
System Security

Mohamed Sabt

Univ Rennes, CNRS, IRISA

2023 / 2024

Files as the True OS Atom

Part I

Files and Directories

Abstractions

Virtualization of the CPU: Process

Virtualization of the memory: Address space

Virtualization of the (persistent) storage: file and directory.

3

Files 1/2

From a user’s perspective
• A file is simply a linear array of bytes, each of which you can read or write.

• Files are persistent across reboots and power failures.

From OS perspective
• Map bytes as collection of blocks on storage device.

Each file has some kind of low-level name, often referred to as its
inode number.

4

Files 2/2

Persistent data on storage is organized as files.

Files are logical units organized by a file system.
• The file system maps logical information to bits and bytes on the storage

device.

The file system runs in kernel space
• Access to files goes through system calls

5

Unix Design

Every very persistent resource is accessed through a file

Consequence of “everything is a file”:
• User-space processes can operate on files only through syscalls

• OS can check for each syscall (kernel-space operation), whether the operation
is permitted

6

Files Vs Memory 1/2

Disk provide persistent storage. Data won’t go away after reboot.

Disks are much slower than memory:
• Latency.

• Throughput.

Capacity of disks is usually much larger.

7

Files Vs Memory 2/2

Every memory location has an address that can be directly accessed.

In files, everything is relative
• A location of a file depends on the directory in which it is stored.

• Open the file before any access and close the file after all accesses are
complete.

• A pointer must be used to store the current read or write position within the
file. E.g. To read a byte in a specific file.

8

Directory

Directories are files of type directory (i.e., with metadata type
“directory”).
• Directory contents are quite specific: it contains a list of (user-readable name,

low-level name) pairs.

Each directory has some kind of low-level name, often referred to as
its inode number.

By placing directories within other directories, users are able to build
an arbitrary directory tree (or directory hierarchy), under which all
files and directories are stored.

9

File System Structure

10

Name inode

Access time Size UID Meta..

Blk 1 Blk 2 Indirect Blk 1

File
Content

File
Content

Block
Addresses

File
Content

File
Content

Directory Entry

Inode

Files Metadata (inodes)

 Each file has an inode containing metadata about the file. An
application can retrieve this metadata using stat.

 The following is a list of the information typically found in, or
associated with, the file inode:
• Name. the only information kept in human readable form.

• Identifier. A number that uniquely identifies the file within the file system.
(also called inode number → ls -i).

• Type. File type.

• Location. Pointer to location of file on device.

• Size.

• Protection. Access control information. Owner, group, permissions, etc.

• Monitoring. Access time, etc.

11

Example stat

12

Directory Tree

The directory hierarchy starts at a root directory
(in Unix-based systems, the root directory is
simply referred to as /) and uses some kind of
separator to name subsequent sub-directories
until the desired file or directory is named.

Directories and files can have the same name as
long as they are in different locations in the file-
system tree.

Special directories
• / → root
• . → current directory
• .. → parent directory

13

Unix Directories
/: The root directory

/bin: Essential low-level system utilities
• /user/bin: higher-level system utilities and application programs
• /sbin: superuser system utilities

/lib: program libraries (collection of system calls that can be included in
programs by a compiler) for low-level system utilities.
• /usr/lib: program libraries for higher-level user programs

/tmp: Temporary file storage space (can be used by any user)

/home: user home directories containing personal file space for each user.
Each directory is named after the login of the user.

/etc: Unix system configuration and information files.

/dev: hardware devices.

14

Files Naming

Names of files consist of two parts separated by a period.

The first part is an arbitrary name.

The second part of the file name is usually used to indicate the file
type
• whether it is C code (e.g., .c), or an image (e.g., .jpg), or a music file (e.g.,

.mp3).
• However, this is usually just a convention

man basename
15

Part II

File Constructs

File System Constructs

17

Blocks

Disks are divided into blocks of fixed size.

Typically 4 KB blocks.

Numbered from 0 to N-1.

18

Blocks Terminology

 Superblock: this holds data about the system like the version, block
size, and the inode number of the root directory.

 Block Bitmap: each bit tells if the corresponding block is free.

 Data Blocks: the files are stored here, but split amongst different
blocks.

19

Files Philosophies

The 3 views of a file
• File name (human readable)

• Inode and device number (operating system)

• File descriptor (process view)

Types
• Typed files: System defines all possible file types (e.g., text document, source

file, html file). File type set at creation, file type specifies operations.

• Untyped files: File is a sequence of bytes. System does neither understand
nor care about contents. File operations apply to all files

20

File Descriptor

One important aspect of open() is what it returns: a file descriptor.

A file descriptor is just an integer, private per process, and is used in
Unix systems to access files;
• thus, once a file is opened, you use the file descriptor to read or write the file,

assuming you have permission to do so.

You can think of a file descriptor is as a pointer to an object of type
file;
• once you have such an object, you can call other “methods” to access the

file, like read() and write().

21

Special File Descriptors

22

Integer value Name

0 Standard input

1 Standard output

2 Standard error

Open File Table

The OS tracks all the opened files in the system.

Each entry in this table tracks
• which underlying file the descriptor refers to,

• the current offset,

• other relevant details such as whether the file is readable or writable.

• Reference count (tracks number of processes that have opened the file)

A call to open() creates a different entry in the OFT.

23

Per Process Table

File descriptors are managed on a per-process basis.
• To track which files are opened.

The PCB contains an array of all opened files.

Each entry of this array points to an entry in the system wide table.

24

Part III

File System Interface

File Operations

Files operations include:
• Open a file.

• Close a file.

• Read file content.

• Write new content into a file.

• Get/Set file attributes.

26

Directory Operations

Directory operations include:
• Create a file in the directory

• Delete a file from the directory

• List a directory's contents

• Rename a file in the directory

• Traverse the file system

27

System Call: Create

The creat system call create a new file in the filesystem.

fd = creat(pathname, mode), where
• If pathname of an existing file is passed to creat, it will truncate the file (set its

size to 0 if permissions allow) , while ignoring mode.

Fun story: Ken Thompson was asked what he would do differently if
he were redesigning Unix, he replied: “I’d spell creat with an e.”

28

System Call: Open

Open is the first step to access data in a file.

fd = open(pathname, flags, mode), where
• flags indicate the type of open (reading or writing),
• mode gives the permissions of the file is being created.
• The returned file descriptor is nothing but the index of the entry in the user

file descriptor table.
• Example: int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC,

S_IRUSR|S_IWUSR);

Entries in the user file descriptor point to unique entries in the file
table, even if the same file is opened twice.

29

System Call: Close

A process closes an open file where it no longer wants to access it.

ret = close(fd)

When closing a file, the kernel first deals with the entries in the user
file descriptor and the file table.

When a process exists, the kernel examines the active user file
descriptors and closes each one.
• Hence, no process can keep a file open after its termination.

30

System Call: Read/Write

number = read/write(fd, buffer, count), where
• fd is the descriptor returned by open,

• buffer is the address of the data where the data will be read,

• count the number of bytes to be read/written.

• It returns how many bytes where successfully read/written.

31

System Call: lseak

off_t lseek(int fd, off_t offset, int whence), where
• fd is the descriptor returned by open,

• which positions the file offset to a particular location within the file,

• Whence: enum to interpret how the offset is computed.

This syscall explicitly modifies the current offset inside the OFT.

32

System Call: Dup

newfd = dup(fd)

The dup system call copies the given file descriptor to the first free
slot in the user file descriptor table, and returns the new file
descriptor.

Since it duplicates the entry in the user file descriptor, it increments
the reference count in the file table.

33

System Call: Change Owner/Mode

Changing the owner or mode (access permissions) of a file are
operations on the inode.

chown(pathname, owner, group)

chmod(pathname, mode)

34

System Call: Stat and Fstat

The system calls stat and fstat allow processes to query the status of
files, returning information such as the file type, file owner, access
permissions, number of links, etc.

stat(pathname, statbuffer)

fstat(fd, statbuffer), where
• statbuffer is the address of the data that will get filled in the call.

The system calls simply write the fields of inodes into the statbuffer.

35

System Call: Removing Files

unlink(pathname)
• Removes a directory entry for a file.

36

System Call: Link

The link system call links a file to a new name in the directory structure.
• It creates a new directory entry which points to an existing inode.

link(source file name, target file name)

After linking the files, the kernel does not keep track of which file was the
original one. Therefore, no name is treated specially.

Reference count within the inode number.
• This reference count (sometimes called the link count) allows the file system to track how

many different file names have been linked to this particular inode.

Even a superuser is not allowed to link directories (why? See TD).

37

Symbolic (or Soft) Links

A special kind of files.

Soft link: a directory entry points to a file that contains a file name,
the OS resolves the file name when it is accessed.

Beware of dangling references!!
• Soft links don’t get updated when the target is moved.

38

Main File Manipulation Commands

 `touch` Update the access and modification times of FILE to the
current time, or create an empty file.

`mkdir mydir` creates a directory (where you are)

`rmdir mydir` deletes an empty directory

`rm -rf` forces to recursively delete a non empty directory.

`cp file1 file2` copies file1 on file2 (overwriting if it already exists,
creating a new one otherwise)

`rm file1` removes file1

`mv file1 file2` moves file1 on file2

39

ls

 `ls` can be used to inquire about various attributes of one or more
files or directories.

You must have read permission to a directory to be able to use the ls
command on that directory and files under that directory.

By default, the list of files within a directory is sorted by filename.
• You can modify the sort order by using some of the flags.

You should be aware that the files starting with . (period) will not
processed unless you use the –a flag with the ls command.

40

Cat (also check bat)

 `cat` is used to display a text file or to concatenate multiple files into
a single file.

By default, the cat command generates outputs into the standard
output and accepts input from standard input.

The cat command takes in one or more filenames as its arguments.
The files are concatenated in the order they appear in the argument
list.

41

The Ranger Package

Ranger is a minimal file manager that allows you not only to navigate
through the files but also to preview them.

42

Part IV
Making and Mounting

A File System

Make File System

 To make a file system, most file systems provide a tool, usually
referred to as mkfs (pronounced “make fs”).

The idea is as follows: give the tool, as input,
• a device (such as a disk partition, e.g., /dev/sda1),

• and a file system type (e.g., ext3),

• and it simply writes an empty file system, starting with a root directory, onto
that disk partition.

44

Mounting File System

 However, once such a file system is created, it needs to be made
accessible within the uniform file-system tree. This task is achieved
via the mount program

What mount does, quite simply is
• take an existing directory as a target mount point, and

• essentially paste the new file system onto the directory tree at that point.

You can permanently configure where a drive attached to a machine
should be mounted by editing the file /etc/fstab.

45

Illustration

46

/etc/fstab
The Linux systems filesystem table, aka fstab, is a configuration table

designed to ease the burden of mounting and unmounting file systems to a
machine.
• It is designed to configure a rule where specific file systems are detected, then

automatically mounted every time the system boots.

Table Structure
• Device: name or UUID.
• Mount point. “none” if it is swap.
• File system type.
• Options – separated by commas. “defaults” for default options
• Backup operation – outdated and should not used.
• File System Check Order – 0 no checks, 1 the root, 2 others.

47

Example

 Imagine we have an unmounted ext4 file system, stored in device
partition /dev/sda1, that has the following contents: a root directory
which contains two sub-directories, a and b:
• Let’s say we wish to mount this file system at the mount point /home/users.

We would type something like this: prompt> mount -t ext4 /dev/sda1
/home/users

• Now, what do we have after prompt> ls /home/users/

To see what is mounted on your system, and at which points, simply
run the mount program.
• the proc file system (a file system for accessing information about current

processes),
• tmpfs (a file system just for temporary files)

48

