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About Me

Curriculum Vitæ
I 1999: Maîtrise (informatics) at Université de Saint Étienne
I 2003: PhD (informatics) at ENS-Lyon
I 2004: Post-Doctoral Researcher at University of California, Santa Barbara.
I 2004: Temporary teaching assistant at Université de Grenoble.
I Since 2005: Assistant professor at Université de Lorraine / Telecom Nancy
I 2011 � 2013: On leave at Inria Nancy � Grand Est
I March 2013: Habilitation Thesis
I 2013 � 2014: Leader of the Algorille joint team (Algorithms for the Grid)
I 2015 �: Member of the VeriDis joint team (Veri�cation of Distributed Systems)
I Future? Professor in ENS-Rennes (team Myriads) ?

Research Common Theme since 15 years

I Discovery and Modeling of Large-scale HPC Systems (since my M.S work!)
I Make them usable by others: e.g., provide performance models to schedulers
I One of the main contributors to SimGrid, a scienti�c instrument for such studies
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Modern Computers are Large and Complex

Massive Parallelism

1. Tianhe-2 (China) 3,120,000 cores 18MW
2. Titan (USA) 560,640 cores 8MW
3. Sequoia (USA) 1,572,864 cores 8MW
4. K Computer (Japan) 705,024 cores 13MW
5. Mira (USA) 786,432 cores 4MW

Computational Science ; ExaScale Systems

I Huge impact in all sciences and techniques and industries and businesses
I 1 Exa�op = 1018 operations. One million million million operations. . .

Not only in Computational Science

I Google dissipates 300MW ; Botnets control millions of zombie computers
I In addition, these systems are heterogeneous and dynamic

So, how do we study these beasts?
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Computational Science of Computer Systems

My Research Field: Methodologies of Experimentation

I Goal: assess the performance and correctness of large-scale computer systems
I Question: Are we really producing scienti�cally sound results?
I Main contribution: SimGrid, a simulator of large-scale computer system

My approach: I am a physicist

I Empirically consider large-scale computer systems as natural objects
I Eminently arti�cial artifacts, but complexity reaches �natural� levels
I Other sciences routinely use computers to understand complex systems

[PPL'09], cited 52 times.
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Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations
I Experimental campaign with thousands of runs within the week
I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol
I No heisenbug: (Simulated) time does not change when you capture more data
I Clairevoyance: Observe every bits of your application and platform
I High Reproducibility: No or very few variability
I Capacity planning: What if network or CPU were faster
I Don't waste resources to debug and test
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Simulation Challenges

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges for the Tool Makers

I Validity: Get realistic results (controlled experimental bias)
I Scalability: Fast enough and Big enough

I Open Science: Integrated lab notes, runner, post-processing (data provenance)
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Simulation of Parallel/Distributed Systems

Network Protocols: Standards emerged: GTNetS, DaSSF, OmNet++, NS3
Huge amount of non-standard tools in other domains:

I Grid Computing OptorSim ChicagoSim GridSim JFreeSim . . .

I Peer-to-peer P2Psim SimP2P PeerSim OverSim . . .

I Volunteer Computing SimBA EmBOINC SimBOINC . . .

I HPC/MPI Dimemas PSinS BigSim LogGoPSim XSim SST . . .

I Cloud Computing CloudSim GroudSim iCanCloud GreenCloud . . .

This raises severe methodological/reproducibility issues:
I Short-lived, badly supported (software QA), sparse validity assessment

SimGrid: a 15 years old joint project
I Versatile: Grid, P2P, Clouds, HPC, Volunteer
I Collaborative: (ANR, CNRS, Univ., Inria) Open Source: active community
I Widely used: 150 publications by 120 individuals, 30 contributors

http://simgrid.org/ [UKSim'08] cited 350, [JPDC'14]
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SimGrid Key Features: Fluid Network Model

I Packet level models: Full net stack. Inherently slow, hard to instantiate
I Simple models: Delay-based, distribution, coordinates

Very scalable, but no topology, no network congestion

I Fluid models: Share bandwidth between �ows on macroscopic evts

Bandwidth sharing as an optimization problem∑
if �ow i uses link j

ρi 6 Cj

I Max-Min objective function: max (min (ρi ))

I Reno fairness: max
(∑

arctan (ρi )
)

I Vegas fairness: max
(∑

log (ρi )
)

We implement, (in)validate and optimize these models since 10 years

I The classical "Observe, Analyze, Hypothesis, Test" loop
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Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)
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Key aspects to obtain this result

I Network Topology: Contention (large msg) and Synchronization (small msg)
I Applicative (collective) operations (stolen from real implementations)
I Instantiate Platform models (matching e�ects, not docs)
I All included in SimGrid but the instantiation (remains manual for now)

[IPDPS'11] cited 35, [SC'13]
Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 9/20



Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

q
q

qqq

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q RealNetwork collapse

SimGrid

LogGPS

Discrepency between Simulation and Real Experiment. Why?

I Massive switch packet drops lead to 200ms timeouts in TCP!
I Tightly coupled: the whole application hangs until timeout
I Noise easy to model in the simulator, but useless for that very study
I Our prediction performance is more interesting to detect the real issue

[IPDPS'11] cited 35, [SC'13]
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Agenda

Introduction

Computational Science of Computer Systems (CS2)

Simulation Models

Parallel Simulation of Discrete Event Systems

Dynamic Veri�cation of Distributed Applications

Conclusion
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Parallel Simulation of Discrete Event Systems

Classical Parallel Schema: split the whole applicative model
LP #1 LP #2

LP #3 LP #4

I Leads to good speedups (but still poor performance)
dPeerSim: 4h → 1h when 2 LPs → 16 LPs (but 50s in sequential PeerSim)

New approach: Split at Virtualization layer (not in simulation engine)
I Virtualization contains threads (user's stack)
I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

I Synchronization costs of paramount importance

S
im

u
la
ti
o
n

W
o
rk
lo
a
d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment
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E�cient Parallel Fine-Grained Simulation
SimGrid is an Operating System

Simcalls separate processes, alleviating locking issues

I Very similar to syscalls in an operating system

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3

Leveraging Multicores

⇒ More processes than cores ; Worker Threads (that execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm
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Performance Results

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol
I Arbitrary Time Limit: 12 hours (kill simulation afterward)
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PeerSim

OverSim (simple underlay)
SimGrid (sequential)
SimGrid (4 threads)

Largest simulated scenario
Size Time

Omnet++ 10k 1h40
PeerSim 100k 4h36
OverSim 300k 10h

SimGrid, seq
10k 32s
300k 32mn
2M 6h18

SimGrid//
10k 130s
300k 40mn
2M 5h55

Memory Usage
18kiB /process (stack: 12kiB)

First time that PDES is (a little) faster than DES [CCGrid'12], cited 17
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Assessing the Correctness of HPC codes?

Writing Distributed Apps is notoriously di�cult, but

The Good Old Days

I MPI codes circumvented issues with rigid communication patterns

I Performance First: fast code that rarely fail-stop ≫ correct slow code

These Days are Now Over

I But rigid patterns do not scale! We now have to release the grip
I But this is dangerous! We now have to explicitly seek for correctness

Slowly, old ignored problems resurface

I When Tests are not enough anymore, turn to Formal Methods
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Model Checking and Dynamic Veri�cation

Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults
I If no fault found after an exhaustive search, correctness experimentally proved
I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
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Model Checking: the Big Idea

I My preferred outcome: a counter-example
I I tend to bug �nding, not certi�cation
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SimGridMC: Formal Methods in SimGrid

Verify any application that would run in SimGrid

I Reuse the simulator's light virtualization to mediate apps' actions
I Replace the simulation kernel underneath with a model checker
I Tests all causally possible orders of events to dynamically verify the app
I System-level checkpoints the app to then rewind and explore another path
I This works with SMPI, and MSG (our simple API to study CSP algorithms)

SIMIX
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[(1)c-1.me] iRecv

28

[(2)c-2.me] Wait [(1)->(2)]

29

[(2)c-2.me] iSend

30

[(1)c-1.me] Wait [(2)->(1)]

31

[(1)c-1.me] iRecv

32

[(2)c-2.me] Wait [(2)->(1)]

33

[(2)c-2.me] iSend

34

[(1)c-1.me] Wait [(2)->(1)]

35

[(1)c-1.me] iSend

36

[(2)c-2.me] Wait [(2)->(1)]

37

[(2)c-2.me] iRecv

38

[(1)c-1.me] Wait [(1)->(2)]

39

[(1)c-1.me] iRecv

40

[(2)c-2.me] Wait [(1)->(2)]

41

[(2)c-2.me] iSend

[(1)c-1.me] Wait [(2)->(1)]

43

[(2)c-2.me] Wait [(2)->(1)]

44

[(1)c-1.me] Wait [(2)->(1)]

[(1)c-1.me] iRecv

46

[(2)c-2.me] iSend

47

[(1)c-1.me] iRecv

48

[(1)c-1.me] Wait [(2)->(1)]

49

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]

51

[(3)c-3.me] Wait [(3)->(1)]

52

[(2)c-2.me] Wait [(2)->(1)]

53

[(2)c-2.me] iRecv

54

[(1)c-1.me] Wait [(1)->(2)]

55

[(1)c-1.me] iRecv

56

[(2)c-2.me] Wait [(1)->(2)]

57

[(2)c-2.me] iSend

58

[(1)c-1.me] Wait [(2)->(1)]

59

[(1)c-1.me] iRecv

60

[(2)c-2.me] Wait [(2)->(1)]

61

[(2)c-2.me] iSend

62

[(1)c-1.me] Wait [(2)->(1)]

63

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]
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Example: Out of order receive

I Two processes send a message to a third one
I The receiver expects the message to be in order
I This may happen. . . or not

rank1

rank2

rank0

send(1)

send(2)

x ← 1 y ← 2

x < y

if (MPI_rank() == 0) {

MPI_Recv(&x , MPI_ANY_SOURCE);

MPI_Recv(&y , MPI_ANY_SOURCE);

MC_assert(x < y);

} else {

MPI_Send (&rank , 0);

}

rank1

rank2

rank0

send(1)

send(2)

x ← 2 y ← 1

x 6< y

**************************

*** PROPERTY NOT VALID ***

**************************

Counter-example execution trace:

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(3)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(3)sender -> (1)recver])

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(2)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(2)sender -> (1)recver])
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Mitigating the State Space Explosion
Many execution paths are redundant ; cut exploration when possible

Dynamic Partial Ordering Reduction (DPOR)

I Works on histories: test only one transitions' interleaving if independent
I Independence theorems: Local events are independent; iSend+iRecv also; . . .
I Must be conservative (exploration soundness at risk!)
I It works well (for safety properties)

System-Level State Equality

I Works on states: detect when a given space was previously explored
I Complementary to DPOR (but not compatible yet)
I Introspect the C/C++/Fortran app just like gdb (+some black magic)

[AVOCS'10] [PDP'15]
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Some Results

Wild safety bug in our Chord implementation (≈ 500 lines of C)

I Simulation: bug on large instances only; MC �nds small trace (1s with DPOR)

Mocked liveness bug

I Buggy centralized mutual exclusion: last client never obtains the CS
I About 100 lines � state snapshot size: 5Mib; Veri�ed with up to 7 processes

Verifying MPICH3 complience tests

I Looking for assertion failures, deadlocks and non-progressive cycles
I 6 tests; ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

I We veri�ed several MPI2 collectives too © (but all good so far /)

Protocol-wide Properties

I e.g, Send-deteministic: On each node, send and recv evts always in same order
(allows more e�cient application checkpointing)

I Even harder than liveness properties (not LTL), but doable in SimGrid
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Much more to say about SimGrid (too little time)

Hybrid Network Models

I Fluid model: model contention in steady state for large messages
I LogOP model: model intra-node delays and synchronization
I Also: MPI collectives, TCP (slow-start, cross-tra�c), soon IB

Realistic Emulation
I SMPI: Study real MPI applications within SimGrid
I Simterpose: Study real arbitrary applications (ongoing)

High Performance Simulation

I Fast Enough: Innovative PDES; E�cient algorithms and implementations
I Big Enough: Scalable and versatile platform representation

Formal Veri�cation of Distributed Apps

I Safety, Liveness or CTL properties, with DPOR or state equality
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Research Project for the Next 10 Years

Make Large-Scale Distributed Systems Easier to Use
I They are pervasive in our connected societies, yet almost uncontrolled
I Research Plan: Computational Science of Computer Systems

I Leveraging computers to understand computers

I Expected Visible Outcome: Propose a valgrind-like for Distributed Systems
I This is perfectly in line with what I'm doing since 15 years

Why in Myriads?

I Distributed Systems, with focus on experimentation (Grid'5000, etc)
I Many works that solve hard OS-level issues to help distributed systems

Why at ENS Rennes?

I We need more teachers that are pro�cient with Systems Internals

I Teaching of paramount importance to me. Lots of activities on teaching CS:
I Unplugged activities; Programming exercisers; Research groups; National Days

I More on this on Friday 12:30 :)
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What is SMPI?
I Reimplementation of MPI on top of SimGrid
I Imagine a VM running real MPI applications on

platforms that does not exist
I Horrible over-simpli�cation, but you get the idea

I Computations run for real on your laptop,
Communications are faked

What is it good for?
I Performance Prediction (�what-if?� scenarios)

I Platform dimensioning; Apps' parameter tuning

I Teaching parallel programming and HPC
I Reduced technical burden
I No need for real hardware, or hack your hardware

Studies that you should NOT attempt with SMPI

I Predict the impact of L2 caches' size on your code
I Interactions of TCP Reno vs. TCP Vegas vs. UDP
I Claiming a simulation of 1000 billions nodes
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SimGrid Network Model
Measurements

Small

Medium1
Medium2

Detached

Small

Medium1
Medium2

Detached

MPI_Send MPI_Recv

1e−04

1e−02
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Hybrid Model

Asynchronous (k 6 Sa)

T3
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T1

T2

Detached (Sa < k 6 Sd)
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Pr

T2T4

T1

Synchronous (k > Sd)

Ps
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T4 T2

Fluid model: account for contention and network topology
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SimGrid Modeling of MPI
MPI Collectives

I SimGrid implements more than 120 algorithms for the 10 main MPI collectives
I Selection logic from OpenMPI, MPICH can be reproduced

HPC Topologies
Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Torus Fat-trees Hierarchies of ASes
But also

I External load (availability changes), Host and link failures, Energy (DVFS)
I Virtual Machines, that can be migrated; Random platform generators
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SimTerpose Project

Dream: Simulate any applications on top of SimGrid

Simulated Setup

P1

Po
rt

 8
0

Host A

P2

Host B

Network

Po
rt  ??

Take 1: ptrace plumbering

P1 P2SimTerpose

10042 Real Port

Hosting Computer

1

2

3

4

ptrace interceptor

10042

1

2

3

connect(host,10042)

connect(A,80)accept(80)

accept(10042)

Take 2: Full Emulation

P1 P2 P3

ptrace interceptor

Threads in   simulator

Direct  memory 
access

Current State
I Functional POC: send/recv exchange
I Need to handle the other 200 syscalls

I Intercept, store metadata
I Inform simulator, report e�ect on procs

I Time and DNS need love at link time
I We are redeveloping a libC! (in strange way ;)
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