The God-Finger Method for Improving 3D Interaction with Virtual Objects
through Simulation of Contact Area

Anthony Talvas*
INSA/Inria Rennes, France

ABSTRACT

In physically-based virtual environments, interaction with objects
generally happens through contact points that barely represent the
area of contact between the user’s hand and the virtual object. This
representation of contacts contrasts with real life situations where
our finger pads have the ability to deform slightly to match the
shape of a touched object. In this paper, we propose a method called
god-finger to simulate a contact area from a single contact point de-
termined by collision detection, and usable in a rigid body physics
engine. The method uses the geometry of the object and the force
applied to it to determine additional contact points that will emu-
late the presence of a contact area between the user’s proxy and
the virtual object. It could improve the manipulation of objects by
constraining the rotation of touched objects in a similar manner to
actual finger pads. An implementation in a physics engine shows
that the method could make for more realistic behaviour when ma-
nipulating objects while keeping high simulation rates.

Index Terms: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality; H.5.2
[Information Interfaces and Presentation]: User Interfaces—Direct
Manipulation

1 INTRODUCTION

In real life, when we touch an object or pick it with our fingers,
they undergo slight deformations to adapt to the shape of the object
and form a contact area between finger and object. This contact
area modifies the frictional properties of the interaction between
the two, and overall leads to a different behaviour. An example of
this is attempting to push a sheet of paper by the corner with the
tip of a sharpened pencil or with a fingertip. With the pencil tip,
the paper will most likely rotate, while with a fingertip it will most
likely translate. In the case of interaction with virtual environments
(VE), these areas of contact are most often not simulated at all, con-
tacts between the user’s proxy and virtual objects being represented
by points with a normal and penetration depth. The rotations of
touched objects are thus barely constrained, making their manip-
ulation more difficult. Virtual hands with deformable finger pads
have been proposed to solve this problem, but these methods are
more computationally expensive in return [10, 5].

We thus propose a god-finger method that uses the usual contact
point information to generate contact areas by scanning the local
geometry of a touched virtual object (Figure 1). A contact area is
generated by using the magnitude of the force applied to the object,
the direction of that force and by taking into account the normals
of the faces surrounding the contact point, which simulates the in-
teraction through a finger pad. This area of contact improves the
manipulation of virtual objects by adding additional constraints to
the rotations of touched objects, notably around the contact nor-

*e-mail: { anthony.talvas,maud.marchal,anatole.lecuyer} @irisa.fr

Maud Marchal*

INSA/Inria Rennes, France

Anatole Lécuyer*
Inria Rennes, France

mal. This technique is usable with 3 degree-of-freedom (DOF) in-
terfaces, and is intended to increase the realism of the touching of
virtual objects, as opposed to other works that focus on improving
their grasping with more than one finger. The method can be im-
plemented in any physics engine, and is notably usable in the case
of haptic interaction with VE.

(a) (b) (c)

Classical point-

based interaction God-finger approach

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Figure 1: Concept of the god-finger method. (a) Contacts in virtual
environments are represented by points. Lifting a virtual object that
way causes it to fall. (b) In real life, human fingers generate a contact
area with objects through deformation. (¢) The god-finger method
simulates that contact area from a single contact point. It is now
possible to lift the object without it falling, thanks to the contact area.

2 RELATED WORK

Approaches for interacting realistically with physically-based VE
can be classified in two main categories: point-based and rigid
proxy-based approaches on the one hand, and deformable hand
model-based approaches on the other hand.

Point-based interaction allows to touch virtual objects through a
single contact point. The god-object method by Zilles and Salis-
bury [12] pioneered 3DOF constraint-based haptic interaction with
virtual objects. It defines a location in virtual space, called the
god-object, that follows the haptic interface virtual position, but
constrained at the surface of virtual objects when a contact occurs.
Several works focused on adding static and dynamic friction to the
method [11, 3, 8] by only moving the god-object on the surface of
the virtual object when it leaves a friction cone defined by the fric-
tion coefficient of the object. Ortega et al. extended the method
to 6DOF interaction, allowing the use of complex rigid bodies as
proxies, with any number of contact points with virtual objects [9].
Other works focused on handling the translation and rotation of vir-
tual objects contacted with multiple god-objects or proxies [7, 4],
and a generalized god-object method was recently proposed to take
into account the mutual interdependencies between multiple god-
objects in the context of a god-hand model [6].

In all of these methods, however, contacts are represented by sin-
gle points, and there is no simulation of any contact area between
the virtual representation of the user’s hand and virtual objects. In
order to account for this contact area, Barbagli ez al. studied human
fingertips to derive a soft-finger model that simulates the resistance



to moments around the axis between two proxies grasping an ob-
ject [1]. Still, while this method partly simulates the picking of
objects between fingertips, it does not account for effects imposed
by the local geometry around the contact points. In order to ef-
fectively simulate the contact area between the user’s proxy and
virtual objects, soft hand models were proposed. These models use
deformable elements under a rigid skeleton to simulate the soft-
ness of the finger pads, either using a Finite Element model with
a corotational approach [10] or the Lattice-Shape Matching algo-
rithm with adaptive stiffness [5]. These methods allow realistic and
stable grasping of virtual objects, notably, but at the cost of a higher
computational load due to deformable body simulation.

In this paper, we propose a god-finger method that extends
the god-object approach to improve 3DOF single-point interaction
by providing a contact area with virtual objects, without resort-
ing to deformable body simulation. We first present the method,
then showcase a few results obtained with an implementation in
a physics engine with haptic interfaces, and finally conclude with
perspectives for the method.

3 THE GOD-FINGER METHOD

We propose a god-finger method to simulate the contact area be-
tween a god-object and virtual objects. The god-finger method con-
sists of two major parts. First, from the contact point between the
god-object and the virtual object, several radial vectors are com-
puted, that describe the contact area around the contact point as it
would be if the contact spread on a flat surface (Figure 2a). Then,
we use these vectors to travel the geometry of the object, taking
into account its possible angles and curvatures (Figure 2b). How-
ever, as human fingers can not deform infinitely, we consider that
the contact area can not spread on faces whose normals are too
different from that of the original contact point (Figure 2c). We
define the points resulting from the local geometry search as sub-
god-objects, that are fed back to the simulation engine as additional
contact points, which will simulate the presence of a contact area.

Contact area

(@ / I F°> (b) /[I\ (c) /f_I—\

Figure 2: Steps of the god-finger method. (a) A contact area is gen-
erated as if the object was planar. (b) The contact area is then fit
to the geometry of the object. (¢) Odd deformations are prevented
by adding an angular threshold between the contact normal and the
face normals.

Once a contact between the god-object and an object has been
detected by the collision detection engine, the contact point cp,
contact normal ¢, and contact distance c; are fetched, in local co-
ordinates of the collided object. It is also determined whether the
collision occured on a face, edge or vertex of the object’s mesh.

3.1 Radial vectors and distances

The god-finger method starts by generating vectors that define the
contact area as it would be if it spread on a planar object. The
starting point is the determination of the desired contact radius. It
depends on the force applied by the god-object to the virtual object,
which is in turn proportional to the distance between the position of
the interface and that of the god-object due to the virtual coupling.
Barbagli er al. performed experimental measures of the contact
area of the human finger and derived a model between the normal
force and the contact radius [1]. We thus use that model to deter-
mine the contact radius r from the distance between the god-object

position pgo and the interface position py (expressed in local co-
ordinates), considering an arbitrarily chosen maximum radius 7,4y
and distance constant Dé). Considering v = p; — pgo as shown in
Equation 1.

= e (1l o

Then, given a number nggo of desired sub-god-objects (at least
3), we generate nggo unit vectors orthogonal to the contact normal,
defined as the radial vectors rj (Figure 3a). If the contact occured
on a face, then the radial vectors can be used as is for the following
computations. If it occured on an edge or vertex, they need to be
projected onto the surrounding faces (Figure 3b). We also define an
angular threshold 7, beyond which we consider that the contact area
can not spread anymore over the surface of the object. Thus, if the
angle between the contact normal and one of the surrounding faces
normals exceeds that threshold, the corresponding radial vectors are
dropped.

Contact normal ¢,

Dropped
vector

k

Radius r Contact position ¢,

{

AV
Adjusted —\
vectors

>T,
(a) Radial vectors r; (b)

Figure 3: Generation of radial vectors from the contact point (black
cross) and normal (red arrow). (a) Contact point on a face, the radial
vectors (orange arrows) can be used as is. (b) Contact point on an
edge or a vertex. For faces with normals under a threshold z,, the
vectors are projected on the faces (blue arrows). For the other faces,
the corresponding vectors are dropped (blue cross).

When the human finger applies a force on an object that is tan-
gential to the object, the contact area tends to spread towards the
opposite direction of that force (Figure 4a). In order to simulate
this behaviour, for each radial vector r; and with an arbitrary factor
o determining how much the contact area will deform, we compute
an adjusted distance d; over which we will travel the geometry of
the object, following Equation 2. The result of these adjustments
are displayed in Figure 4b, with o = 2.

di=rxo PIT @)

(a)

Contact area

«~ Contact position

Force

Figure 4: Deformation of the contact area when the force applied
to the object has a tangential component. The applied forces are
represented by red arrows and the contact areas are represented in
blue. (a) Example of a human finger. (b) Contact area with a virtual
object. The contact force is represented by the arrow, and contact
area by the ellipse.



3.2 Sub-God-Objects

Once the radial vectors and distances are obtained, the next step
is to travel the geometry of the object to find the positions of the
sub-god-objects. In order to make the search efficient, the neigh-
bor information is precomputed for the meshes of all virtual objects
when they are loaded into the simulation. This means for a triangu-
lar mesh that, for every triangle, the indices of the three neighbor-
ing triangles (i.e. those that share two vertices with the considered
triangle) are stored. The method thus works for both convex and
concave virtual objects.

For each radial vector r; and distance to travel along that radial
vector d;, the position of the corresponding sub-god-object psco,
is computed following Algorithm 1. The search starts at a sub-god-
object position psGo equal to the contact position cp, on a face f
with normal f;, determined previously. A distance d; is crossed
along r; while checking if one of the edges of the triangle was
reached. If no edge was reached, then the sub-god-object is lo-
cated on the same face, at the end of the vector we followed. If an
edge was reached, however, the sub-god-object is positioned on the
point of the edge that was reached. Then, it is checked if the normal
of the neighboring face is within the angular threshold 7, defined
previously. To take into account friction, it is also checked if it lies
within the friction cone of friction coefficient 6. If both conditions
are verified, then the geometry search continues, by setting the cur-
rent face as the neighboring face, and projecting the radial vector r;
on that new face. This process loops until the full distance was trav-
elled, or until a face with a normal exceeding the angular threshold
is found or when the normal is no more in the friction cone.

Algorithm 1 Computation of a single SGO

PSGO; < ¢p
while d; > 0 and cos™! (f.¢n) < min(t,,tan~1'(6)) do
rj < projection of rj on f
if d; x r; crosses an edge e of f then
PsGo,; < point reached on e
f < neighboring face
fn < neighboring face normal
d; < d;— distance between new and old psgo
else
di=0
PsGo; = PsGo; +di Xri
end if
end while

Once the sub-god-object positions are obtained, they are pro-
vided to the simulation engine as additional contact points with the
same contact normal and distance as the “true” contact point orig-
inally detected by the collision detection engine. The simulation
will then act as if the virtual object has collided with a finger that
deformed to match its shape.

4 IMPLEMENTATION

The method was implemented in Havok Physics, but can be im-
plemented in any other common physics engine. Virtual objects
with concave meshes were represented as collections of convex
bodies in the simulation, notably using convex decomposition. In-
teraction scenarios were tested with two haptic devices: a Fal-
con (Novint Technologies Inc., Albuquerque, New Mexico, USA)
and a Phantom Omni (Sensable Technologies, Wilmington, Mas-
sachusetts, USA). The Falcon is a 3DOF device, and the Phantom
was used as such. The haptic devices and corresponding virtual
proxies were linked through a virtual coupling mechanism [2], sim-
ulating a spring-damper between them.

4.1 Performances

The implementation of the method was performed on a 2.2 GHz
quad-core PC, with both haptic devices directly connected to it. The
visual rendering was fixed to a 60 Hz rate, and both the simulation
rates and haptic device update rates were fixed to 1000 Hz, which
is a suitable rate for haptic interaction.

4.2 Unimanual manipulation

Without the god-finger method, simply making a spherical object
slide and rotate on a flat surface with a single interface can be a
tedious task. Notably, the object has a strong tendency to roll as
soon as any force is applied, hence simply translating it while keep-
ing the rolling minimal is near impossible. It also tends to amplify
the rotations applied to it, making it also difficult to apply small ro-
tations to it. The god-finger method allows to better constrain the
object, limiting the amount of erratic rolling while still allowing to
perform controlled large rotations, and also makes it easier to let it
slide along a surface (Figure 5).

Figure 5: Responses of a virtual object with the regular god-object
method (a) and with our novel god-finger method (b). (a) God-object
case, the object rolls. (b) God-finger case, the object slides.

Another task made possible only with the god-finger method is
that of lifting objects with only one interface, when the contact area
is sufficiently large compared to the size of the object (Figure 6). It
is not a trivial task as moving too fast with the interface will cause
the god-finger to drop the object. However, this behaviour could be
considered realistic, as for instance a hand can not be moved too
fast with an object on the palm without dropping it.

Figure 6: Lifting of virtual objects using only one god-finger. The
contact areas are represented in yellow.

4.3 Bimanual manipulation

Objects can be lifted with two interfaces as well with the god-finger
method (Figure 7). They can be taken, just like previously, from
under the object, and it is also notably possible in some cases to
drop one of the interfaces during the lift to switch to a unimanual
lifting scenario.

Objects can also be picked two-handedly from the sides. The
use of god-finger instead of regular god-objects allows to restrain
the torques around the contact normals, thus allowing to pick an ob-
ject up easier without resorting to unnaturally high friction values.
However, a side effect is that torques around the other rotational
axes are also constrained, making it slightly more difficult to per-
form small rotations of a picked object with god-fingers.



Figure 7: Lifting of virtual objects using two god-fingers. The contact
areas are represented in yellow.

0,004

0,003 1

[
4 (|-} 2
0,002 ': #

==
==
>

0,001 -

N M
'u\:’"l'."l\f.‘u\,‘

I
! '
o'l{f IHRTRTRVETRY vy ‘,2(" Ve VY,

Force

0 +

-
-

LT S
==

-0,001 1 A

-0,002 ¥

-0,003

Time (s)

Lifting

= === God-object God-finger

Figure 8: Force (y component) applied on the center of mass of a
cylindrical object picked and lifted by two god-objects or two god-
fingers along the x axis, slightly under the center of mass.

The classical god-object method and our novel god-finger
method were directly compared. A cylindrical object was picked
by two god-objects or god-fingers that followed the same motion.
First, a fully horizontal motion brings both interface positions in-
side the object, leading both proxies to pick the object slightly un-
der the center of mass. A vertical motion then causes both proxies
to lift the object for 2 seconds, before stopping their motion com-
pletely. The force applied on the center of mass of the object was
measured for 25 seconds, and the results are shown in Figure 8.
With regular god-objects, there is no resistance to torques around
the contact normals and the object keeps oscillating even longly af-
ter the lifting is done. With the god-finger method, the object never
rotates around the contact normals, the oscillations measured at the
beginning being only translational and due to the spring-damper of
the virtual coupling.

4.4 Discussion

The god-finger method shows promising results for interaction with
rigid bodies. Notably, while a regular god-object can make the
manipulation of virtual objects with 3DOF interfaces challenging,
a god-finger is more suitable as it makes objects more compliant
while manipulating them. Moreover, a god-finger presents the ad-
vantage over a soft finger model that it works with 3DOF interfaces,
while the latter requires 6DOF to orientate the virtual finger. Future
work could focus on adding 6DOF interaction through the tech-
nique and compare such interaction to soft fingers.

The technique could also be used for interaction with deformable
bodies. Notably, aside the improvement of manipulation capability,
the visual feedback of a god-finger on a deformable object could
be improved by giving the looks of a finger pad touching the object
instead of a pointy end. Adding new sub-god-objects regularly dur-
ing the local geometry search would create a more homogeneous
repartition of contact points and generate a better deformation for
large contact radii. It should not, however, be expected to be as
homogeneous as the contact area generated by a deformable finger.

Bimanual manipulation is also improved through the god-finger
method. However, the information of multiple god-fingers is com-
puted completely independently. Notably, this may lead to overlap-
ping of the contact areas, which is not desirable, but does not seem
to hinder the manipulation itself. A possible way to handle over-
lapping is to apply force feedback on both devices to push them
apart and reduce the overlap area. Furthermore, the question of
how to integrate the information of multiple god-fingers to improve
the grasping of virtual objects could be studied.

Finally, the method remains to be evaluated, notably in more
complex scenarios, in order to assess its impact on the ease of ob-
ject manipulation and on the realism of interaction. The god-finger
method is expected to be less computationally expensive than soft
hand models, due to the fact it uses point vs. mesh collision detec-
tion instead of mesh vs. mesh, and the fact it does not use FEM-
based deformable simulation. However, the performance cost com-
pared to both the god-object and soft hand methods still needs to be
evaluated.

5 CONCLUSION

We have proposed a god-finger method for simulating contact area
using contact information obtained through classical god-objects.
The contact area is generated by scanning the local geometry of the
object over a radius depending on the force applied on the object,
and stopping at positions that would lead to unnatural deformations
or loss of friction. The method allows more realistic manipulation
of objects while remaining simple to implement in common physics
engines. Since it does not rely on deformable elements, it has a
low computational cost and allows to keep high physical simulation
rates. The technique was illustrated with haptic scenarios but is not
limited to them, and can be used to improve 3D interaction with any
kind of interface, and any number of fingers involved.

REFERENCES

[1] F. Barbagli, A. Frisoli, K. Salisbury, and M. Bergamasco. Simulating
human fingers: a soft finger proxy model and algorithm. In Proc. of
HAPTICS, pages 9 — 17, 2004.

[2] J. Colgate, M. Stanley, and J. Brown. Issues in the haptic display of
tool use. In Proc. of IEEE/RSJ IROS, volume 3, pages 140-145, 1995.

[3] W. S. Harwin and N. Melder. Improved haptic rendering for multi-
finger manipulation using friction cone based god-objects. In Proc. of
Eurohaptics, 2002.

[4] D. Holz, S. Ullrich, M. Wolter, and T. Kuhlen. Multi-contact grasp
interaction for virtual environments. JVRB, 5(7), 2008.

[5] J. Jacobs and B. Froehlich. A soft hand model for physically-based
manipulation of virtual objects. In Proc. of IEEE VR, pages 11 —18,
2011.

[6] J. Jacobs, M. Stengel, and B. Froehlich. A generalized god-object
method for plausible finger-based interactions in virtual environments.
In Proc. of IEEE 3DUI, pages 43 51, 2012.

[71 N. Melder, W. Harwin, and P. Sharkey. Translation and rotation of
multi-point contacted virtual objects. In Proc. of Eurohaptics, 2003.

[8] N.Melder and W. S. Harwin. Extending the friction cone algorithm for
arbitrary polygon based haptic objects. In Proc. of HAPTICS, pages
234-241, 2004.

[9] M. Ortega, S. Redon, and S. Coquillart. A six degree-of-freedom god-
object method for haptic display of rigid bodies with surface prop-
erties. IEEE Transactions on Visualization and Computer Graphics,
13(3):458-469, 2007.

[10] M. Pouliquen, C. Duriez, C. Andriot, A. Bernard, L. Chodorge, and
F. Gosselin. Real-time finite element finger pinch grasp simulation. In
Proc. of WHC, pages 323-328, 2005.

[11] D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of com-
plex graphical environments. In Proc. of 24th Annual Conference
on Computer Graphics and Interactive Techniques, pages 345-352,
1997.

[12] C.B.Zilles and J. K. Salisbury. A constraint-based god-object method
for haptic display. In Proc. of IROS, pages 3146—, 1995.



