
System Security

Mohamed Sabt

Univ Rennes, CNRS, IRISA

2023 / 2024

Files as the True OS Atom

Part I

Files and Directories

Abstractions

Virtualization of the CPU: Process

Virtualization of the memory: Address space

Virtualization of the (persistent) storage: file and directory.

3

Files 1/2

From a user’s perspective
• A file is simply a linear array of bytes, each of which you can read or write.

• Files are persistent across reboots and power failures.

From OS perspective
• Map bytes as collection of blocks on storage device.

Each file has some kind of low-level name, often referred to as its
inode number.

4

Files 2/2

Persistent data on storage is organized as files.

Files are logical units organized by a file system.
• The file system maps logical information to bits and bytes on the storage

device.

The file system runs in kernel space
• Access to files goes through system calls

5

Unix Design

Every very persistent resource is accessed through a file

Consequence of “everything is a file”:
• User-space processes can operate on files only through syscalls

• OS can check for each syscall (kernel-space operation), whether the operation
is permitted

6

Files Vs Memory 1/2

Disk provide persistent storage. Data won’t go away after reboot.

Disks are much slower than memory:
• Latency.

• Throughput.

Capacity of disks is usually much larger.

7

Files Vs Memory 2/2

Every memory location has an address that can be directly accessed.

In files, everything is relative
• A location of a file depends on the directory in which it is stored.

• Open the file before any access and close the file after all accesses are
complete.

• A pointer must be used to store the current read or write position within the
file. E.g. To read a byte in a specific file.

8

Directory

Directories are files of type directory (i.e., with metadata type
“directory”).
• Directory contents are quite specific: it contains a list of (user-readable name,

low-level name) pairs.

Each directory has some kind of low-level name, often referred to as
its inode number.

By placing directories within other directories, users are able to build
an arbitrary directory tree (or directory hierarchy), under which all
files and directories are stored.

9

File System Structure

10

Name inode

Access time Size UID Meta..

Blk 1 Blk 2 Indirect Blk 1

File
Content

File
Content

Block
Addresses

File
Content

File
Content

Directory Entry

Inode

Files Metadata (inodes)

 Each file has an inode containing metadata about the file. An
application can retrieve this metadata using stat.

 The following is a list of the information typically found in, or
associated with, the file inode:
• Name. the only information kept in human readable form.

• Identifier. A number that uniquely identifies the file within the file system.
(also called inode number → ls -i).

• Type. File type.

• Location. Pointer to location of file on device.

• Size.

• Protection. Access control information. Owner, group, permissions, etc.

• Monitoring. Access time, etc.

11

Example stat

12

Directory Tree

The directory hierarchy starts at a root directory
(in Unix-based systems, the root directory is
simply referred to as /) and uses some kind of
separator to name subsequent sub-directories
until the desired file or directory is named.

Directories and files can have the same name as
long as they are in different locations in the file-
system tree.

Special directories
• / → root
• . → current directory
• .. → parent directory

13

Unix Directories
/: The root directory

/bin: Essential low-level system utilities
• /user/bin: higher-level system utilities and application programs
• /sbin: superuser system utilities

/lib: program libraries (collection of system calls that can be included in
programs by a compiler) for low-level system utilities.
• /usr/lib: program libraries for higher-level user programs

/tmp: Temporary file storage space (can be used by any user)

/home: user home directories containing personal file space for each user.
Each directory is named after the login of the user.

/etc: Unix system configuration and information files.

/dev: hardware devices.

14

Files Naming

Names of files consist of two parts separated by a period.

The first part is an arbitrary name.

The second part of the file name is usually used to indicate the file
type
• whether it is C code (e.g., .c), or an image (e.g., .jpg), or a music file (e.g.,

.mp3).
• However, this is usually just a convention

man basename
15

Part II

File Constructs

File System Constructs

17

Blocks

Disks are divided into blocks of fixed size.

Typically 4 KB blocks.

Numbered from 0 to N-1.

18

Blocks Terminology

 Superblock: this holds data about the system like the version, block
size, and the inode number of the root directory.

 Block Bitmap: each bit tells if the corresponding block is free.

 Data Blocks: the files are stored here, but split amongst different
blocks.

19

Files Philosophies

The 3 views of a file
• File name (human readable)

• Inode and device number (operating system)

• File descriptor (process view)

Types
• Typed files: System defines all possible file types (e.g., text document, source

file, html file). File type set at creation, file type specifies operations.

• Untyped files: File is a sequence of bytes. System does neither understand
nor care about contents. File operations apply to all files

20

File Descriptor

One important aspect of open() is what it returns: a file descriptor.

A file descriptor is just an integer, private per process, and is used in
Unix systems to access files;
• thus, once a file is opened, you use the file descriptor to read or write the file,

assuming you have permission to do so.

You can think of a file descriptor is as a pointer to an object of type
file;
• once you have such an object, you can call other “methods” to access the

file, like read() and write().

21

Special File Descriptors

22

Integer value Name

0 Standard input

1 Standard output

2 Standard error

Open File Table

The OS tracks all the opened files in the system.

Each entry in this table tracks
• which underlying file the descriptor refers to,

• the current offset,

• other relevant details such as whether the file is readable or writable.

• Reference count (tracks number of processes that have opened the file)

A call to open() creates a different entry in the OFT.

23

Per Process Table

File descriptors are managed on a per-process basis.
• To track which files are opened.

The PCB contains an array of all opened files.

Each entry of this array points to an entry in the system wide table.

24

Part III

File System Interface

File Operations

Files operations include:
• Open a file.

• Close a file.

• Read file content.

• Write new content into a file.

• Get/Set file attributes.

26

Directory Operations

Directory operations include:
• Create a file in the directory

• Delete a file from the directory

• List a directory's contents

• Rename a file in the directory

• Traverse the file system

27

System Call: Create

The creat system call create a new file in the filesystem.

fd = creat(pathname, mode), where
• If pathname of an existing file is passed to creat, it will truncate the file (set its

size to 0 if permissions allow) , while ignoring mode.

Fun story: Ken Thompson was asked what he would do differently if
he were redesigning Unix, he replied: “I’d spell creat with an e.”

28

System Call: Open

Open is the first step to access data in a file.

fd = open(pathname, flags, mode), where
• flags indicate the type of open (reading or writing),
• mode gives the permissions of the file is being created.
• The returned file descriptor is nothing but the index of the entry in the user

file descriptor table.
• Example: int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC,

S_IRUSR|S_IWUSR);

Entries in the user file descriptor point to unique entries in the file
table, even if the same file is opened twice.

29

System Call: Close

A process closes an open file where it no longer wants to access it.

ret = close(fd)

When closing a file, the kernel first deals with the entries in the user
file descriptor and the file table.

When a process exists, the kernel examines the active user file
descriptors and closes each one.
• Hence, no process can keep a file open after its termination.

30

System Call: Read/Write

number = read/write(fd, buffer, count), where
• fd is the descriptor returned by open,

• buffer is the address of the data where the data will be read,

• count the number of bytes to be read/written.

• It returns how many bytes where successfully read/written.

31

System Call: lseak

off_t lseek(int fd, off_t offset, int whence), where
• fd is the descriptor returned by open,

• which positions the file offset to a particular location within the file,

• Whence: enum to interpret how the offset is computed.

This syscall explicitly modifies the current offset inside the OFT.

32

System Call: Dup

newfd = dup(fd)

The dup system call copies the given file descriptor to the first free
slot in the user file descriptor table, and returns the new file
descriptor.

Since it duplicates the entry in the user file descriptor, it increments
the reference count in the file table.

33

System Call: Change Owner/Mode

Changing the owner or mode (access permissions) of a file are
operations on the inode.

chown(pathname, owner, group)

chmod(pathname, mode)

34

System Call: Stat and Fstat

The system calls stat and fstat allow processes to query the status of
files, returning information such as the file type, file owner, access
permissions, number of links, etc.

stat(pathname, statbuffer)

fstat(fd, statbuffer), where
• statbuffer is the address of the data that will get filled in the call.

The system calls simply write the fields of inodes into the statbuffer.

35

System Call: Removing Files

unlink(pathname)
• Removes a directory entry for a file.

36

System Call: Link

The link system call links a file to a new name in the directory structure.
• It creates a new directory entry which points to an existing inode.

link(source file name, target file name)

After linking the files, the kernel does not keep track of which file was the
original one. Therefore, no name is treated specially.

Reference count within the inode number.
• This reference count (sometimes called the link count) allows the file system to track how

many different file names have been linked to this particular inode.

Even a superuser is not allowed to link directories (why? See TD).

37

Symbolic (or Soft) Links

A special kind of files.

Soft link: a directory entry points to a file that contains a file name,
the OS resolves the file name when it is accessed.

Beware of dangling references!!
• Soft links don’t get updated when the target is moved.

38

Main File Manipulation Commands

 `touch` Update the access and modification times of FILE to the
current time, or create an empty file.

`mkdir mydir` creates a directory (where you are)

`rmdir mydir` deletes an empty directory

`rm -rf` forces to recursively delete a non empty directory.

`cp file1 file2` copies file1 on file2 (overwriting if it already exists,
creating a new one otherwise)

`rm file1` removes file1

`mv file1 file2` moves file1 on file2

39

ls

 `ls` can be used to inquire about various attributes of one or more
files or directories.

You must have read permission to a directory to be able to use the ls
command on that directory and files under that directory.

By default, the list of files within a directory is sorted by filename.
• You can modify the sort order by using some of the flags.

You should be aware that the files starting with . (period) will not
processed unless you use the –a flag with the ls command.

40

Cat (also check bat)

 `cat` is used to display a text file or to concatenate multiple files into
a single file.

By default, the cat command generates outputs into the standard
output and accepts input from standard input.

The cat command takes in one or more filenames as its arguments.
The files are concatenated in the order they appear in the argument
list.

41

The Ranger Package

Ranger is a minimal file manager that allows you not only to navigate
through the files but also to preview them.

42

Part IV
Making and Mounting

A File System

Make File System

 To make a file system, most file systems provide a tool, usually
referred to as mkfs (pronounced “make fs”).

The idea is as follows: give the tool, as input,
• a device (such as a disk partition, e.g., /dev/sda1),

• and a file system type (e.g., ext3),

• and it simply writes an empty file system, starting with a root directory, onto
that disk partition.

44

Mounting File System

 However, once such a file system is created, it needs to be made
accessible within the uniform file-system tree. This task is achieved
via the mount program

What mount does, quite simply is
• take an existing directory as a target mount point, and

• essentially paste the new file system onto the directory tree at that point.

You can permanently configure where a drive attached to a machine
should be mounted by editing the file /etc/fstab.

45

Illustration

46

/etc/fstab
The Linux systems filesystem table, aka fstab, is a configuration table

designed to ease the burden of mounting and unmounting file systems to a
machine.
• It is designed to configure a rule where specific file systems are detected, then

automatically mounted every time the system boots.

Table Structure
• Device: name or UUID.
• Mount point. “none” if it is swap.
• File system type.
• Options – separated by commas. “defaults” for default options
• Backup operation – outdated and should not used.
• File System Check Order – 0 no checks, 1 the root, 2 others.

47

Example

 Imagine we have an unmounted ext4 file system, stored in device
partition /dev/sda1, that has the following contents: a root directory
which contains two sub-directories, a and b:
• Let’s say we wish to mount this file system at the mount point /home/users.

We would type something like this: prompt> mount -t ext4 /dev/sda1
/home/users

• Now, what do we have after prompt> ls /home/users/

To see what is mounted on your system, and at which points, simply
run the mount program.
• the proc file system (a file system for accessing information about current

processes),
• tmpfs (a file system just for temporary files)

48

