
What can be Computed in a Distributed System? 1

What can be Computed

in a Distributed System?

Michel RAYNAL

Institut Universitaire de France

& IRISA, Université de Rennes, France

& Hong Kong Polytechnic University (PolyU)

What can be Computed in a Distributed System? 2

Never forget ....

What can be Computed in a Distributed System? 3

Table of contents

• A few definitions related to distributed computing

• Are asynchr. crash-prone distributed systems universal?

• How to circumvent impossibility results

• What can be implemented without additional power?

• On the complexity side: a look at synchronous systems

• Is there a conclusion?

What can be Computed in a Distributed System? 4



On distributed computing

God made the bits,

all else is the work of man

God made the integers, all else is the work of man (L. Kronecker)

What can be Computed in a Distributed System? 5

Distributed computing

• A birth certificate: Time, clocks and the or-
dering of events in a distributed system, Leslie
Lamport, CACM 1978

• DC arises when one has to solve a problem in
terms of entities (processes, agents, sensors,
peers, actors, nodes, processors, ...) such that
each entity has only a partial knowledge of the
many parameters involved in the problem that
has to be solved

What can be Computed in a Distributed System? 6

What is distributed computing about?

• Real-time: masters On-time computing

• Parallelism: provides Efficiency

• Distributed computing:

masters Uncertainty

What can be Computed in a Distributed System? 7

Distributed system

• n sequential deterministic processes: p1, ..., pn

• Communication:

⋆ message-passing (send/receive) or

⋆ read/write atomic registers

• Deterministic: the behavior of a process is entirely de-
termined by its initial state, its algorithm, and

⋆ the sequence of values read from atomic registers or

⋆ the sequence of messages it receives

What can be Computed in a Distributed System? 8



Synchronous vs asynchronous system

• Asynchronous:
process speed and message transfer delays: arbitrary

• Synchronous

⋆ Round-based computation

⋆ A round is made up of three phases: send, receive,
local computation

⋆ A message sent during a round is received during the
very same round

p3

p1

p2

p3

r = 2 r = 3r = 1
p1

p2

What can be Computed in a Distributed System? 9

Process failure model

• Crash: unexpected halt

• t-resilient model
Model parameter t= max # processes that may crash

• Wait-free model: t = n− 1

- Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, 1991

Textbooks:

- Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and
advanced topics, Wiley-Interscience, 414 pages, 2004

- Lynch N.A., Distributed algorithms. Morgan Kaufmann, 872 pages, 1996.

- Raynal M., Concurrent programming: algorithms, principles, and foundations.
Springer, 530 pages, 2013

What can be Computed in a Distributed System? 10

Notion of an environment in DC

• Environment: set of failures and (a)synchrony patterns
in which the system may evolve

• The system does not master its environment, it only
suffers it

• This is a fundamental difference with sequential (or par-
allel) computing

What can be Computed in a Distributed System? 11

Computability and complexity in DC

• Computability and complexity are the two lenses that
allows us to understand and master computing

• In DC we have the following:

Failure-free

Crash-prone

Synchronous

complexity

complexitycomplexity

Asynchronous

computability

What can be Computed in a Distributed System? 12



A (the?) fundamental issue

Are asynchronous crash-prone

distributed systems universal?

What can be Computed in a Distributed System? 13

On computability and universal constructions (1)

• In sequential computing, computability is understood
through the Church-Turing’s thesis (anything that can
be computed, can computed by a Turing machine)

• The notion of Computability is intimately related to the
notion of universality

• A fundamental issue of DC:

Is it possible to design a universal construction (algo-
rithm) on top of an asynchronous distributed system
prone to crash failure?

What can be Computed in a Distributed System? 14

On computability and universal constructions (2)

• Due to the environment (asynchrony and failures), dis-
tributed computability has a different flavor than se-
quential computability

• Moreover, this is independent of the fact that commu-
nication is by message-passing or read/write registers

• A famous quote of Leslie Lamport on distributed com-
puting:
A distributed system is one in which the failure of

a computer you didn’t even know existed can render
your own computer unusable

• It follows that the limits of distributed computability
reflect the difficulty of making decisions in the face of
uncertainty, and has little to do with the computational
power of each participant

-Herlihy M.P., Rajsbaum S., and Raynal M., Power and limits of distributed comput-
ing shared memory models. Theoretical Computer Science, 509:3-24, 2013

What can be Computed in a Distributed System? 15

A universality notion for distributed computing

• Let Z be any concurrent object, which can be defined
by a sequential specification on total operations

• From a practical point of view: Z is a service that we
want to make reliable in the presence of failures

• The universality notion in which we are interested con-
cerns the possibility to implement any such object Z
despite asynchrony and any number of process crashes

Sequential specification

of an object Z of object Z

Implementation
Universal construction

- Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, 1991

Lamport L., Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–565, 1978

What can be Computed in a Distributed System? 16



On the progress conditions of object Z

• The wait-freedom progress condition states that:
An invocation of an operation on Z can fail to terminate
only if the invoking process crashes

Corresponding implementations are said “wait-free”

• A wait-free implementation prevents the use of locks!

• Non-blocking and obstruction-freedom are progress
conditions weaker than wait-freedom

- Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-
ended queues as an example. Proc. 23th Int’l IEEE Conference on Distributed
Computing Systems (ICDCS’03), IEEE Press, pp. 522-529, 2003

- Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-
492, 1990

What can be Computed in a Distributed System? 17

Consensus-based universal constructions

• The consensus object is universal in the sense it allows
the design of wait-free implementations of any object Z
defined by a sequential specification

Sequential specification

of an object Z of object Z

Wait-free implementationAtomic read/write registers

Consensus objects

Universal construction

- Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, 1991

What can be Computed in a Distributed System? 18

Consensus object

• A consensus object is a one-shot concurrent object
that provides processes with a single operation denoted
propose(v) where v is an input parameter (called “pro-
posed value”)

• A consensus object is defined by the following properties

⋆ Validity. If a process decides a value, this value has
been proposed by a process

⋆ Agreement. No two processes decide different values

⋆ Termination. An invocation of propose() by a process
that does not crash terminates

• Consensus objects allow the processes to agree on the
same sequence of operations applied to Z, despite any
concurrency, asynchrony, and failure pattern

What can be Computed in a Distributed System? 19

A fundamental result of distributed computability

• There is no deterministic algorithm that wait-free im-
plements a consensus object

⋆ Whatever the number of processes n ≥ 2

⋆ Whatever the communication medium
(read/write registers or message-passing)

⋆ Even if a single process may crash

⋆ Even if processes have to agree on a single bit!

- Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374-382, 1985

- Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable
asynchronous processes. Advances in Comp. Research, 4:163-183, JAI Press, 1987

What can be Computed in a Distributed System? 20



Underlying intuition with binary consensus (1)

• Let a global state be 0-valent if only 0 can be decided
from this state

• Let a global state be 1-valent if only 1 can be decided
from this state

• Univalent state: 0-valent or 1-valent

• Bivalent state: any of 0 or 1 can still be decided “the
dice are not yet cast”

• Decision step: carries the construction from a bivalent
state to a univalent state

- Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374-382, 1985

What can be Computed in a Distributed System? 21

Underlying intuition with binary consensus (2)

• The impossibility theorem (FLP) is by contradiction

• It assumes there is an algorithm and shows that

⋆ There is at least one initial bivalent state
⋆ Among all possible executions there is at least one
that makes the algorithm to always progress from a
bivalent state to another bivalent state

• This shows that it is NOT always possible to break the
non-determinism created by the environment

What can be Computed in a Distributed System? 22

Sequential vs distributed computability

• A network of asynchronous Turing machines where even
only one may crash, connected by a message-passing fa-
cility, or a read/write shared memory, is computationally
less powerful than a single reliable Turing machine

• The nature of distributed computability issues is differ-
ent from the nature of Turing’s computability issues,
namely, it is not related to the computational power of
the individual participants

What can be Computed in a Distributed System? 23

Enriching read/write systems with stronger objects

• Consensus number of an object X = largest n for
which consensus can be be wait-free implemented in
a read/write system of n processes enriched with ob-
jects X
If there is no largest n, the consensus number is +∞

• Herlihy’s hierarchy:

⋆ Consensus number 1: read/write atomic registers, ...

⋆ Consensus number 2: test&set, swap, fetch&add,
stack, queue, ...

⋆ Consensus number +∞: compare&swap, LL/SC,
mem-to-mem swap, ...

• Any object with consensus number n is universal in a
system of ≤ n processes

- Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, 1991

What can be Computed in a Distributed System? 24



From read/write to message-passing systems

• Whatever the environment, it is possible to simulate
message-passing on top of read/write

• It is impossible to simulate read/write on top of message-
passing when t ≥ n/2 (ABD impossibility)

• Intuition: indistinguishability argument

• A variant: CAP theorem
⋆ CAP = Consistency, Availability, Partition-tolerance

⋆ States that, when designing distributed services, it is
impossible to design an algorithm that simultaneously
ensures the three previous properties

⋆ Impossibility variant of FLP + ABD

- Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing
systems. Journal of the ACM, 42(1):121-132, 1995

- Brewer E.A., Pushing the CAP: strategies for consistency and availability. IEEE
Computer, 45(2):23-29, 2012

What can be Computed in a Distributed System? 25

Playing with progress conditions and consensus objects

• Obstruction-freedom: an invocation of an operation on
an object is guaranteed to terminate when it executes
alone for a “long enough period” (whatever the points
at which the other invocations stopped)

• (y, x)-liveness if the object can be accessed by a subset
of y ≤ n processes only, and wait-freedom is guaran-
teed for x ≤ y processes while obstruction-freedom is
guaranteed for the remaining y − x processes

• Impossibility to build an (n,1)-live consensus object from
read/write atomic registers and (n − 1, n − 1)-live con-
sensus objects

• Another hierarchy: any (n, x)-live consensus object with
x < n has consensus number x+1

- Imbs D., Raynal M., and Taubenfeld G., On asymmetric progress conditions. Proc.
29rd ACM Symposium on Principles of Distributed Computing (PODC’10), ACM
Press, pp. 55-64, 2010

What can be Computed in a Distributed System? 26

How to circumvent

consensus impossibility

Remark:
No notion of objects with consensus number in MP systems

What can be Computed in a Distributed System? 27

Three approaches

• Add an oracle

(which provides additional computational power)

⋆ Failure detectors
⋆ Randomization

• Restrict the set of input vectors

What can be Computed in a Distributed System? 28



The failure detector approach

• Given a problem: Find the weakest “assumptions” that
has to added to an asynchronous system in order prob-
lems can be solved

AsynchronousSynchronous

Can be solved Cannot be solved

What can be Computed in a Distributed System? 29

Failure detectors

• Provide each process with a read-only local variable
giving (possibly unreliable) information on failures

• Given a problem (object), give as few information as
possible while allowing the object to be implemented

• According to the information on failures that is given,
several “classes” of failure detectors can be defined

- Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM, 43(2):225-267, 1996

- Raynal M., Communication and agreement abstractions for fault-tolerant asyn-
chronous distributed systems. Morgan & Claypool Pub., 251 pages, 2010

What can be Computed in a Distributed System? 30

The weakest failure detector to solve consensus

• Ω: provides each process pi with a read-only local vari-
able leaderi such that, after an unknown but finite time,
the variables leaderi of the non-crashed processes con-
tain forever the same process identity of a non-crashed
process

• Ω: weakest FD that allows consensus to be solved

- Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for
Solving Consensus. Journal of the ACM, 43(4):685-722, 1996

- Fernández A., Jiménez E., Raynal M., and Trédan G., A timing assumption and
two t-resilient protocols for implementing an eventual leader service in asynchronous
shared-memory systems. Algorithmica, 56(4):550-576, 2010

What can be Computed in a Distributed System? 31

The notion of an indulgent distributed algorithm

• A distributed algorithm is indulgent with respect to a
failure detector FD it uses to solve a problem Pb if

⋆ it always guarantees the safety property defining Pb
(i.e., whatever the correct/incorrect behavior of FD),

⋆ and satisfies the liveness property associated with Pb
at least when FD behaves correctly

• Hence, when the implementation of FD does not satis-
fies its specification, the algorithm may not terminate,
but if it terminates its results are correct

• All Ω-based algorithms are indulgent

• Notions of stable vs unstable periods

- Guerraoui R., Indulgent algorithms. Proc. 19th ACM Symposium on Principles of
Distributed Computing (PODC’00), ACM Press, pp. 289-298, 2000

What can be Computed in a Distributed System? 32



Randomization

• A classical way to break non-determinism

• Asynchronous round-based algorithms

• Requires to modify the termination property which be-
comes:

The probability that a non-faulty process has decided by
round r tends to 1, when the number of rounds tends
to +∞

• Notion of expected number of rounds to decide

- Ben-Or M., Another advantage of free choice: completely asynchronous agree-
ment protocol. Proc. 2d ACM Symposium on Principles of Distributed Computing
(PODC’83), ACM Press, pp. 27-30, 1983

What can be Computed in a Distributed System? 33

Restrict the set of input vectors

• Intuitively consider that an input vector “encodes” the
value that has to be decided

• The consensus algorithm has to “decode” it

• To be possible the input vector has to satisfies some
properties

- Friedman R., Mostéfaoui A., Rajsbaum S., and Raynal M., Asynchronous agree-
ment and its relation with error-correcting codes. IEEE Transactions on Computers,
56(7):865-875, 2007

- Mostéfaoui A., Rajsbaum S., and Raynal M., Conditions on input vectors for con-
sensus solvability in asynchronous distributed systems. Journal of the ACM, 50(6):
922-954, 2003

What can be Computed in a Distributed System? 34

Examples of objects which can be

solved in the basic read/write system

What can be Computed in a Distributed System? 35

Snapshot object

• A snapshot object is an array of registers A[1..n], where
A[i] can be written only by pi

• It provides the processes with two operations

⋆ ∀i: a write that allows pi to write (only) in A[i]

⋆ snapshot() can be invoked by any process and returns
the value of the whole array

• These operations are atomic: each appears as if it been
executed instantaneously at some point of the time line,
between its start and its end events

- Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots
of shared memory. Journal of the ACM, 40(4):873-890, 1993

What can be Computed in a Distributed System? 36



One-shot M-renaming object (1)

• Each process pi has an identity idi taken from a large
name space, whose size is N

• Initially a process knows only n and its initial identity idi

• The aim is to allow processes to obtain new names in
a new name space of size M << N

• The object provides processes with a single operation
denoted new name(id) where the input parameter is the
identity of the invoking process; new name() returns a
new name to the invoking process

- Attiya H., Bar-Noy A., Dolev D., Peleg D., and Reischuk R., Renaming in an
asynchronous environment. Journal of the ACM, 37(3):524-548, 1990

What can be Computed in a Distributed System? 37

One-shot M-renaming object (2)

• Validity. A new name is an integer in the set [1..M].

• Agreement.
No two processes obtain the same new name.

• Termination. If a process invokes new name() and does
not crash, it eventually obtains a new name.

Let p be the number of processes that invoke new name().
M = 2p− 1 is a lower bound on the new name space

- Castañeda A. and Rajsbaum S., New combinatorial topology bounds for renaming:
The upper bound. Journal of the ACM, 59(1), Article 3, 49 pages, 2012

- Herlihy M. and Shavit N., The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858-923, 1999

What can be Computed in a Distributed System? 38

Sequential computing

• Power and limit of sequential computing

• Central notion of a function: y = f(x)

x y = f(x)f

• Notion of a computable function

• Several formalisms:
Turing machine,
Post system,
Church’s lambda calculus, etc.

What can be Computed in a Distributed System? 39

The notion of a task in DC (1)

The DC counterpart of a function

ini
pi outi

Inputs Outputs

What can be Computed in a Distributed System? 40



The notion of a task in DC (2)

• A task T is a triple (I,O,∆)

⋆ I: set of input vectors (of size n)

⋆ O: set of output vectors (of size n)

⋆ ∆: relation from I into O: ∀I ∈ I : ∆(I) ⊆ O

• I[i]: private input of pi

• O[i]: private output of pi

• ∀I ∈ I:
∆(I) = { output vectors that can be decided from I }

What can be Computed in a Distributed System? 41

Fundamental issues/results in asynchronous DC (1)

• Impossibility for a given process pi to know if another
process pj has crashed or is only very slow (generates a

lot of impossibilities)

• Due to the net effect of asynchrony and crashes the
DC model is “weaker” than a Turing machine!

• There are Turing-computable functions that are not
computable even in the presence of a single failure

A lot of tasks cannot be solved in asynchronous crash-
prone distributed systems while they can in a reliable
distributed system

What can be Computed in a Distributed System? 42

Fundamental issues/results in asynchronous DC (1)

• The question whether a task is 1-resilient computable
can be reduced to a question of graph connectivity

• The question whether a task is computable in the pres-
ence of more failures:

reducible to the question whether an associated geo-
metric structure (called simplicial complex) has higher
dimensional “holes”, which is known to be undecidable

• Similar to oracles of classic computability, there are
tasks which are computable only when given access to
a distributed oracle for other tasks (leading to infinite
hierarchies of tasks)

M. Herlihy, S. Rajsbaum, and M. Raynal, Power and limits of distributed computing
shared memory models. Theoretical Computer Science, 509: 3-24 (2013)

What can be Computed in a Distributed System? 43

A glance at synchronous systems

What can be Computed in a Distributed System? 44



Complexity issues: gentle reminder

Failure-free

Crash-prone

Synchronous

complexity

complexitycomplexity

Asynchronous

computability

What can be Computed in a Distributed System? 45

Asynchronous or synchronous failure-free systems

• Power = Turing machine

• Main issue: find the best solutions

• Example (cf. sorting pb)

⋆ Leader election on a non-anonymous uni or bi-directional
ring

⋆ Message complexity: O(n logn)

⋆ Time complexity O(logn)

- Dolev D., Klawe M., and Rodeh M., An O(n logn) unidirectional distributed algo-
rithm for extrema finding in a circle. Journal of Algorithms, 3:245–260, 1982

- Higham L. and Przytycka T., A simple efficient algorithm for maximum finding on
rings. Information Processing Letters, 58(6):319–324, 1996

What can be Computed in a Distributed System? 46

Failure-prone synchronous systems

• Computability/Complexity results are similar to sequen-
tial computing

• Example: consensus problem:

Process failure model Upper bound on t
crash failure t < n
send omission failure t < n
general omission failure t < n/2
Byzantine failure t < n/3

• In all cases: Lower bound on the number of rounds that
the processes have to execute is t+1

- Raynal M., Fault-tolerant agreement in synchronous distributed systems. Morgan
& Claypool, 167 pages, 2010

What can be Computed in a Distributed System? 47

Crash-prone synchr. systems with message adversaries

• Fully connected notwork

• Round-based computation

• A message adversary is a daemon which, at every round,
is allowed to suppress messages

• No process knows in advance which are the links on
which messages are suppressed during a round

• First introduced under the name mobile fault

- Santoro N. and Widmayer P., Time is not a healer. Proc. 6th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’89), Springer LNCS 349, pp. 304-
316, 1989.

- Santoro N. and Widmayer P., Agreement in synchronous networks with ubiquitous
faults. Theoretical Computer Science, 384(2-3): 232-249, 2007

What can be Computed in a Distributed System? 48



The adversary TOUR

• The adversary TOUR is such that, in each round, and
for each pair of processes (pi, pj), the adversary is al-
lowed to suppress

⋆ the message sent by pi to pj or the message sent by
pj to pi

⋆ but not both

• The synchronous message-passing model weakened by
the message adversary TOUR and the asynchronous
crash-prone read/write system model have the same
computational power for distributed tasks

-Afek Y. and Gafni E., Asynchrony from synchrony. Proc. Int’l Conference on
Distributed Computing and Networking (ICDCN’13), Springer LNCS 7730, pp. 225-
239, 2013

What can be Computed in a Distributed System? 49

Message adversaries: a more global picture

SMPn[adv : ∅] ≃M AMPn,0[fd : ∅] ≃M ARWn,0[fd : ∅]

SMPn[adv : ∞] ≃T AMPn,n−1[fd : ∅]

SMPn[adv : SOURCE] ≃T AMPn,n−1[fd : Ω]

SMPn[adv : SOURCE, QUORUM] ≃T AMPn,n−1[fd : Σ, Ω]

SMPn[adv : SOURCE, TOUR] ≃T ARWn,n−1[fd : Ω]

SMPn[adv : TOUR] ≃T ARWn,n−1[fd : ∅]

SMPn[adv : QUORUM] ≃T AMPn,n−1[fd : Σ]

- Raynal M. and Stainer J., Round-based synchrony weakened by message adver-
saries vs asynchrony enriched with failure detectors. Proc. 33rd ACM Symposium
on Principles of Distributed Computing (PODC ’13), ACM Press, pp. 166-175, 2013

What can be Computed in a Distributed System? 50

Conclusion

What can be Computed in a Distributed System? 51

• The aim was to understand the power, subtleties and
limits of crash-prone asynchronous distributed comput-
ing models

• A “Holy Grail” quest: have a view as clear as what
we have in sequential computing wrt to computability,
complexity, and languages hierarchy

What can be Computed in a Distributed System? 52



The only slide to remember

Asynchrony and failures do modify

• Our view of synchronization

• The way synchronization has to be solved

What can be Computed in a Distributed System? 53

The “other” only slide to remember!

Is there an end to the story?

Colorin colorado,

este cuento no se ha acabado ...

What can be Computed in a Distributed System? 54

A few books on the topic

- Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and
advanced topics,
Wiley-Interscience, 414 pages, 2004

- Herlihy M. and Shavit N., The art of multiprocessor programming.
Morgan Kaufmann, 508 pages, 2008

- Lynch N.A., Distributed algorithms. Morgan Kaufmann, 872 pages, 1996

- Raynal M., Communication and agreement abstractions for fault-tolerant asyn-
chronous distributed systems.
Morgan & Claypool Pub., 251 pages, 2010

- Raynal M., Fault-tolerant agreement in synchronous message-passing systems.
Morgan & Claypool Publishers, 165 pages, 2010

- Raynal M., Concurrent programming: algorithms, principles, and foundations.
Springer, 530 pages, 2013

- Raynal M., Distributed algorithms for message-passing systems.
Springer, 515 pages, 2013

- Taubenfeld G., Synchronization algorithms and concurrent programming.
Pearson Education/Prentice Hall, 423 pages, 2006

What can be Computed in a Distributed System? 55

Books

What can be Computed in a Distributed System? 56


