Handling parametric and non-parametric additive faults in LTV Systems

Qinghua Zhang & Michèle Basseville

INRIA & CNRS-IRISA, Rennes, France

9th IFAC SAFEPROCESS, Paris, France, Sept. 2-4, 2015
Problem and approaches

FDI for LTV systems
- Relevant approach to FDI of NL systems (linearization along the actual or nominal trajectory)
- LTV systems more general than widely used LPV systems

Three main approaches
- Detection filter, game theoretic approach to filter design, unknown input decoupled filter, UIO, finite horizon fault detection filter
 Keviczky, Edelmayer, Chung-Speyer, Chen-Patton, Hou-Muller, Zhong-Ding, ...
- Adaptive observers, set-valued observers, time domain solutions to different $\mathcal{H}_- / \mathcal{H}_\infty$ problems
 Zhang-Xu, Rosa-Shamma-Athans, Li-Zhou, ...
- Parity-based fault estimation Zhong-Ding
Different fault types

- **Parametric** fault: (rare) changes in a parameter vector
- **Non-parametric** fault: arbitrary unknown function of time

Most FDI methods for LTV systems address the non-parametric fault case, or the parametric one.

Contribution

- A statistical approach exists for constant parametric faults
- Extension to both TV parametric and non-parametric faults

Two solutions:

- Assuming (piecewise) constant parametric fault and rejecting the non-parametric fault
- Adapting to the TV parametric fault
Model and assumptions

MIMO LTV system (\mathbb{H}_0)

\[
\begin{align*}
X_{k+1} &= F_k X_k + G_k U_k + W_k \\
Y_k &= H_k X_k + J_k U_k + V_k
\end{align*}
\]

- F_k, G_k, H_k, J_k: bounded TV matrices
- W_k, V_k: independent white Gaussian noises, TV cov. Q_k, R_k
- (H_k, F_k) observable & $(F_k, Q_k^{1/2})$ controllable, both uniformly

Additive faults (\mathbb{H}_1)

\[
\begin{align*}
X_{k+1} &= F_k X_k + G_k U_k + W_k + \Psi_k \theta_k + E_k f_k \\
Y_k &= H_k X_k + J_k U_k + V_k
\end{align*}
\]

- known fault profile matrix Ψ_k, unknown fault vector θ_k
- known fault incidence matrix E_k, unknown fault profile vector f_k
Different fault cases

- $E_k f_k$ and $\psi_k \theta_k$ typically represent actuator faults
- f_k: no a priori information; θ_k: constant or slowly varying
- Parametric faults in both state and output equations (sensor faults) can be handled
- This modeling framework encompasses multiple faults
- Non-additive faults are not handled

Particular cases

- Actuator bias: $U_k \rightarrow U_k + \theta$; then $\psi_k = G_k$
- Actuator gain loss: $U_k \rightarrow (I - \text{diag}(\theta))U_k$; then $\psi_k = -G_k \text{diag}(U_k)$
- $\psi_k = \delta_{r,k+1} I$: investigated by Willsky-Jones, Gustafsson with F_k assumed exponentially stable
Fault effect on the innovation of a linear filter

State prediction error and innovation - Fault free case

\[\tilde{X}_k \triangleq X_k - \hat{X}_{k|k-1} \]
\[\varepsilon_k \triangleq Y_k - J_k U_k - H_k \hat{X}_{k|k-1} \]

\[\tilde{X}_{k+1}^0 = F_k(I - K_k H_k)\tilde{X}_k^0 - F_k K_k V_k + W_k \]
\[\varepsilon_k^0 = H_k \tilde{X}_k^0 + V_k \]

State prediction error and innovation - Faulty case

\[\tilde{X}_{k+1} = F_k(I - K_k H_k)\tilde{X}_k - F_k K_k V_k + W_k + \psi_k \theta_k + E_k f_k \]
\[\varepsilon_k = H_k \tilde{X}_k + V_k \]
Introducing a matrix gain

\[
\eta_k \triangleq \tilde{X}_k - \Gamma_k \theta_k
\]

\[
\Gamma_{k+1} \triangleq F_k (I - \mathcal{K}_k H_k) \Gamma_k + \Psi_k , \quad \Gamma_0 \triangleq 0
\]

\[
\eta_{k+1} = F_k (I - \mathcal{K}_k H_k) \eta_k - F_k \mathcal{K}_k V_k + W_k
\]

\[- \Gamma_{k+1} (\theta_{k+1} - \theta_k) + E_k f_k \]

Distinguishing two cases for the parametric fault vector

- Constant \(\theta \)
- TV \(\theta_k \)
Fault effect

First solution: rejecting the non-parametric fault

Second solution: adapting to the parametric fault

Constant parametric fault vector

\[\theta_k \triangleq \theta \]

Let \[\zeta_{k+1} \triangleq F_k (I - \mathcal{K}_k H_k) \zeta_k + E_k f_k , \quad \zeta_0 = 0 \]

cf. \[\Gamma_{k+1} \triangleq F_k (I - \mathcal{K}_k H_k) \Gamma_k + \Psi_k , \quad \Gamma_0 \triangleq 0 \]

\[\eta_{k+1} = F_k (I - \mathcal{K}_k H_k) \eta_k - F_k \mathcal{K}_k V_k + W_k + E_k f_k \]

\[\eta_k = \tilde{X}_k^0 + \zeta_k \]

Additive fault effect

\[\varepsilon_k = \varepsilon_k^0 + H_k \Gamma_k \theta + H_k \zeta_k \]
Guaranteed properties of the recursive Γ_k and ζ_k

- Γ_k depends on the fault gain Ψ_k, not on the fault vector θ.
- The matrix gain Γ_k computed from the bounded Ψ_k is bounded even when the system is not stable.
- Similarly, if f_k is bounded, ζ_k is bounded.
- The persistent excitation condition:
 $$\sum_k \Gamma_k^T H_k^T \Sigma_k^{-1} H_k \Gamma_k$$
 is strictly positive definite
 is satisfied even when the number of sensors is smaller than the number of faults.

Difference with the Willsky-Jones algorithm

- Computations based on recursive formulas involving F_k (thus required to be stable)
TV parametric fault vector

\[
\theta_{k+1} = \theta_k + e_k, \quad |e_k| \leq \delta
\]

\[
\delta_{k+1} \triangleq F_k (I - \mathcal{K}_k H_k) \delta_k - \Gamma_{k+1} e_k, \quad \delta_0 \triangleq 0
\]

\[
\eta_k = \tilde{\chi}_k^0 + \delta_k + \zeta_k
\]

Additive fault effect

\[
\varepsilon_k = \varepsilon_k^0 + H_k \Gamma_k \theta_k + H_k \delta_k + H_k \zeta_k
\]

\(\Gamma_k\) is bounded

\(F_k (I - \mathcal{K}_k H_k)\) defines an exponentially stable LTV system
Kitanidis filter (UI-KF) for rejecting $E_k f_k$

\[
\begin{aligned}
\left\{
\begin{array}{l}
X_{k+1} = F_k X_k + G_k U_k + W_k + E_k f_k \\
Y_k = H_k X_k + J_k U_k + V_k
\end{array}
\right.
\]

\[
\begin{align*}
\hat{X}_{k+1} &= F_k \hat{X}_k + G_k U_k + F_k L_k (Y_k - J_k U_k - H_k \hat{X}_k) \\
L_k &= K_k + (I - K_k H_k) E_{k-1} (E^T_{k-1} H_k^T \Sigma_{k}^{-1} H_k E_{k-1})^{-1} E^T_{k-1} H_k^T \Sigma_{k}^{-1} \\
K_k &= P_k H_k^T \Sigma_{k}^{-1} \\
P_{k+1} &= F_k (I - L_k H_k) P_k (I - L_k H_k)^T F_k^T + F_k L_k R_k L_k^T F_k^T + Q_k \\
\Sigma_k &= H_k P_k H_k^T + R_k
\end{align*}
\]

$\mathcal{K}_k \triangleq L_k$
Monitoring a constant parametric fault

Fault effect on the Kitanidis filter innovation

\[\varepsilon_k = \varepsilon_k^0 + H_k \Delta_k \theta \]

\[\Delta_{k+1} = F_k (I - L_k H_k) \Delta_k + \psi_k, \quad \Delta_0 = 0 \]

The Kitanidis filter innovation is white

Proof in the notes.

Use the GLR algorithm
MLE of θ under \mathbb{H}_1 - Known fault profile matrix

$\mathbb{H}_0 : \varepsilon_k \sim \mathcal{N}(0, \Sigma_k)$, $\mathbb{H}_1 : \varepsilon_k \sim \mathcal{N}(H_k \Gamma_k \theta, \Sigma_k)$

$\hat{\theta}_k = \arg\min_{\tilde{\theta}} \sum_{j=1}^{k} (\varepsilon_j - H_j \Gamma_j \tilde{\theta})^T \Sigma_j^{-1} (\varepsilon_j - H_j \Gamma_j \tilde{\theta}) = C_k^{-1} d_k$

$C_k = C_{k-1} + \Gamma_k^T H_k^T \Sigma_k^{-1} H_k \Gamma_k$

$d_k = d_{k-1} + \Gamma_k^T H_k^T \Sigma_k^{-1} \varepsilon_k$

GLR test

$l_k \triangleq 2 \ln \frac{p(\varepsilon_1, \ldots, \varepsilon_k \mid \theta = \hat{\theta}_k)}{p(\varepsilon_1, \ldots, \varepsilon_k \mid \theta = 0)} = d_k^T C_k^{-1} d_k$
Monitoring the non-parametric fault

While the GLR does not detect anything

Run a Kalman filter based on the fault-free model

\[
\begin{align*}
\hat{X}_{k+1} &= F_k \hat{X}_k + G_k U_k + F_k K_k (Y_k - J_k U_k - H_k \hat{X}_k) \\
K_k &= P_k H_k^T \Sigma_k^{-1} \\
P_{k+1} &= F_k (I - K_k H_k) P_k F_k^T + Q_k \\
\Sigma_k &= H_k P_k H_k^T + R_k
\end{align*}
\]

Monitor its energy

OK when \(\text{dim}(f_k) \geq \text{dim}(Y_k) \), i.e. testing a Gaussian white noise against an arbitrary signal.
More sophisticated tests might be considered in the case where \(\text{dim}(f_k) < \text{dim}(Y_k) \).
Tracking a slowly time-varying θ_k

\[\begin{align*}
\epsilon_k &= \epsilon_k^0 + H_k \Gamma_k \theta_k + H_k \delta_k + H_k \zeta_k \\
\end{align*}\]

RLS

\[\begin{align*}
\hat{\theta}_k &= \hat{\theta}_{k-1} + L_k \left(\epsilon_k - H_k \Gamma_k \hat{\theta}_{k-1} \right), \quad \hat{\theta}_0 \stackrel{\Delta}{=} 0 \\
S_k &= \left(\lambda \Sigma_k + H_k \Gamma_k P_{k-1} \Gamma_k^T H_k^T \right)^{-1} \\
L_k &= P_{k-1} \Gamma_k^T H_k^T S_k \\
P_k &= \lambda^{-1} \left(P_{k-1} - P_{k-1} \Gamma_k^T H_k^T S_k H_k \Gamma_k P_{k-1} \right), \quad P_0 \stackrel{\Delta}{=} I \\
\epsilon_k &\stackrel{\Delta}{=} \epsilon_k - H_k \Gamma_k \hat{\theta}_k; \quad \text{monitor its energy to detect } E_k f_k
\end{align*}\]
FDI for LTV systems with TV additive faults

- **Constant parametric faults**
 - Combining a recursive and stable filter that cancels out the fault dynamics and a GLR test
 - Handling additive parametric faults with weaker assumptions than usual on the system stability and the number of required sensors

- Handling both TV parametric and non-parametric faults
 - Two solutions
 - Assuming constant parametric fault and rejecting the non-parametric fault
 - Adapting to the TV parametric fault