
Proceedings of ASME 2010 World Conference on Innovative Virtual Reality
WINVR 2010

May 12-14, 2010, Ames, Iowa, USA

WINVR2010-3726

EVALUATION OF PHYSICAL SIMULATION LIBRARIES FOR HAPTIC RENDERING
OF CONTACTS BETWEEN RIGID BODIES

Loeiz GLONDU
ENS Cachan/IRISA/INRIA Rennes

Campus de Beaulieu
35 042 Rennes, France

Email: loeiz.glondu@irisa.fr

Maud MARCHAL
INSA/IRISA/INRIA Rennes

Campus de Beaulieu
35 042 Rennes, France

Email: maud.marchal@irisa.fr

Georges DUMONT
ENS Cachan/IRISA/INRIA Rennes

Campus de Beaulieu
35 042 Rennes, France

Email: georges.dumont@irisa.fr

ABSTRACT
Haptic rendering has opened a new range of virtual reality

applications, enabling a human user to interact with a virtual
world using the sense of touch. This kind of interaction enables
to enhance applications such as computer-assisted design, where
3D manipulations are part of the system. However, building an
application with an accurate haptic feedback is still challeng-
ing, especially for interactions between rigid bodies, where stiff
contacts can only be displayed with a high simulation frequency.

This paper presents the possibilities of implementation of a
modular haptic display system that relies on two main compo-
nents: a physical simulation part and a haptic rendering part.
For that purpose, we define a generic coupling approach that
enables to perform haptic rendering using admittance haptic de-
vices, through a scaling interface that cleanly separates the phys-
ical simulation and the haptic rendering system of units. Four
physical simulation libraries are evaluated with respect to hap-
tic rendering quality criteria, based on their behavior in four dis-
criminant test cases. We show that the proposed approach leads
to a modular, generic and stable haptic application.

INTRODUCTION
Haptic rendering, defined as the interaction with a virtual

world using the sense of touch, is becoming more and more
spread, having natural applications in virtual surgery, motion
planning or computer-aided conception for example. The 3D in-
teractions proposed by haptic rendering are attractive in these
applications, giving the possibility to place the human operator

Figure 1. 3D SCENE OF A WORKSTATION FOR ERGONOMICS
STUDIES. HAPTIC RENDERING ALLOWS TO DIRECTLY INTERACT
WITH THE DIFFERENT TOOLS.

in conditions comparable to the one occurring in the real world.
Figure 1 shows a concrete example of a virtual workstation that
can be used for ergonomics studies: a user assembles bearings
using the mallet and accessing the different pieces several times,
highlighting the solicited articulations and the possibilities of
traumas through the user gestures. In this scenario, haptic in-
teractions are used to put the human users in the same conditions
as if they were operating on a real workstation. Therefore, qual-
ity of haptic rendering between the objects, in majority rigid in
this scene, is essential. In this paper, we restrict ourselves to hap-
tic interactions between rigid bodies, for which specific physical
simulation models and methods have been defined (we refer the

1 Copyright c© 2010 by ASME



reader to e.g. [1] for an introduction to rigid body dynamics).

Haptic rendering knows a great development in research
labs, and no real standard exists for haptic devices control and
interfaces. For specific haptic devices and applications, the de-
vice control algorithms must be entirely defined, and can lead
to fastidious tasks. However, most of the time, the controller is
already defined by the haptic devices vendors, and can be ac-
cessed through an associated Application Programmable Inter-
face (API).

Haptic applications are often implemented by plugging
the user simulation directly to the haptic API. The haptic
display is tuned through the API parameters, or user de-
fined mechanisms (see Figure 2). Since haptic applications
require physical simulation computations to reproduce inter-
actions that occur in real life, frameworks embedding both
physical simulation system and haptic rendering control have
been developed. Some of these frameworks are presented
as an extension of the haptic rendering API such as for-
merly GHOST by Sensable, now redesigned in OpenHaptics
(http://www.sensable.com/). Equivalent frameworks
that are not limited to Sensable haptic devices are Reachin
(also known as MAGMA) (http://www.reachin.se/),
or Chai3d (http://www.chai3d.org/). Other frame-
works (see e.g. I-TOUCH [2], and ImmersiveTouch [3]) also
embed the technical and material aspects of a haptic application,
proposing working space, visual display system and sometimes
a tracking system.

In this paper, we present an alternative way to build haptic
applications using a physical simulation library (called dynamic
engine) and a haptic device and associated API, coupled through
an interface as illustrated on Figure 2. Our approach has the ad-
vantage to consider the two components as black boxes. The in-
termediate interface, which is responsible for the haptic display
tunings, enables to link them and obtain a stable, modular and
generic haptic rendering application. Dynamic engines are usu-
ally designed for real-time visual applications such as games or
offline accurate simulations. Therefore, they may not be adapted
to haptic rendering, where the frequency of the simulation should
be over 1kHz and accurate at the same time. This observation
motivated us to begin our work with an evaluation of the existing
dynamic engines with respect to haptic rendering.

The organization of the paper is as follows: we present in
the first part an evaluation and a comparison of four real-time
dynamic engines based on their rigid body simulation capabili-
ties, with respect to haptic rendering quality criteria. In a second
part, we show how it is possible to simply link the result of the
physical simulation to the haptic API, introducing a useful scal-
ing interface of physical quantities between the real world and
the virtual world. We end the document with a discussion on our
results.

Figure 2. TWO MAIN COMPONENTS OF THE MODULAR HAPTIC AP-
PLICATION (THE PHYSICAL SIMULATION MODULE AND THE HAPTIC
RENDERING) COUPLED THROUGH A GENERIC INTERFACE.

EVALUATION OF RIGID BODY DYNAMIC ENGINES
We present in this section an evaluation of dynamic engines,

based on relevant criteria chosen with respect to haptic rendering
of contact between rigid bodies. The objective of this evaluation
is to determine whether popular real-time dynamic engines are
well-suited for haptic rendering, and to highlight their limits. The
list of dynamic engines evaluated below is not exhaustive, but
we tried to choose the dynamic engines that seemed the most
promising to us. Moreover, we defined an environment for our
experiments that is modular enough to be able to integrate any
physical simulation library.

• Havok physics (http://www.havok.com). Havok
was created in 1998 in Dublin (Ireland), and is the world
leader provider for rigid body dynamics solution. It also im-
plements sophisticated collision detection algorithms, rag-
doll animation, vehicles dynamics and character animation
toolkit.
• NVidia PhysX (http://www.nvidia.com/, section
PhysX in technology menu). PhysX (former NovodeX) has
been created in 2002 by the semi-conductor company Ageia
that was the first to propose on the market a hardware accel-
eration solution called PPU (Physic Process Unit) for phys-
ical simulation. NVidia PhysX implements collision de-
tection algorithms, rigid, soft body and fluids simulation.
PhysX has recently been acquired by NVidia (in February,
2008) to become NVidia PhysX (the hardware acceleration
capabilities have been deported on the GPU).
• Bullet physics (http://bulletphysics.org/).
Bullet physics is an open source physic engine founded in
2003 by Erwin Coumans, a former Havok employee and is
supported by Sony Entertainment division. Like its com-
petitors, Bullet physics provides collision detection and rigid
body simulation. It also implements soft body simulation.

2 Copyright c© 2010 by ASME



• Open Tissue (http://www.opentissue.org/).
OpenTissue is born from a research project initiated by
Kenny Erleben [4]. He presents in his papers inviting al-
gorithms for rigid body simulation. OpenTissue integrates
collision detection system and simulation of rigid and de-
formable bodies.

All these dynamic engines use Gauss-Seidel like iterative
solvers to manage non-penetration and user-defined constraints,
that are expressed at the velocity level, i.e. the solver will try
to find impulses that prevent or correct the constraints viola-
tions. (OpenTissue performs a final shock-propagation stabiliza-
tion step as presented by its author). They are all implemented at
least on Windows, Linux, MacOSX, and, except for OpenTissue,
Playstation 3, Xbox 360 and Nintendo Wii.

Our evaluation is focused on a comparison between the re-
sults obtained with the different libraries. We do not present
technical comparisons of the methods used by the dynamic en-
gines. Moreover, since neither Havok physics nor NVidia PhysX
is open source, it remains difficult to have information on the un-
derlying algorithms used for collision detection and constraints
resolution.

Performance Criteria
We designed our experiments in order to measure the qual-

ity of haptic rendering through the three following performance
criteria:

• Computation time. A stable and realistic haptic render-
ing needs high refreshment updates (see e.g. [5]). It is com-
monly admitted that a haptic display that renders contacts
and impacts between rigid bodies should be performed at
about 1kHz, i.e. the computation time spent to compute the
state of the world from time ti to time ti+1 must be performed
in less than one physical millisecond. In order to measure
this criterion, we start a timer before the call to the simula-
tion method of the dynamic engine (this call includes colli-
sion detection and constraints solving) and stop it after the
end of the call.
• Stability. The stability of the simulation indirectly mea-
sures how laws of physics such as energy conservation are
respected. Passivity of a virtual world [5] (i.e. the fact that
the world only dissipates energy) is a sufficient condition for
ensuring its stability. Therefore, we made measurements of
the variations of the total world energy to conclude on its
stability.
• Accuracy The accuracy indicates how well the physical
phenomena (such as dry or sliding friction, bouncing, . . . )
are reproduced in the virtual world. To give a mark for spa-
tial accuracy, we performed spatial measurements of pene-
trations distances (using Euclidean distance between bodies

Figure 3. THREE TEST CASES IN IMAGE. (a) A PILE OF 50 CUBES.
(b) A CARD HOUSE COMPOSED OF 89 CARDS. (c) 8000 CUBES IN A
BASIN.

centers as metric). We also visually appreciated the results
based on reference simulations of the real world.

For each test case presented in the next section, we measure
the average and maximum computation times, the sum of the
total energy of all the bodies of the world, and we give a mark
on the visually appreciated end state. If B is the set of bodies
indexes of the world, mi, vi, ωi and Ji are respectively the mass,
linear velocity, angular velocity and inertia matrix (related to the
center of mass) of body i, the energy e of the world is computed
as:

e = ∑
i∈B

1
2

(
mi v2

i +ω
T
i Jiωi

)
(1)

Tests Cases
We used four discriminant test cases for the measurements

of our performance criteria (the words in italic facing the name
of the tests indicate which main criterion is measured through the
test):

1. Pile of 50 cubes – stability. The classical pile of cube test
(Figure 3a) is a challenging structure because of its contact
disposition: naive iterative solvers have a very slow conver-
gence rate in order to propagate the non penetration con-
straints [6]. Also, this test measures the efficiency of the
error correction due to interpenetration occurring.

2. Seven-stages card house – friction accuracy. The card
house (composed of 89 cards, Figure 3b) is a structure that
fully depends on an accurate simulation of friction phenom-
ena [7]. If the friction is too much approximated or enforces
penetrations, the card house is destabilized and collapses.

3. 8000 cubes in a basin – computation time. In order to check
the scalability of the libraries, the third test consists in drop-
ping 8000 cubes in a basin (Figure 3c). A lot of objects
are put in a high contact configuration (8 contacts per body
in average), measuring the evolution of the timings of the
solvers when the numbers of bodies and contact increase.

3 Copyright c© 2010 by ASME



4. Heavy block on a light block – efficiency of solvers. This
test puts Gauss-Seidel like solvers into slow convergence
rate. If not enough iterations are used, or the correction
methods are unappropriated, the upper heavy block pene-
trates the light one, and the system becomes unstable.

Test Parameters
Since our tests are related to rigid body simulation, we re-

tained two physical parameters:

• The coefficient of friction. According to the Coulomb
model of friction, the coefficient of friction µ tells that the
maximum tangential force that can be applied to oppose tan-
gential motion at a contact point between two rigid bodies,
is µ× f , f being the magnitude of the normal force acting at
the contact point to prevent interpenetration. As an example,
the coefficient of friction between two dry pieces of steel is
approximatively 0.15. Although friction is a very common
phenomenon, it is far from simple to include accurately into
rigid body dynamics [8]. Thus, we vary the coefficient of
friction from 0 (no friction) to 1 (high friction) for each test
case in order to see its influence on the obtained results, and
how well the dynamic engines handle it.
• The coefficient of restitution. The coefficient of restitu-
tion indicates what percentage of energy is conserved and
dissipated during an impact between two rigid bodies (0
means a total inelastic impact, while 1 means a perfect elas-
tic and bouncy impact). In contact resolution between rigid
bodies, resting contacts are often separated from collision
events and are treated using different algorithms. To decide
whenever a resting contact or a collision occurs, the relative
velocity between colliding bodies at contact point is often
considered. Since the restitution coefficient has an influence
on how relative velocities are modified, we chose to study
the influence of the restitution coefficient on the simulation
results.

All our tests have also been performed by varying the time
step. Depending on the integration scheme used, the time step
has namely a great influence on the stability of the constraints
solver. The different combinations of parameters are summed up
on Table 1.

Configuration of the dynamic engines Each dynamic engine
has its own parameters that may have impacts on the results.
For example, it is possible to set the number of iterations used
for constraint solving. Since the default configuration of the dy-
namic engines is set to optimize a trade-off between computation
time and accuracy performances, we chose to let the default val-
ues. However, other aspects such as aggressive freezing strate-
gies can alter the results. Another aspect is the collision detection
system that can be turn into continuous or discrete mode, having

Table 1. DIFFERENT CONFIGURATIONS OF PARAMETERS (THE
FRICTION COEFFICIENT, THE RESTITUTION COEFFICIENT AND
THE TIME STEP) USED FOR EACH TEST CASE.

Friction coefficient Restitution coefficient Time step (s)

0.5 0.4 1/60

0.5 0.0 1/60

0.5 0.4 1/100

1.0 0.4 1/60

0.0 0.4 1/60

great impacts on computation time and results. To make the com-
parison possible, we disabled freezing and continuous collision
detection for all the results presented in this paper.

Results
This section summarizes the results obtained for each of our

performance criteria, for the four test cases previously defined.
We believe that the collision detection system of OpenTissue
slows down the simulation times drastically, and noticed that
the stability of the simulation is lower than the other libraries.
Therefore, we do not present the results obtained with OpenTis-
sue since they are not comparable to the results obtained with the
other dynamic engines.

Computation times comprise both the collision detection,
constraint solving and integration time. We performed all our
tests on an Intel Pentium D (3.40 GHz) with 2.0 GB RAM on
Windows XP. Except the third test for which we measured the
results after 10 seconds of simulation (an arbitrary chosen rep-
resentative value), we stop the simulation and the measurements
whenever the simulation has reached a stable state.

Pile of cubes Havok physics brought the best results for the
simulation of the pile of cubes. We obtained the best average
computation times, and the best stability. It is possible to make
the pile to stand up for time step going up to 1/60s. Figure
4a shows the dissipation of the total energy that led to a stable
state for the pile of cube using Havok physics and a time step of
1/100s.

With NVidia PhysX, we notice a visible penetration between
cubes at the beginning of the simulation, followed by a counter
reaction that destabilizes the pile which breaks before 5 seconds
of simulation if a time step over 1/100s is used. Using tiny time
steps (less than 1/800s), it is possible to make the pile to hold,
but it never reaches a stable state, and small oscillations can be
observed.

Bullet physics brought not as good computation time results

4 Copyright c© 2010 by ASME



Figure 4. TOTAL ENERGY MEASURED OVER TIME (a) ON THE PILE
OF CUBE TEST WITH HAVOK PHYSICS (b) ON THE CARD HOUSE
TEST WITH HAVOK PHYSICS (RED SOLID LINE) AND NVIDIA PHYSX
(BLUE DASHED LINE). TIME STEP = 1/100s.

as its competitors, and had similar results than NVidia PhysX on
the stability plan (we did not manage to make the pile hold more
than 4 seconds of simulation for time steps over 1/100s).

Using a null coefficient of friction, none of the engine en-
ables to make the pile hold. However, in this case, we obtained
the best results with Havok physics that maintains the pile for
more than 4 seconds of simulation against 1.5 seconds for NVidia
PhysX, and less than 1 second for Bullet physics.

Card house Havok physics enables to simulate the card house
in a visually realistic manner, and with the best computation
times. With a time step of 1/100s, and a friction coefficient of
1, even the top most stage of the card house remains in place.
NVidia PhysX shows the same phenomenon as for the pile of
cubes: after a penetration between the cards, a counter reaction
occurs (see Figure 4b at time 0.5s) and the card house is desta-
bilized. However, although the card house is maintained for a
long time, it never reaches a stable state before the card house
is almost completely broken (after more than 50 seconds of sim-
ulation). Bullet physics shows a weakness on this test case: its
default solver can not handle properly dry friction. Indeed, what-
ever the coefficient of friction used, the cards slide and the whole
house is broken at the beginning of the simulation.

8000 cubes in a basin On this test case, we mainly measured
the average and maximum computation times. For this simula-
tion, we saw that Havok physics and NVidia PhysX brought very

Figure 5. LINEAR RELATION BETWEEN (a) THE NUMBER OF BOD-
IES OR (b) THE NUMBER OF CONTACTS AND COMPUTATION TIMES
FOR HAVOK PHYSICS.

similar results. We noted however a slightly greater maximum
computation time for Havok physics when the coefficient of fric-
tion is zero. Bullet physics is on the third place, with the highest
computation times.

Figure 5 shows the computation time evolution with respect
to the number of bodies, and the number of contacts in the vir-
tual world. On this chart, we separated the call to the collision
detection module and the constraints solving, enabling to show
the time spent for collision detection (solid line) and the time
used for constraint solving (dashed line).

Heavy block on a light block None of the dynamic engines
has been able to simulate visually plausible results for this test
whenever the mass ratio between the two bodies is above 500
(see Figure 6, white body is heavy while the dark one is light).
Actually, using a time step of 1/1000s and masses equal to 1
and 500, it is possible to reach a stable state with Havok physics
where the heavy cube is resting on the light one, after several un-
natural bounces. We did not achieve to have the same state using
NVidia PhysX or Bullet physics with this mass factor. NVidia
PhysX has a different behavior, allowing the heavy cube to pen-
etrate the light one (see Figure 6b, middle). This makes the light
cube in red becoming unstable, being randomly shook until it is
ejected away from the heavy cube that does not move. With Ha-
vok or Bullet physics, the interpenetration is corrected in such a
manner that the heavy cube (and the light one for Havok) bounces
abnormally over the light one, until both cubes are separated by
tangential forces. Using a bigger time step (1/60s), the heavy
cube penetrates the light one, and the latter is pushed away hori-
zontally.

5 Copyright c© 2010 by ASME



Figure 6. FOURTH TEST CASE. A HEAVY CUBE (WHITE) IS
DROPPED ON A LIGHT ONE (DARK RED), WITH A SCALE FACTOR
OF 1000 ON MASSES. (a) RESULTS WITH HAVOK PHYSICS. (b) RE-
SULTS WITH NVIDIA PHYSX. (c) RESULTS WITH BULLET PHYSICS.
TIME STEP = 1/800s, FRICTION COEFFICIENT = 0.5, RESTITUTION
COEFFICIENT = 0.4.

Figure 7. AVERAGE AND MAXIMUM PROCESSING TIMES FOR THE
THREE FIRST TEST CASES.

Summary of the Evaluation
We performed four discriminant tests, each of them was de-

signed to measure one of the performance criterion. Figure 7
sums up the average timings (over all the configurations of pa-
rameters of Table 1) for each of the three first test cases (we do
not show timings for the fourth test, since the scene composed of
two bodies is not relevant for computation time comparisons).

We noticed that Havok physics has a small advance on com-
putation time performance on NVidia PhysX, while Bullet seems
to be less optimized. In average, we measured that it takes about
0.012 ms to solve for one cube in a contact configuration of 8
contacts per cube for Havok physics or NVidia PhysX, with our

Table 2. SUMMARY OF THE STABILITY AND ACCURACY APPRECIA-
TIONS. LEGEND ++: GOOD ACCURACY, STABLE SIMULATION. +: VI-
SUALLY REALISTIC RESULTS, STABILITY REDUCED. 0: SIMULATION
NOT SUCCESSFUL.

Pile of cubes Card house Heavy/light block

Havok physics ++ ++ 0

NVidia PhysX + + 0

Bullet physics + 0 0

hardware configuration.
Table 2 sums up the accuracy conclusion. We noticed that

Havok leads to the more stable and accurate simulation, allow-
ing to simulate the pile of cubes and the card house success-
fully. NVidia PhysX shows some weaknesses on those challeng-
ing structures, allowing an initial interpenetration that destabi-
lizes the simulation further. Bullet physics does not seem to han-
dle properly dry friction, making structure such as the card house
impossible to be correctly simulated.

COUPLING DYNAMIC ENGINE AND HAPTIC RENDER-
ING

The first section presented an evaluation of the dynamic en-
gines abilities for haptic rendering applications. In this section,
we focus on how it is possible to couple the two main compo-
nents of our haptic application, i.e how to couple the dynamic
engine with the haptic rendering API, in order to obtain a modu-
lar and generic system. For that purpose, we introduce a scaling
interface between the two components that in order to tune the
haptic display without altering the overall stability of the system.

Haptic devices can be controlled in two modes: the admit-
tance control mode and the impedance control mode (see e.g. [9]
for a discussion on these control modes). In the impedance (or
direct) control mode, the haptic device is waiting for forces to
be applied on the user, and returns the current position of its tip
to the simulation. In admittance control mode, the device waits
for position that the tip must reach, and returns forces to the sim-
ulation. This control mode is well-suited for a simple coupling
between a dynamic engine and a haptic rendering API. Indeed,
the dynamic engines provide successive positions of the proxy
(the body in the virtual world which is coupled for haptic inter-
action) over time, that can be used to pilot the haptic device. The
forces returned by the haptic device can be applied on the proxy
and integrated into the dynamic engine. Figure 8 shows the flow
of data when using admittance mode. It is however too restrictive
to plug directly the simulation results to the haptic API as shown
on Figure 8. Indeed, values returned by the dynamic engine may

6 Copyright c© 2010 by ASME



Figure 8. ADMITTANCE CONTROL OF AN HAPTIC DEVICE. HAPTIC
RENDERING INCLUDES HAPTIC API, HAPTIC CONTROLLER AND
HAPTIC DEVICE.

have a numerical representation different from the one used by
the haptic API, the frame coordinates can be different, and the or-
der of magnitude of the values used are likely to be incompatible.
Moreover, haptic display must be tunable: changing the range of
efforts allowed and calibrating the interaction so that most of the
user movements stay in the haptic device working space are two
manipulations that should offer haptic applications. These ob-
servations motivated us to define a scaling interface between the
two modules as presented in the next section.

Scaling Factors between Virtual and Real World
Each haptic device has its own mechanical constraints and

working space. The haptic device used during our experiments
(a 6 DOF VirtuoseTM6D35-45, from Haption, Soulge sur Ou-
ette, France) supports less than 40 Newtons of effort, and has a
workspace which is approximatively a 30cm side cube, while a
PHANTOM Omni haptic device from Sensable (Woburn, MA
01801, USA) has a 16× 12× 7cm working space, supporting
around 3.3 Newtons of effort. Of course, the two devices are not
designed for the same applications, but their differences highlight
the fact that the physical simulations values can not be directly
used for haptic rendering. Moreover, we want to be able to ma-
nipulate objects of a mass of several tons in huge environments
as well as interacting with microscopic objects.

It is possible to amplify the movements of the user, and to
give him more force so that the interactions fit into the working
space of the haptic device and its range of allowed efforts. How-
ever, altering the coupling has consequences in both the simu-
lation and the control of the admittance haptic device and the
physical simulation. In this section, we propose an interface be-
tween the physical simulation and the haptic rendering that con-

siders the two modules as black boxes, and that enables to freely
give values for scaling factors, without altering the stability of
the system to obtain a generic coupling.

In the following, the subscript xsimu denotes a value x coming
from the physical simulation module, while the subscript xhapt
denotes a value x coming from the haptic rendering module.

The scaling factor We define the scaling factor z f act as the fac-
tor linking the virtual world unit of length (denoted vl) to the real
world unit of length, the meter. For example, a factor of 10 means
that 1 virtual unit of length (i.e. the value 1 in the numerical rep-
resentation of the length in the dynamic engine) is equivalent to
10 meters in the real world. This factor is useful for example to
choose a value for the gravity of the virtual world that has the
same representation than on the earth (i.e. around 98vl .s−2 for
an earth equivalent gravity if z f act = 10). Also, this factor can
be helpful when creating the virtual world, and computing the
mass of the objects from their density in kg.m−3 to the virtual
world density in kg.v−3

l . The scaling factor has only an influence
on the physical simulation (and the conception of the world) and
thus does not belong to the scaling interface between the physical
simulation and the haptic rendering. However, it is really help-
ful to cleanly separate the scaling interface, and to avoid mixing
independent and linked variables into the coupling.

Since the physical quantities used for haptic rendering are
related to space, mass and time dimensions, we define additional
length and mass factors as presented in the following.

The length factor We define a length factor s f act that modifies
the unit of length of the virtual world vl so that the simulated
scene fits into the desired working space. To ensure the good
separation of the systems of units of the physical simulation and
the haptic rendering, we use this factor to modify the linear po-
sition xsimu in meter, the linear velocity vsimu in m.s−1 and the
linear forces fsimu in kg.m.s−2 linearly, while the torque τsimu in
kg.m2.s−2 and the inertia matrix Isimu using the square of the fac-
tor:

xhapt =
xsimu

s f act
; vhapt =

vsimu

s f act
(2)

Concerning the orientation values qsimu and angular velocity
ωsimu, it would be possible to similarly define a rotation factor,
that could amplify or decrease the angular motion. We however
kept the original values for orientation and angular velocities (the
angular quantities have no unit, and do not scale with length or
mass):

qhapt = qsimu ; ωhapt = ωsimu (3)

7 Copyright c© 2010 by ASME



Figure 9. SCALING INTERFACE BETWEEN THE PHYSICAL SIMULA-
TION AND THE ADMITTANCE HAPTIC RENDERING. BOLD VALUES
DEPICT GLOBAL STATE VECTOR OR GLOBAL EFFORT VECTOR.

The mass factors We finally define the force factor f f act and
torque factor τ f act that increase or decrease mass values. The
force factor modifies linearly the force returned by the haptic de-
vice fhapt and the mass msimu. The torque factor modifies linearly
the torque τsimu and the inertia matrix Isimu:

fsimu = fhapt × f f act × s f act ; mhapt =
msimu

f f act
(4)

τsimu = τhapt × τ f act × s2
f act ; Isimu =

Ihapt

τ f act × s2
f act

(5)

Figure 9 sums up the scaling interface between the physical
simulation module and the admittance haptic rendering module.

Synchronization with Physical Time
Although length and mass factors can be easily interpreted,

time factor is more confusing. We want the virtual unit of time to
coincide with the real second. Therefore, we perform an active
wait at the end of each simulation step using the system clock,
enabling to synchronize the simulation time with physical time
(see Figure 10). To be feasible, this solution implies that the
computation time needed to move the world n seconds forward
is smaller than n physical seconds. Otherwise, the simulation
takes some latency. To avoid this latency, the number of bodies
in the virtual world can be limited. Indeed, if we master the time
needed to simulate one body in the worst case (see the conclusion
of the evaluation section), then we can estimate the maximum
number of bodies that it is possible to simulate within a given
time step in order to avoid the simulation to take some latency.

Figure 10. SYNCHRONIZATION WITH PHYSICAL TIME USING AC-
TIVE WAIT.

Results
We implemented the coupling of Figure 2 using an admit-

tance capable haptic device (a 6 DOF VirtuoseTM6D35-45, from
Haption), and our scaling interface and time synchronization. In
order to avoid the visual display to slow down the haptic fre-
quency, we performed virtual world image synthesis into a sep-
arated thread that performs read-only operation on the virtual
world (and is not synchronized with the simulation thread).

We experienced stable haptic interactions using Havok
physics, NVidia PhysX and Bullet physics. The more pleas-
ant and accurate interactions have been obtained with Havok
physics, where we could feel dry and sliding frictions perform-
ing up to 1kHz haptic rendering for the pile of cube, and nearly
800Hz haptic rendering for the card house test.

Comparable interactions have been obtained with NVidia
PhysX. In simple cases, fine interactions with dry and sliding
frictions can be performed. However, interactions involving
stacking structure such as the pile of cube and the card house,
where visual oscillations appear, do not spare the haptic display
that suffers from the same artifact.

Finally, we also performed satisfying interactions using Bul-
let physics. The main difference between the two previous haptic
displays is the friction phenomena. Indeed, the tangential motion
is felt viscous, and no clear dry friction is haptically reproduced.

Discussion and Summary of the Coupling
The scaling interface enables us to easily tune the haptic dis-

play using few factors, but can also manage changes in frame
coordinate or numerical representation interface. We presented
simple linear or quadratic scaling functions for physical quanti-
ties, based on unit analysis. These functions have the advantage
of isolating two systems of units, and thus conserve the original
stability. The definition of other scaling functions must be care-
fully done in order to avoid loss of stability leading to unstable
situations in haptic rendering.

For the purpose of our evaluation, we defined a multi-
threaded test environment and a physic abstraction layer in order
to have a full control on the parameters and the measurements.
However, the abstraction layer and test environment are steps
that can be skipped for general haptic rendering. Using a mul-
tithreaded environment is common in haptic rendering, to avoid

8 Copyright c© 2010 by ASME



loss of time for external tasks such as visual rendering. Although
we do not detail this aspect in this paper, it does not invalidate
the scaling interface, which is proper to haptic rendering.

The list below sums up the steps that quickly and simply
lead to a stable and modular haptic application:

1. Choose a dynamic engine, or an abstract layer
that includes several dynamic engines such as PAL
(http://www.adrianboeing.com/pal/) which
embeds about ten dynamic engines in a unified interface.

2. Choose a haptic device that is well-suited for the applica-
tion and that can be controlled in admittance mode (an ab-
straction layer for haptic device control would be even more
elegant).

3. Define the scaling interface presented in the second part of
the paper (and optionally the synchronization time proce-
dure), and plug it to the dynamic engine and the haptic API
as shown on Figure 9.

CONCLUSION AND PERSPECTIVES
In this paper, we presented an evaluation of four dynamic

engines with respect to haptic rendering quality criteria. We ob-
served that all of engines present computation time and accu-
racy performances compatible with haptic rendering. Using ad-
mittance controlled haptic device, we showed how it is possible
to couple the dynamic engines results with the haptic rendering
API, defining a scaling interface that enables to modify the mag-
nitudes of the physical quantities exchanged, without altering the
stability of the overall system. We tested the coupling and the
scaling interface on several scenarios (such as the test cases, or
scenarios of Figure 11), maintaining the 1kHz haptic frequency
constraint on scenes containing up to 50 movable rigid cubes on
our configuration. Our results demonstrate that some real-time
dynamic engines are adapted for accurate and stable haptic dis-
plays between rigid bodies, and that our scaling interface allows
to quickly and simply obtain a modular and generic haptic appli-
cation.

Our results motivated us to leverage this simple but modular
architecture to build an application that manages multiple haptic
displays (using potentially different haptic devices) and several
dynamic engines. We aim at dynamically and adaptively choos-
ing the dynamic engines and haptic display that fit the best with
the current context of interaction. Such an application would
help us to concretize ergonomics studies using an estimation of
muscle forces involved in real interactions [10]. We think mod-
ular and generic haptic application may be useful in any context
of interaction that involves haptic displays of different natures in
complex physical environments (e.g. in virtual surgery, where
several tools can be used for the medical gestures on complex
anatomical structures).

Figure 11. TWO HAPTIC RENDERING SCENARIOS.

REFERENCES
[1] Baraff, D., 2001. “Rigid body simulation”. In Physically

Based Modeling, SIGGRAPH Course Notes.
[2] Pocheville, A., and Kheddar, A., 2004. “I-TOUCH: a frame-

work for computer haptics”. In Workshop on Touch and
Haptics, IEEE/RSJ IROS.

[3] Luciano, C., Banerjee, P., Florea, L., and Dawe, G., 2005.
“Design of the IMMERSIVETOUCH: a high-performance
haptic augmented virtual reality system”. In Salvendy G:
Human Computer International Proceedings.

[4] Erleben, K., 2007. “Velocity-based shock propagation for
multibody dynamics animation”. ACM Transactions on
Graphics, 26(2), pp. 1–20.

[5] Colgate, J. E., Stanley, M. C., and Brown, J. M., 1995. “Is-
sues in the haptic display of tool use”. Intelligent Robots
and Systems, IEEE/RSJ International Conference on, 3,
pp. 140–144.

[6] Milenkovic, V. J., and Schmidl, H., 2001. “Optimization-
based animation”. In Proceedings of the 28rd annual con-
ference on Computer graphics and interactive techniques,
pp. 37–46.

[7] Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K.,
2008. “Staggered projections for frictional contact in multi-
body systems”. ACM Transactions on Graphics, 27(5),
pp. 164:1–164:11.

[8] Baraff, D., 1991. “Coping with friction for non-penetrating
rigid body simulation”. In Proceedings of the 18th an-
nual conference on Computer graphics and interactive tech-
niques, pp. 31–41.

[9] Meseure, P., and Kheddar, A., 2007. Le traité de la Ralité
Virtuelle - Tome 3. Fush F. Moreau G., ch. Modèles pour le
rendu haptique, pp. 141–154.

[10] Pontonnier, C., and Dumont, G., 2009. “Inverse dynam-
ics method using optimisation techniques for the estima-
tion of muscle forces involved in the elbow motion”. Inter-
national Journal on Interactive Design and Manufacturing
(IJIDeM), 3, pp. 227–235.

9 Copyright c© 2010 by ASME


