
McSimGrid

Turning a Simulator of System Performance
into a Dynamic Veri�cation Framework

Martin Quinson
ENS Rennes / Inria, France

Northeastern University
January 23., 2018



Modern Large Scale Distributed Systems
Huge Systems

#1 Taihu Light
10,649,600 cores
125 T�ops, 15MW

#2 Tianhe 2
3,120,000 cores
56 T�ops, 18MW

#3 Piz Daint
361,760 cores

25 T�ops, 2MW

Complex Applications

Rigid, Regular, Hand-tuned Comm Patterns Dynamic, Irregular (task-based?)

How do we study these beasts?
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 1/26



Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 2/26



Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 2/26



Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 2/26



Methodological Challenges raised

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges

I Validity: Realistic results

I Scalability: Fast enough; Big enough

I Right Focus: Aligned with users concerns

Flourishing State of the Art
I Each group / student build its own tool

I Short lived, Narow focus, Improvable

I Some very good domain-speci�c tools (HPC)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 3/26



SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop

I Joint Project since 1998, mostly from french institutions

I Open Project, contributors in the USA (UHawaii, ISI), UK, Austria, Cern

Key Strengths

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

I Usability: Fast, Reliable, MPI API, Visualization

Community

I Mostly Scientists: 150 publications by 120 individuals

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, ...)

I Open Source: external Power Users (�xes & models)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 4/26



SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop

I Joint Project since 1998, mostly from french institutions

I Open Project, contributors in the USA (UHawaii, ISI), UK, Austria, Cern

Key Strengths

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

I Usability: Fast, Reliable, MPI API, Visualization

Community

I Mostly Scientists: 150 publications by 120 individuals

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, ...)

I Open Source: external Power Users (�xes & models)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 4/26



Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q Real

SimGrid

LogGPS

Key aspects to obtain this result

I Network Topology: Contention (large msg) and Synchronization (small msg)

I Applicative (collective) operations (stolen from real implementations)

I Instantiate Platform models (matching e�ects, not docs)

I All included in SimGrid but the instantiation (remains manual for now)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 5/26



Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

q
q

qqq

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q RealNetwork collapse

SimGrid

LogGPS

Discrepency between Simulation and Real Experiment. Why?

I Massive switch packet drops lead to 200ms timeouts in TCP!

I Tightly coupled: the whole application hangs until timeout

I Noise easy to model in the simulator, but useless for that very study

I Our prediction performance is more interesting to detect the real issue

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 5/26



Have we reached the Perfect Model yet?

What is the Perfect Model anyway?

I Detailed enough to be realistic

I E�cient enough for ultra fast simulations

I Abstracted enough so that I can reason about

I In short, that's the one I could give to my students and forget about

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 6/26



Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 7/26



Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 7/26



Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 7/26



Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 7/26



Perfect Model of Distributed Systems?

the one making your Study sound

If you study a theoretical P2P algorithm

I You could probably go for a super-fast constant-time model

If your study is a MPI application

I with TCP LAN, SMPI should do the trick (with correct instanciatiation)

I with In�niBand and/or GPUs, you need our still ongoing models

If you work on a TCP variant

I then you need a packet-level simulator such as NS3

If your study WAN-interconnected Set Top Boxes

I SMPI model not suited! Impossible to instanciate, validated only for MPI

I Vivaldi model intended for that kind of studies

In any case, assess the validity & soundness
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 8/26



SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop

I Joint Project since 1998, mostly from french institutions

I Open Project, contributors in the USA (UHawaii, ISI), UK, Austria, Cern

Key Strengths

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

I Usability: Fast, Reliable, MPI API, Visualization

Community

I Mostly Scientists: 150 publications by 120 individuals

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, ...)

I Open Source: external Power Users (�xes & models)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 9/26



Writting Correct Distributed Applications

I Classical Solution: Proof of algorithms

I Pessimistic Solution: Lower performance expectations

I Optimistic Solution: Eventually Consistent

I HPC Solution: Rigid, Regular, Hand-tuned Communication Patterns

I Large-Scale Hybrid Machines: Dynamic, Irregular (task-based?)

Veri�cation: must explore all possible execution paths

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 10/26



Writting Correct Distributed Applications

I Classical Solution: Proof of algorithms

I Pessimistic Solution: Lower performance expectations

I Optimistic Solution: Eventually Consistent

I HPC Solution: Rigid, Regular, Hand-tuned Communication Patterns

I Large-Scale Hybrid Machines: Dynamic, Irregular (task-based?)

Veri�cation: must explore all possible execution paths

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 10/26



Virtualizing MPI Applications with SimGrid

SMPI: Reimplementation of MPI on top of MPI

I Computations emulated; Communications simulated

I Complex C/C++/F77/F90 apps run out of the box

I MPI 2.2 partially covered (≈ 160 primitives supported)

I No MPI-IO, MPI3 collectives, spawning ranks, . . .
I Monothreaded applications, no pthread nor OpenMP

MPI Applications are folded into a single process

host 2 host 3

host 0 host 1

Network

ra
nk

 2

ra
nk

 3

ra
nk

 0

ra
nk

 1

Real Settings

Simulated Network

single UNIX process

ra
nk

0

ra
nk

1

ra
nk

2

ra
nk

3

SimGrid Simulation

McSimGrid builds upon SimGrid to verify MPI applications

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 11/26



Virtualizing MPI Applications with SimGrid

SMPI: Reimplementation of MPI on top of MPI

I Computations emulated; Communications simulated

I Complex C/C++/F77/F90 apps run out of the box

I MPI 2.2 partially covered (≈ 160 primitives supported)

I No MPI-IO, MPI3 collectives, spawning ranks, . . .
I Monothreaded applications, no pthread nor OpenMP

MPI Applications are folded into a single process

host 2 host 3

host 0 host 1

Network

ra
nk

 2

ra
nk

 3

ra
nk

 0

ra
nk

 1

Real Settings

Simulated Network

single UNIX process

ra
nk

0

ra
nk

1

ra
nk

2

ra
nk

3

SimGrid Simulation

McSimGrid builds upon SimGrid to verify MPI applications
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 11/26



Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI

P3P1 P2

send sendrecv

?

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 12/26



Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI

P3P1 P2

send sendrecv

?

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 12/26



Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI
P3P1 P2

send sendrecv

?

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 12/26



Use Cases: Kind of Properties

Safety Properties: �A given bad behavior never occurs�

I e.g.: any assertion (x != 0, no deadlock)

I Veri�ed on each state separately

I Counter example: a faulty state

Liveness Properties: �An expected behavior will happen in all cases�

I e.g.: Any request will eventually be ful�lled; No non-progression cycle

I Veri�ed on a full execution path

I Counter example: a cycling execution path that violates the property

Comm Patterns: �It exists a pattern that is the same for all exec paths�

I e.g.: send-deterministic (local sending order is always the same)

I Work on all execution paths

I Counter examples: two paths exhibiting di�ering communication patterns

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 13/26



Mitigating the State Space Explosion

The exploration process often fails to complete

I Too many states to explore, not enough time and/or memory

I Mc SimGrid provides two reductions techniques

Dynamic Partial Ordering Reduction (DPOR)

I Avoid re-exploring equivalent interleavings

I Don't explore all interleavings of local executions: they are equivalent

I Adapted to safety, not to liveness (cycles)

System-Level State Equality

I Detect when a given state was previously explored

I Introspect the application state similarly to gdb

I Also with Memory Compaction

I Heuristic for both safety and liveness

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 14/26



Partial Ordering Reduction (DPOR)

I Avoid re-exploring Mazurkiewicz traces (don't permute independent events)

s0

s1

s2

α1

α2

s0

s1

s2

β1

β2

Indep

Dependent

s0

s1

s5

s9

α1

s6

s7

s8

s2

s3

s4

s10

s11

s12

α1
α1

α2

α2

α2

α2

β1

β1
β1

β2

β2

β2

β2

Proc1 Proc2 Proc1 x Proc2
I McSimGrid: iSend and iSend are independent, etc.

I Dynamic Partial Ordering Reductions take advantage of runtime knowledge

I Many techniques (sleep sets, ample sets) are hard to understand & get right

I Ongoing work: reimplement our DPOR using Event Unfolding Structures

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 15/26



But what are the transitions in Mc SimGrid?

Transition = atomic block of code between Indecision Points
I Test all interleavings of the shared state (mem+network) modi�cations

I Transition = (some local code +) one shared state's change

Implementation: SimGrid is an Operating System

I Actors must use simcalls to modify the shared state

I First introduced for parallel simulation, but crucial to dynamic veri�cation

Functional View

Actor Actor Actor

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

 

Temporal View

M

U2
U1

U3

Going parallel

I More actors than cores ; Worker Threads that execute co-routines

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

 

Actors

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 16/26



But what are the transitions in Mc SimGrid?

Transition = atomic block of code between Indecision Points
I Test all interleavings of the shared state (mem+network) modi�cations

I Transition = (some local code +) one shared state's change

Implementation: SimGrid is an Operating System

I Actors must use simcalls to modify the shared state

I First introduced for parallel simulation, but crucial to dynamic veri�cation

Functional View

Actor Actor Actor

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

 

Temporal View

M

U2
U1

U3

Going parallel

I More actors than cores ; Worker Threads that execute co-routines

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

 

Actors

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 16/26



Mitigating the State Space Explosion

The exploration process often fails to complete

I Too many states to explore, not enough time and/or memory

I Mc SimGrid provides two reductions techniques

Dynamic Partial Ordering Reduction (DPOR)

I Avoid re-exploring equivalent interleavings

I Don't explore all interleavings of local executions: they are equivalent

I Adapted to safety, not to liveness (cycles)

System-Level State Equality

I Detect when a given state was previously explored

I Introspect the application state similarly to gdb

I Also with Memory Compaction

I Heuristic for both safety and liveness

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 17/26



OS-level State Equality Detection

I Memory over-provisioning
allocated size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes: Data structure alignment

struct foo {
char c;
int i;
short s;
void *p;
}

1 3 4 2 6 8

Padding bytes

size (bytes)

c i s pstruct member

I Irrelevant di�erences: system-level PID, fd, . . .

I Syntactic di�erences / semantic equalities:

0x10

0x10

0x20

0x20

0x30

0x30

0x40

0x40

0x50

0x50

1234

1234

aSbY

aSbY

�e

gcc

gcc

�e

= = = =Solutions

Issue Heap solution Stack solution

Overprovisioning memset 0 (customized mmalloc) Stack pointer detection

Padding bytes memset 0 (customized mmalloc) DWARF + libunwind

Irrelevant di�erences Ignore explicit areas DWARF + libunwind + ignore

Syntactic di�erences Heuristic for semantic comparison N/A (sequential access)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 18/26



Applicative State in Mc SimGrid

We work at system level

I Target = legacy MPI apps

I Stack: where maestro lives

I Heap: shared between actors + actors stacks

I BSS+Data: private copy for each actor

I Network state is within libsimgrid data

How to privatize the BSS+data

I (this is required to fold MPI processes anyway)

I Source-to-Source: turn globals into arrays of locals

I Compiler's pass: move globals into TLS area
changes toolchain (no icc) ; alters SEBs (as any previous solution)

I GOT injection: rewrite the ELF symbol table when switching contextes
static variables are not part of the GOT unfortunately

I mmap of bss+data segments: preserves SEBs but forces sequential exec

I dlopen tricks: compile app with -fPIE, dlopen() it many times
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 19/26



Memory Compactions

We save literally thousands of states

=

s1

=

System State S1

System State S2
Memory pages to save

s2

I Very few modi�cation between states in practice

I First fast hash function to distinguish new pages, then byte-wise equality

I Combines nicely with State Equality Detection (but complex implementation)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 20/26



Evaluation

Veri�ed small applications

I MPI2 collectives, MPICH3 test suite, Benchmarks (NAS, CORAL, NERSC)

I Safety, Liveness (no non-progressive cycle), Send-determinism

Results
I Without reduction, only scales up to 2 to 6 processes in 24h

I Reductions (when usable) and Memory Compaction goes a bit further

I Not exactly ExaScale, but exhaustively at small size already useful

Found bugs

I The one we intentionally added to the code

I Our own implementation of the Chord protocol (not in MPI)

I But no wild bugs in MPI yet :(

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 21/26



Veri�cation of some MPICH3 unit tests
I Looking for assertion failures, deadlocks and non-progressive cycles
I Exhaustive exploration, but no error found
I ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

Application #P
Stateless exploration Stateful exploration

# States Time # States Time Memory

sendrecv2

2 > 55 millions > 6h 936 13s 2GB

5 - - 2 284 43s 5.4GB

10 - - 3 882 2m 11GB

bcastzerotype
5 > 12 millions > 1h 2 474 41s 3.1GB

6 - - 17 525 5m 19GB

coll4 4 > 100 millions > 24h 29 973 20m 38GB

5 - - > 150 000 > 4h > 200GB

groupcreate
5 > 10 millions > 1h30 2 217 38s 2.8GB

7 - - 71 280 24m 62GB

dup
4 > 57 millions > 5h 4 827 1m20 6.5GB

5 - - 75 570 49m 87GB

I We veri�ed several MPI2 collectives too: all good so far /
McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 22/26



Checking Liveness Properties

Enforce property φ

I Search for a counter-example, ie a run of the system satisfying ¬φ

I Counter examples are in�nite ; Build the Büchi Automaton of ¬φ

I Ensure that Application Ö Bucchi(¬φ) is empty (no accepted run)

I State Equality is crucial to detect cycles

Current state in Mc SimGrid
I Working in our tests (although fragile: equality is based on heuristics)

I We are looking for more domain-speci�c interesting properties

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 23/26



Veri�cation of Protocol-wide Properties

Motivation
I Clever checkpoint algorithms exist, provided that the application is nice enough

I On communication determinism in parallel HPC applications,
F. Cappello, A. Guermouche and M. Snir (2010)

I Manual inspection of 27 HPC applications, seeking for such properties

Protocol-wide properties

I deterministic: On each node, send and receive events are always in same order

I send deterministic: ∀ node, send are always the same, no matter the recv order

I Not liveness, not even LTL: quanti�es for all execution paths within property

Status report: we can verify such properties in Mc SimGrid

I Explore one path to learn the communication order, deduce the property

I Enforce that this order holds on all other execution path

I We reproduced the conclusions of previous paper on several benchmarks
I NAS Parallel Benchmarks NPB 3.3 (5 kernels)
I CORAL Benchmark codes
I NERSC-8/Trinity Benchmarks* Conclusion

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 24/26



Conclusion on Mc SimGrid

Mc SimGrid: Dynamic Veri�cation of MPI applications

I Unmodi�ed C/C++/Fortran MPI applications

I Early stage, but already functional: Safety, Liveness, Send-determinism

I Reductions: DPOR and State Equality

I Scale to a few processes only, but exhaustive testing

State of the Art
I Many testing tools (MUST): not exhaustive nor sound

I Symbolic execution (TASS, CIVL): complementary to our work

I Dynamic veri�cation (ISP, DAMPI at U. Utah)
I PMPI proxy at runtime to delay communications to guide execution
I Works for safety, but not applicable to liveness (state equality)

Ongoing Works

I Improve DPOR by using Event Unfolding structures

I Collab with NEU: Convert checkpoints taken on MPICH into SimGrid runs

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 25/26



SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop

I Joint Project since 1998, mostly from french institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

I Usability: Fast, Reliable, MPI API, Visualization

Community

I Mostly Scientists: 150 publications by 120 individuals

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, ...)

I Open Source: external Power Users (�xes & models)

McSimGrid: Turning a simulator of System Performance into a Dynamic Veri�cation Framework 26/26


	Preamble
	Introduction
	Performance Simulation
	Correctness Assesment

