access modes will be discussed in more

detail later.

6. Access Permissions
In many current systems the concept of access permissions IS not

separated from access modes. For example, in Multics, modify

access on the directo~ is actually the alxhty to change the ACLS

of the children of the directory. Access modes and access

permm.sions should be kept conceptually separate on any DAC

system Thts separation allows control of the object to be

separated from access to the object,

Since access permissions allow a subject to char de the ACL of
the object, they can be used to implement the control model for a
DAC system. Three basic models exist for control in a DAC
system; hterarchlcal. owner, and Iaissez. fatre,

6.1. Hierarchical

Permissions to change the ACL of objects can be organized so

that control is hierarchical, similar to the way most business

organizations are formed. A simple example would have the
systems administrator at the root of the hierarchical tree. He/she
would have the ability to change the ACL and to pass on that

ability. The system administrator (or the company structure)
divides everyone else into subsets (e.g., departments). The

default ACL for each department gives the department head

permission to change the ACL and the permission to pass on the

ability to change the ACL. The department heads divide their
subordinate subjects into subsets (e.g., projects) and set the

defaults so that for each project, they give the project heads the

permission to change the ACL. The subjects at the bottom of the

212



hierarchy have no access permissions on any object. Notice that

in the hierarchy those who have the ability to change the ACL on

an object can give themselves any access mcde on the object.

The advantages of a hierarchical structure are that control can be
placed in the most trusted handa and the control can mimic the

organizational environment. The disadvantage of the example

hierarchical structure is that multiple subjects have the ability to

change the ACL on an obiect.

Other hierarchical organizations can be imagined and
implemented using access permissions. Hierarchical

organizations could also be programmed into the DAC system

without using access permissions. However, such a restrictive
implementation would result in a choice of a specific hierarchical

structure which would hinder use of the system by organizations
that did not fit that mold.

6.2. Owner
Another control model associates with each object an owner

(usually the creator of the object) who is the only sublect that has

the permission to change the ACL of this object. The owner is

always in “full” control of the objects that he/she has created and
has no ability to pass control of the original object to any other

subject. Hence the owner may change the ACL at any time in

order to grant and deny to other subjects the access modes to the
objects under their control

This near aksolute control by the owner can be implemented

administratively with a DAC mechanism that supports access

permissions. The system administrator could set up the system so

that each subject would have a ‘“home” directo~. The default

ACL for files and sub-directories wouid always gwe that subject

the access permtsslon to change the ACL. and the access

permission to pass on the ability to change the ACL would never

be used on the system. Of course the system administrator has
the ability to alter all of the access control on the system. Owner
control can be viewed as a limited hierarchical system of only two
levels and could be implemented with a flexible hierarchical

control model.

Another way to implement owner control is by programming it into

the DAC system without implementing any access permissions.

The DAC mechanism atores the identity of the creator of the

object es the owner and the only subject that can change the ACL,

with no method of passing the capability of changing the ACL to

another subject. Such an implementation is restrictive but has

been used on many systems. A strict ownership policy resulta in

the owner being the only subject that can delete an object. If the
owner leaves the organization or dies, it takes privileges such as

Unix’s super user to delete the subject’s objects. Unix is an

example of an operating system where only the owner of an object
has the ability to change ita ACL and no access permissions are

implemented.

Another dieadvantage of owner control is that for non-owner

subjects to change their access modes for an object is difficult
(i.e., to share the objects is harder). In order to gain or lose any

access to an object, subjects must ask the owner of the object to
change its ACL for them. However, in certain operating
environments, this disadvantage is actually a desired system

characteristic.

6.3. Laissez-faire

In a laissez-faire scheme, the creator of an object may pass to any

subject they wish the ability to change the ACL and the ability to
pass on that ability, and no ownership concept is present. Once a

subject has oaaaed on the permission to pass the ability to change

an ACL to still other subjects, they may pass this permission to

other subjects without the consent of the creator of the object.
Hence, once the access permissions are given away, control of an

object is difficult. The ACL. will show all the subjects that could

change the ACL of an object, but not which subject, if any. is in
charge of the final decisions about the object.

Such a control mechanism could work very well on a egalitarian
research system, but is not recommended as the only possible

control mode on any system.

7. File Structure
Use of access permissions is also related to the structure of the

storage system. In operating systems where the storage system ts

tree structured, two types of objects are involved: directories and
files, Access permmsions can be applied to both. Permission to

change the ACL on a file Just changes access to that particular
file, but permission to change the ACL on a directory may be
implemented as the ability to change not only the directory’s ACL

but also the ability to change the ACLS of all of the children of the
directory (this will be called extended dir ACL change). This
implements a hierarchical control structure since permission to

change the directory ACL means that the subject can change any

access on the whole subtree below that directory.

The hierarchical control scheme described above would use the
extended dir ACL change and the permission to paas on the ability

to change an ACL. Giving the system administrator, the
department heads, and the project leaders extended dir ACL

change to the correct directory in the storage structure (with the

tree organized to represent the hierarchical structure) would give
them control over the correct portion of the file system. A pure
owner control policy could be implemented without using the

extended dir ACL change. The subject who creates a file or a
directory would receive the ability to change the ACL of either.

Laissez.fai re could use the extended dir ACL change together

with the abihty to pass on the ability to change an ACL on both the

directories and the files. This would only produce a slightly more

complicated state of anarchy.

Depending on the situation, one or a combination, of the above

schemes could be used to implement the control model of the

DAC mechanism. In general, the uae of access permissions could
allow the organization to structure the DAC mechanism to best fit

the particular environment. Of course, the tradeoff for this
flexibility is a more complex DAC mechanism and a more difficult

training process in learning to set up a DAC that is correct for a

particular environment.

8. Access Modes
A fairly wide range of access modes are available on various

computer systems implementing DAC mechanisms. This section
discusses various modes and describes a minimal set. The

discussion begins with the moat basic protected objects
supported by the system: files.

213



Read-con K allows an object to be read and copied.

On most, if not all. svstems. the “read” mode is actually

implemented as read. copy. Conceptually a read mode that
allowed on Iy display of the object would be valuable. However,

the implementation of a display .only mode as a basic access type
would be very difficult since It would involve displaying the file only

on media with no storage capacity. Read-copy only restricts the

subject to reading or copying the “original” object. If subjects

copy the object, they may set any access rights they want to the

copy.

- Write-Delete allows a sub]ect to modify the contents

of an object in any manner they choose including

expanding, shrinking or deleting.

Many additional types of write access modes have been used m

different systems for controlling what changes can be made to an

object. Examples of such write access modes include write.
append, delete, and write-modify. These access modes apply only
when the system understands something about the characteristics

Of the object. For example, a hardware and/or operatingsystem
may have several more specific write modes that apply to the

SUpPOrt of index sequential files. Computer systems that sIJpport

several different file types with differing write access modes may

either map those modes into a single, or minimal, set of modes to

be suppotied by DAC, or all of the possible write modes can be

specified and only a,subset would apply to a particular file type.
The former simplifies the DAC mechanism and the user interface

but the latter gives a finer granularity of access control. In

contrast, systems with virtual memory file systems like Multics,
and, to some extent, stream files like Unix, cannot enforce
varieties of write access on the basic file or segment objects.

Of course, the basic write-delete access is not really useful

without read-copy access. But giving a subject read-copy access

without giving write.delete access will often be useful.

- ~ Shws a Subject to run the object as an
executable file.

On many systems execute access requires read access. For

example, in Multics, operations involving constants and finding

entry points, etc. in the linkage section are seen as reading the

object text, and therefore read access is necessary to execute a

Segment. But more basic problems exist in Multics-like
environments where the address space is created for the lifetime

of the process and each program is executed in that address

space. The subject has the ability to manipulate the address

space (change descriptors or registers) before or while a program

is running, Almost any program can be manipulated to copy itself
if its environment can be manipulated (e.g., find a move-long
instruction. change the pointers and execute). So even if the DAC
allowed an execute only access, in a Multics-like environment that

access cannot be enforced. Th~ solution is to create a new

process (and therefore address spa. .) to run each program; for
Multics this is too expensive. On any system the execute access

should also control where execution can begin and where calls to

other programs return; execute access should enforce defined

entry points. A correct implementation of execute without read

allows proprietary programs to be protected from copying.

. ~ grants no access permi.swons and IS used to

allow exclusion of a particular subject in an ACL.

Often a null access mode does not exist but is implied in the ACL

by specifying no access modes for a particular entry,

The mmimal set of access modes for an object that is a ~ is the

set of access modes used on many existing systems (e.g., Unix,

Multlcs); read-copy, write-delete, and execute, with null implied by

no access modes. These access types supply minimal, but

sufficient, granularity m limiting the access to a file. With any

smat Ier set a file cannot be controlled independently with respect
to read. write, or execute.

Most operating systems apply DAC to oblects other than files.

Many times these other oblects are really structured files, and the

system understands the semantics of the object. These objects

usually have “extended” access modes which are relevant to the

particular structure of the object. They are usually implemented in
a manner similar to data abstractions m that the operating system

maps the “extended” access modes down to the basic access

modes.

8.1. Directories
If the files are organized in a tree structure, then the directories

are used to represent the non-leaf nodes of the tree. Directories

are usually implemented as structured files or segments. Whether

access modes are associated with directories depends on how the

tree structure is used to control access.

Three methods can be used to control the access to the

directories and their associated files:

1. access control on the directories but not on the files

2. access control on the files but not on the directories

3. access control on both the files and the directories.

If access mode controls are placed only on the directories, then

once a subject ISgiven any access to a directo~ it has that access
to all files under the directory. Of course if one of the objects

under this dwecto~ is another directo~ (a sub-directory), then the

subject needs access mode permission to the sub-directory

before it can access the objects under the sub-directory, Placing

access control only on directories requires subjects to group files

according to access types. This requirement could be too
restrictive and could conflict with other reasons for grouping files.

If access mode controls are placed only on files, the controls are

more granular. Access to individual files are controlled

independently of other files under the same directory. But if no
access controls are placed on directories, subjects could browse
through the storage structure looking at the names of other

subjects’ files. Moreover, file placement woufd be uncontrolled,

thereby defeating the main purpose of a tree structure.

The moat effic c nt way to implement DAC with ACLS on a tree
structured file sy: em is to control access at both the diracto~

Snd file levels. However, the designer must then mske a deci~on

as to whether the subject must have access to the whole path to

access an object, or whether access to only the object itself is

214



sufficient. For example, Multics designers made the decision that
if the subject knew the correct pathname to an object, and had

non-null access to the object, then non-null access to the

intervening directories was not necessary. This decision makes

checking for Iegaf access much easier and allows a user to grant

another user access to an object by merely changing the ACL on

that one object. If the user does not know the correct pathname to
en object and does not have access to the intervening directories,
no way exista to determine the pathname of the object, and

therefore no way exists to access it. Allowing access to an object
without access to the parent directories complicates decisions

about when access should be given to the other attributes of a file

(e.g., length, date contents modified). Such decisions depend on
the particular implementation.

In Unix the lack of access to the directory implies that no access is

available to the entire sub.tree controlled by that directory. A user

cannot give another user access to a file without having given that

user access to the parent directories.

The minimal set of access modes for an object that ISa ~

should include read and write-expand.

- &@ allows a subject to see the directory entries

(i.e., the names, the ACLS, and the associated
information about files and sub-directories in this

directow).

Read access imoltes the ability to access the children of the

directory. depending on their own ACLS

Write. exoand.delete allows a subject to add new

objects to the directory (i.e., to create and delete files

and sub-directories under the directory).

Since directow access modes are extended access modes and
depend upon how the directory is structured, the actual access
modes that would be implemented for a directory are very system

dependent. For example. Multics implements three access modes
for directories: status allows a subject to see the attributes of the

directo~ and its children; modify allows the subject to modify

those same attributes including deletion; and append allows new

children to be created.

The tradeoff in determining what objects should be included in the

system DAC mechanism and how many access types should be
implemented for each object is between the user friend fineas of

the operating system and the complexity of the DAC mechanism.
The DAC mechanism is part of the Trusted Computing Base and
therefore must be incfuded in the assurances necessary in the

Criteria. At the Al level, the mechanism to support each new
protected object and ita access mode will have to be verified.

Aleo, the final implementation of the access modes should not be

so complicated that subjects cannot easily remember the
implication of each mode. If subjects cannot distinguish the

functions of each access mode, they may just grant to other

subjects either the full access rights or no access rights to an
object.

Other objects that have been protected with a computer system’s
DAC mechanism include mailboxes (message queues in general),

communication channels, forums (a type of bulletin board), and
devices. Their access tyDes are dependent on the implementation
and will not be discussed here.

9. Protected Subsystems
In order to provide users with access types finer than the standard
read, write, execute, etc., a rather limited number of systems

support protected subsystems. Saiker and Schroeder14 refer to
the need for “protected subsystems”, which they define as user.
provided programs which control access to files.

By extending the access control mechanism to allow objects to be

accessed in ways specified by subjects (programs as well ss

users), a system may allow a specific user-written program to be

designated “the only subject” allowed any access or a particular

type of access to specific files. A protected subsystem can be

defined as a collection of procedures and data objects that K

encapsulated in a domain of its own so that the internal structure

of a data object is accessible only to the procedures of the
protected subsystem, and the procedures may be called only at

designated domain entry points and only by designated subjects.

The encapsulated data files are the protected objects. Programs

in a protected subsystem act as managers for the protected

objects and enforce user-written access controls on them.

Subjects outside the protected subsystem are allowed to
manipulate the protected objects on Iy by invoking the manager

programs. Any access constraints that can be specified in an

algorithm can be implemented in a protected subsystem. Giving
users the abi lit y to construct protected subsystems out of their

own program and data files allows users to provide arbitra~

controls on sharing.

By allowing programs inside a protected subsystem to invoke

programs in another protected subsystem without compromising

the security of either, multiple protected subsystems can be used

to perform tasks. This limits the extent of damage a maficious or

malfunctioning borrowed program might have to objects protected

by the subsystem. Likewise, the lending user could also

encapsulate the loaned program in a protected subsystem of its
own to.protect it from the programs of the borrower.

9.1. Domain, MTS, and Others
Apollo’s Domain and University of Michigan’s Michigan Terminal

System (MTS) implement limited protected subsystems. Both

systems aflow users to write their own subsystems, but they do not
provide mechanisms for protected subsystems to interact with

each other. l%e general claim is that implementation of multiple
protected subsystems would require additional hardware and/or

extensive software assistance.

The two systems use different approaches in implementing
protected subsystems. In Domain, a user has to have an ability to

add a subsystem name to a system-wide list of subsystems,

thereby creating the subsystem. The user then assigns a certain

file to be a manager of the subsystem and another file to be an

object. The user then removes all other access to the object,
making the manager an exclusive accessor. Access to the

subsystem is controlled by the ACLS associated with the

subsystem manager.

During execution, the system verifies that both the manager and

the object are in the same subsystem and that the manager has
raised its privilege level allowinq it to access its own protected
oblects Only then is the subsystem manager allowed to operate

215



on the object, The additional step of ramng the manager’s

pnwiege level is designed to prevent any unintentional access to

the ob}ect.

In MTS the connection between the manager and the object IS

done via user-named “program keys. ” A user attaches the key to

the manager program and sets access on the oblect to that key
MTS makes each key unique by PreflXln9 It with tke LJser name

The user then removes ail other access (if any) to the object and

for additional protection sets the access to the manager to

execufe-only. A user does not need special privileges to set up a
protected subsystem.

During the association of the program key with the object, the user
is also required to specify a basic access mode that the manager

will be using. That is, if the manager needs only a read access to

the object, the object should be made only read. accessible to the
manager. This further enhances the protection of the object.

Other operating systems provide features which can be used as

limited protected subsystems. In Digital Equipment Corporation’s

TOPS-1015 a “file daemon” mechanism allows a user to better

fine-tune access to objects. Control Data Corporation’s NOS IS

capable of object protection with access control lists as well as

with passwords. If passwords on objects are kept secret from all

but the managers, then protected subsystems can be

implemented in NOS. Unix has a “setuld” pnvdege which allows

the process running a program to have the access rights of the
program’s owner. Multics’ ring structure can be wewed as a

mechanism to support protected subsystems.

9.2. Features of a Good Protected Subsystem

If protected subsystems are to be implemented, the capability
should be designed and built into an operating system during the

design and implementation of the operating system itself. Adding

it on later is difficult.

A good implementation of protected subsystems should provide a

straight-fonvard means for creating the subsystem. The

connection between the manager and the obtect should not be
obscured with secret passwords. The operating system should
protect the subsystem so nothing is revealed about the object or

the manager other than their interface with the user.

Objects should be allowed to have more than one manager so that
various groups of users could access the same objects through

specific managers. Managers should not be allowed to manage
more than one subsystem to avoid making the manager more

powerful and difficult to control than onglnally intended

Managers should be further controlled with the basic access

modes provided by the operating system for objects. Managers
must be allowed to manage multiple objects in the same

subsystem. Not only user-prepared programs, but system

programs and utihties, should qualify as potential managers.

Protected subsystems could provide a capability for increasing the

integrity of applications by prowding the users a means of

implementing data abstractions. The mechanism to ensure the

ability to set up protected subsystems could be part of the Trusted

Computmg Base (TCB), but the subsystems themselves would not.
The user could be assured that the manager programs were the

only object manipulators, but no a.%urance of their correct

operation, other than the basic access checks supported by the

operating system, would be provided.

10. Administering DAC
To set up the DAC mechamsm requires a Facilities User’s Guide

that explains how to properly admtmster a DAC system, and how

to identify the system security administrator and any protect

administrators and thew functions. The correct access must be

set on the system administration database, which would include

user registry, group definitions, etc. The guide must explain how

access must be set to handle fixing system problems, including

wewmg dumps and repairing file systems, etc. Access must be set

correctly to the standard libraries, including the SYStem

commands and subroutines, Initlaiization modules, and the

operating system source code. ACIS may need !O be set on the

supervisor entry points and the 1/0 daemons or dewce queues

In general, documentation should describe how to Imtiahze the

ACLS to best prowde a protected enwronment If the DAC

mechanism is flexible and prowdes the ablllty to set up different

control structures, examples should be gwen for a range of
control structures.

11. Auditing DAC
Audltlng !s an Important part of a secure computer system In

general an audit log message should include a time stamp, the
subject’s identity, the object’s Ident}ty, the type of action and any

other pertinent information Much of the audltmg on any

operating system 6 not speclflc to the DAC mechamsm, but m
many Instances the DAC mechamsm should place an entry in the

audtt log. Any operation that changes the control structure of the

DAC should be audited. Any change m any ACL, including the

default ACLS, should be audited. Any attempt to access a DAC
protected object should be audited Any changes to group
definitions should be audited,

12. Verifying DAC
Verifying the correctness of the DAC mechanism IS difficult. As
has been illustrated m this paper. DAC does not have well defined

rules as do mandatory access control systems. In fact no formal

model of DAC currently exista although some mention is made of

the DAC mechanisms in the Bell and LaPadula16 formal model for

mandatory access control. In systems such as SCOMP,17 whose
design has been formally verified for security, the only property

that was proven about the DAC mechanism was that it did not

violate the mandato~ access formal model. Research is needed

in deveiopmg a formal model for DAC, and verification of systems

where DAC is important should prove at least that the DAC
mechanism is consistent with its descriptive top level
specification.

13. DAC Add-ens
Systems such as IBM’s MVS have had DAC mechanisms added

on. The DAC checks are made before the operating system gets a

request for an obiect, and the request is not forwarded to the
operating system if it requests illegal access. Such add-ens are

basing their assurance on the inability of a user to get access to
the operating system through another interface or to cause the

operating system to retrieve illegal data with a legal request. Most

216



add-on packages are applied to systems that provide little security

on their own. Thus the assurance that the operating system could
not be subverted is nonexistent.

1. PREPARATION OF A DAC GUIDELINE
The Department of Defense Computer Security Center (DoDCSC)

was established in 1981 to provide uniform DoD policy for security

requirements, controls and measures to reduce the threat of

compromise of classified and sensitive information processed in

computer systems. The main goal of the DoDCSC is to encourage
the widespread availability of trusted computer systems. In

support of that goal a metric was created, the DoD Trusted
Computer System Evaluation Criterta,18 against which computer

systems could be evaluated for security. Since one of the features
required of a secure system is a DAC mechanism, several vendors

and system designers have expressed a need for guidance from

DoDCSC on how to build and implement effective DAC

mechanisms. In response to this need, the DoDCSC is preparing a

DAC Guideline.

1.1. PURPOSE OF THE DAC GUIDELINE

The purpose of the DAC Guideline is to:

1. discuss the issues involved in Implementing and

evaluating various DAC mechanisms.

2. provide information to the evaluator which will aid in

assessing the effectiveness of a DAC mechanism in
meeting the requirements of a particular evaluation

class defined in the Criteria, and

3. provide guidance to systems designers and

developers on how to build DAC mechanisms.

1.2. PROPOSED CONTENTS OF THE DAC GUIDELINE

The contents of the DAC Guideline have not been finalized at this
time. Most of the information presented in this paper will be

included in the Guideline. The following additional topics are
proposed and may be changed or added to as the Guideline is

being developed.

- DEFINITION OF DISCRETIONARY ACCESS

CONTROL. The DAC definition, as it appears in the
Criteria, will be included along with a narrative

interpretation of the definition.

. DESCRIPTIONS OF DAC MECHANISMS. Currently-

uead DAC mechanisms, such es Capabilities, Profiles,
Passwords, Protection Bite, and ACLS, will be

described, including their limitations, strengths, and

weaknesses. The Guideline will include

recommendations es to which mechanism or DAC
features can be used to satisfy the requirements of a

particular evaluation class of the Criteria. Emphasis
will be placed on ‘good practice’, not just on the

minimum requirements for a particular evaluation

class. Good practice means that the DAC mechanism
should be designed so that users can easily use the

comPuter to enforce the same information access
rules that would be enforced in an all-paper world.

. ENVIRONMENTAL CONTROLS. The Guideline will

include information on the environmental security

controls (physical, personnel, and administrative) on
which various DAC mechanisms depend in order to be

effective.

- FACILITIES USER’S GUIDE INFORMATION.’ DAC
mechanisms can be degraded by improper use,

therefore, the Guideline will include information on
the preparation of a Facilities User’s Guide that

explains how to properly set up and administer a DAC

system.

- MAPPING THE CRITERIA AGAINST DAC
MECHANISMS. The Guideline will give an overview

and interpretation of the DAC requirements as they

appear for each evaluation class in the Criteria.

1.3. SCHEDULE FOR PUBLICATION OF THE DAC GUIDELINE

A first draft of the DAC Guideline will be written and distributed for

review by the end of July 1985.

1.4. VENDOR PARTICIPATION IN THE PREPARATION OF
THE DAC GUIDELINE

Several computer hardware and software vendors are in the

process of installing, or have already installed, DAC mechanisms
in their systems which are intended to meet the requirements of

the DoD Trusted Computer System Criteria. Much of the technical

information presented in this paper was collected at the request of

the DoD Computer Security Center by the Aerospace Corporation
in response to the need and the interest shown by vendors.

Representatives of the DoD Computer Security Center plan to visit
computer hardware and software vendors to discuss the DAC

technical paper developed by the Aerospace Corporation.

~scussions with each vendor will ~ aimed at Snewering me

following questions:

- Haa the vendor installed any of the DAC mechanisms

described? Does the vendor have any experience
with the reliability, user-friendliness, or
implementation problems of any of the mechanisms

that they have installed?

- How difficult would it be for the vendor to change a

current DAC mechanism or add a new mechanism if
necessary to meet a particular class of the Criteria?

- Does the vendor know of other DAC mechanisms

which were not covered in the DAC technical paper?

In order to produce a DAC Guideline that is relevant and helpful to

the vendor community, vendor reaction to the DAC technical

paper and vendor feedback to draft versiona of the DAC Guideline
will be solicited by the DoD Computer Security Center.

References

1. Schroeder. M.D., Cooperation of Mutua//y Suspicious
Subsysferns, PhD dissertation, M. I.T., 1972.

217



2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13,

14,

15.

16,

17.

18.

DoD Computer Security Center, Eva/uafed Products List

for Trusted Computer Systems, DoD. CSC-EPL, 1984.

Cohen. F., “Computer Viruses . Theo~ and Experiments,”

7ffI Security Conference, DOD/NBS, September 1984, PP.

388402.

Saltzer, Jerome H., “Protection and the Control of

Information in Multica,” Communications of the ACM, Vol.

17, No, 7, Juiy 1974, pp. 388-402.

Lampson, B,W., “Protection,” Proc. Fifth Annual Princeton

Conference on Information Sc!ences and Systems,

Princeton University, March 1971.

Fabry, R.S., “Capability Baaed Addressing,”

Communications of the ACM, Vol. 17, No. 7, July 1974, pp.

403-411.

Karger,P.A. and A.J. HerbeR, “Lattice Security and

Traceability of Access,” Symposium on Security and

Privacy, IEEE, April 1984, pp. 13-23.

Computer Associates, CA-SENTINEL Reference Guide,

1963.

IBM, Access Method Services, 1983.

Control Data Corporation, NOS Version 2 Reference Set, 3

ad., 1983.

UC Berkeley, Unix Programmer’s Manual, 7 ad., 1981.

Honeywell Information Systems, Inc., Mu/tics

Programmer’s Manual -- Reference Guide, 7 ad., AG91.

APOLLO Computer Inc., The DOMAIN System

Administrator’s Guide, 3@., 1983,

Saltzer, Jerome H. and Michael D. Schroeder, “The
Protection of Information in Computer Systems,”

Proceedings of the IEEE, Vol. 63, No. 9, 8eptember 1975,

pp. 1278-1308.

Digital, DECSYSTEM 10 Users Handbook, 1963.

Bell, D.E. and LaPadula, L.J., “Secure Computer Systems

Unified Exposition and Multics Interpretation,” Tech.

report MTR-2997 Rev. 1, MITRE Corp., March 1976.

Benzel Vickers, T., “Overview of the SCOMP Architecture
and Security Mechanisms.’” Tech. report MTR.9071,

MITRE Corp.. September 1983,

DoD Computer Security Center, Deparrmen? of Defense

Trusted Computer System Evacuation Criteria, DoD, CSC-

STD-PO1 .83,1983.

218


