
Computational Science of Computer Systems
Méthodologies d'expérimentation pour l'informatique distribuée à large échelle

Martin Quinson
Université de Lorraine, Inria Nancy

Joint work with many colleagues: P. Bédaride, H. Casanova, P.N. Clauss, G. Corona,

A. Degomme, F. Desprez, S. Genaud, A. Giersch, M. Guthmuller, Arnaud Legrand,

Stephan Merz, L. Nussbaum, C. Rosa, M. Stillwell, Frédéric Suter, C. Thiéry, and many interns.

January 21th 2015
Rennes

About Me

Curriculum Vitæ
I 1999: Maîtrise (informatics) at Université de Saint Étienne
I 2003: PhD (informatics) at ENS-Lyon
I 2004: Post-Doctoral Researcher at University of California, Santa Barbara.
I 2004: Temporary teaching assistant at Université de Grenoble.
I Since 2005: Assistant professor at Université de Lorraine / Telecom Nancy
I 2011 � 2013: On leave at Inria Nancy � Grand Est
I March 2013: Habilitation Thesis
I 2013 � 2014: Leader of the Algorille joint team (Algorithms for the Grid)
I 2015 �: Member of the VeriDis joint team (Veri�cation of Distributed Systems)
I Future? Professor in ENS-Rennes (team Myriads) ?

Research Common Theme since 15 years

I Discovery and Modeling of Large-scale HPC Systems (since my M.S work!)
I Make them usable by others: e.g., provide performance models to schedulers
I One of the main contributors to SimGrid, a scienti�c instrument for such studies

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 2/20

Modern Computers are Large and Complex

Massive Parallelism

1. Tianhe-2 (China) 3,120,000 cores 18MW
2. Titan (USA) 560,640 cores 8MW
3. Sequoia (USA) 1,572,864 cores 8MW
4. K Computer (Japan) 705,024 cores 13MW
5. Mira (USA) 786,432 cores 4MW

Computational Science ; ExaScale Systems

I Huge impact in all sciences and techniques and industries and businesses
I 1 Exa�op = 1018 operations. One million million million operations. . .

Not only in Computational Science

I Google dissipates 300MW ; Botnets control millions of zombie computers
I In addition, these systems are heterogeneous and dynamic

So, how do we study these beasts?

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 3/20

Computational Science of Computer Systems

My Research Field: Methodologies of Experimentation

I Goal: assess the performance and correctness of large-scale computer systems
I Question: Are we really producing scienti�cally sound results?
I Main contribution: SimGrid, a simulator of large-scale computer system

My approach: I am a physicist

I Empirically consider large-scale computer systems as natural objects
I Eminently arti�cial artifacts, but complexity reaches �natural� levels
I Other sciences routinely use computers to understand complex systems

[PPL'09], cited 52 times.

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 4/20

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations
I Experimental campaign with thousands of runs within the week
I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol
I No heisenbug: (Simulated) time does not change when you capture more data
I Clairevoyance: Observe every bits of your application and platform
I High Reproducibility: No or very few variability
I Capacity planning: What if network or CPU were faster
I Don't waste resources to debug and test

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 5/20

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations
I Experimental campaign with thousands of runs within the week
I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol
I No heisenbug: (Simulated) time does not change when you capture more data
I Clairevoyance: Observe every bits of your application and platform
I High Reproducibility: No or very few variability
I Capacity planning: What if network or CPU were faster
I Don't waste resources to debug and test

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 5/20

Simulation Challenges

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges for the Tool Makers

I Validity: Get realistic results (controlled experimental bias)
I Scalability: Fast enough and Big enough

I Open Science: Integrated lab notes, runner, post-processing (data provenance)

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 6/20

Simulation of Parallel/Distributed Systems

Network Protocols: Standards emerged: GTNetS, DaSSF, OmNet++, NS3
Huge amount of non-standard tools in other domains:

I Grid Computing OptorSim ChicagoSim GridSim JFreeSim . . .

I Peer-to-peer P2Psim SimP2P PeerSim OverSim . . .

I Volunteer Computing SimBA EmBOINC SimBOINC . . .

I HPC/MPI Dimemas PSinS BigSim LogGoPSim XSim SST . . .

I Cloud Computing CloudSim GroudSim iCanCloud GreenCloud . . .

This raises severe methodological/reproducibility issues:
I Short-lived, badly supported (software QA), sparse validity assessment

SimGrid: a 15 years old joint project
I Versatile: Grid, P2P, Clouds, HPC, Volunteer
I Collaborative: (ANR, CNRS, Univ., Inria) Open Source: active community
I Widely used: 150 publications by 120 individuals, 30 contributors

http://simgrid.org/ [UKSim'08] cited 350, [JPDC'14]

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 7/20

Simulation of Parallel/Distributed Systems

Network Protocols: Standards emerged: GTNetS, DaSSF, OmNet++, NS3
Huge amount of non-standard tools in other domains:

I Grid Computing OptorSim ChicagoSim GridSim JFreeSim . . .

I Peer-to-peer P2Psim SimP2P PeerSim OverSim . . .

I Volunteer Computing SimBA EmBOINC SimBOINC . . .

I HPC/MPI Dimemas PSinS BigSim LogGoPSim XSim SST . . .

I Cloud Computing CloudSim GroudSim iCanCloud GreenCloud . . .

This raises severe methodological/reproducibility issues:
I Short-lived, badly supported (software QA), sparse validity assessment

SimGrid: a 15 years old joint project
I Versatile: Grid, P2P, Clouds, HPC, Volunteer
I Collaborative: (ANR, CNRS, Univ., Inria) Open Source: active community
I Widely used: 150 publications by 120 individuals, 30 contributors

http://simgrid.org/ [UKSim'08] cited 350, [JPDC'14]

Computational Science of Computer Systems Introduction CS
2 Models PDES Formal CC 7/20

SimGrid Key Features: Fluid Network Model

I Packet level models: Full net stack. Inherently slow, hard to instantiate
I Simple models: Delay-based, distribution, coordinates

Very scalable, but no topology, no network congestion

I Fluid models: Share bandwidth between �ows on macroscopic evts

Bandwidth sharing as an optimization problem∑
if �ow i uses link j

ρi 6 Cj

I Max-Min objective function: max (min (ρi))

I Reno fairness: max
(∑

arctan (ρi)
)

I Vegas fairness: max
(∑

log (ρi)
)

We implement, (in)validate and optimize these models since 10 years

I The classical "Observe, Analyze, Hypothesis, Test" loop

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 8/20

SimGrid Key Features: Fluid Network Model

I Packet level models: Full net stack. Inherently slow, hard to instantiate
I Simple models: Delay-based, distribution, coordinates

Very scalable, but no topology, no network congestion

I Fluid models: Share bandwidth between �ows on macroscopic evts

Bandwidth sharing as an optimization problem∑
if �ow i uses link j

ρi 6 Cj

I Max-Min objective function: max (min (ρi))

I Reno fairness: max
(∑

arctan (ρi)
)

I Vegas fairness: max
(∑

log (ρi)
)

We implement, (in)validate and optimize these models since 10 years

I The classical "Observe, Analyze, Hypothesis, Test" loop

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 8/20

Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q Real

SimGrid

LogGPS

Key aspects to obtain this result

I Network Topology: Contention (large msg) and Synchronization (small msg)
I Applicative (collective) operations (stolen from real implementations)
I Instantiate Platform models (matching e�ects, not docs)
I All included in SimGrid but the instantiation (remains manual for now)

[IPDPS'11] cited 35, [SC'13]
Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 9/20

Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

q
q

qqq

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q RealNetwork collapse

SimGrid

LogGPS

Discrepency between Simulation and Real Experiment. Why?

I Massive switch packet drops lead to 200ms timeouts in TCP!
I Tightly coupled: the whole application hangs until timeout
I Noise easy to model in the simulator, but useless for that very study
I Our prediction performance is more interesting to detect the real issue

[IPDPS'11] cited 35, [SC'13]
Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 9/20

Agenda

Introduction

Computational Science of Computer Systems (CS2)

Simulation Models

Parallel Simulation of Discrete Event Systems

Dynamic Veri�cation of Distributed Applications

Conclusion

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 9/20

Parallel Simulation of Discrete Event Systems

Classical Parallel Schema: split the whole applicative model
LP #1 LP #2

LP #3 LP #4

I Leads to good speedups (but still poor performance)
dPeerSim: 4h → 1h when 2 LPs → 16 LPs (but 50s in sequential PeerSim)

New approach: Split at Virtualization layer (not in simulation engine)
I Virtualization contains threads (user's stack)
I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

I Synchronization costs of paramount importance

S
im

u
la
ti
o
n

W
o
rk
lo
a
d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 10/20

Parallel Simulation of Discrete Event Systems

Classical Parallel Schema: split the whole applicative model
LP #1 LP #2

LP #3 LP #4

I Leads to good speedups (but still poor performance)
dPeerSim: 4h → 1h when 2 LPs → 16 LPs (but 50s in sequential PeerSim)

New approach: Split at Virtualization layer (not in simulation engine)
I Virtualization contains threads (user's stack)
I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

I Synchronization costs of paramount importance
S
im

u
la
ti
o
n

W
o
rk
lo
a
d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 10/20

E�cient Parallel Fine-Grained Simulation
SimGrid is an Operating System

Simcalls separate processes, alleviating locking issues

I Very similar to syscalls in an operating system

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3

Leveraging Multicores

⇒ More processes than cores ; Worker Threads (that execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 11/20

E�cient Parallel Fine-Grained Simulation
SimGrid is an Operating System

Simcalls separate processes, alleviating locking issues

I Very similar to syscalls in an operating system

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3

Leveraging Multicores

⇒ More processes than cores ; Worker Threads (that execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 11/20

Performance Results

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol
I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10000

20000

30000

40000

0 500000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

OverSim (OMNeT++)
PeerSim

OverSim (simple underlay)
SimGrid (sequential)
SimGrid (4 threads)

Largest simulated scenario
Size Time

Omnet++ 10k 1h40
PeerSim 100k 4h36
OverSim 300k 10h

SimGrid, seq
10k 32s
300k 32mn
2M 6h18

SimGrid//
10k 130s
300k 40mn
2M 5h55

Memory Usage
18kiB /process (stack: 12kiB)

First time that PDES is (a little) faster than DES [CCGrid'12], cited 17

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 12/20

Agenda

Introduction

Computational Science of Computer Systems (CS2)

Simulation Models

Parallel Simulation of Discrete Event Systems

Dynamic Veri�cation of Distributed Applications

Conclusion

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 12/20

Assessing the Correctness of HPC codes?

Writing Distributed Apps is notoriously di�cult, but

The Good Old Days

I MPI codes circumvented issues with rigid communication patterns

I Performance First: fast code that rarely fail-stop ≫ correct slow code

These Days are Now Over

I But rigid patterns do not scale! We now have to release the grip
I But this is dangerous! We now have to explicitly seek for correctness

Slowly, old ignored problems resurface

I When Tests are not enough anymore, turn to Formal Methods

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 13/20

Model Checking and Dynamic Veri�cation

Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults
I If no fault found after an exhaustive search, correctness experimentally proved
I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

Model Checking: the Big Idea

I My preferred outcome: a counter-example
I I tend to bug �nding, not certi�cation

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 14/20

Model Checking and Dynamic Veri�cation

Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults
I If no fault found after an exhaustive search, correctness experimentally proved
I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

Model Checking: the Big Idea

I My preferred outcome: a counter-example
I I tend to bug �nding, not certi�cation

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 14/20

SimGridMC: Formal Methods in SimGrid

Verify any application that would run in SimGrid

I Reuse the simulator's light virtualization to mediate apps' actions
I Replace the simulation kernel underneath with a model checker
I Tests all causally possible orders of events to dynamically verify the app
I System-level checkpoints the app to then rewind and explore another path
I This works with SMPI, and MSG (our simple API to study CSP algorithms)

SIMIX

SURF

MSG SMPI SIMDAG

User Code

Platform

Description372
435work

remaining

variable

530
530

50
664

245
245

Concurrent
processes

Synchro.
abstractions

...

...

...

App. spec. as concurrent code

App. spec. as
task graph

...

x1
x2

x3

x3

+

xn

...

+

+ xn                                       

Variables Resource
Constraints

6 CLm

6 CL2

6 CP

6 CL1x1




... ...

Activities

...

{



CL2

CLm CL1

Cp

1

2

iSend

3

iRecv

4

Wait

5

iRecv

1 5 3

Test TRUE

6

Test TRUE

7

iSend

8

Wait

9

iRecv

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

2 1

Wait

2 2

iRecv

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

4 7

Wait

4 8

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

1

2

[(1)c-1.me] iRecv

3

[(2)c-2.me] iSend

4

[(1)c-1.me] Wait [(2)->(1)]

5

[(1)c-1.me] iSend

6

[(2)c-2.me] Wait [(2)->(1)]

7

[(2)c-2.me] iRecv

8

[(1)c-1.me] Wait [(1)->(2)]

9

[(1)c-1.me] iRecv

10

[(2)c-2.me] Wait [(1)->(2)]

11

[(2)c-2.me] iSend

12

[(1)c-1.me] Wait [(2)->(1)]

13

[(1)c-1.me] iRecv

14

[(2)c-2.me] Wait [(2)->(1)]

15

[(2)c-2.me] iSend

[(1)c-1.me] Wait [(2)->(1)]

17

[(2)c-2.me] Wait [(2)->(1)]

18

[(1)c-1.me] Wait [(2)->(1)]

[(1)c-1.me] iSend

20

[(2)c-2.me] iRecv

21

[(1)c-1.me] iSend

22

[(1)c-1.me] Wait [(1)->(2)]

23

[(1)c-1.me] iRecv

[(2)c-2.me] Wait [(1)->(2)]

25

[(3)c-3.me] iSend

26

[(1)c-1.me] Wait [(3)->(1)]

27

[(1)c-1.me] iRecv

28

[(2)c-2.me] Wait [(1)->(2)]

29

[(2)c-2.me] iSend

30

[(1)c-1.me] Wait [(2)->(1)]

31

[(1)c-1.me] iRecv

32

[(2)c-2.me] Wait [(2)->(1)]

33

[(2)c-2.me] iSend

34

[(1)c-1.me] Wait [(2)->(1)]

35

[(1)c-1.me] iSend

36

[(2)c-2.me] Wait [(2)->(1)]

37

[(2)c-2.me] iRecv

38

[(1)c-1.me] Wait [(1)->(2)]

39

[(1)c-1.me] iRecv

40

[(2)c-2.me] Wait [(1)->(2)]

41

[(2)c-2.me] iSend

[(1)c-1.me] Wait [(2)->(1)]

43

[(2)c-2.me] Wait [(2)->(1)]

44

[(1)c-1.me] Wait [(2)->(1)]

[(1)c-1.me] iRecv

46

[(2)c-2.me] iSend

47

[(1)c-1.me] iRecv

48

[(1)c-1.me] Wait [(2)->(1)]

49

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]

51

[(3)c-3.me] Wait [(3)->(1)]

52

[(2)c-2.me] Wait [(2)->(1)]

53

[(2)c-2.me] iRecv

54

[(1)c-1.me] Wait [(1)->(2)]

55

[(1)c-1.me] iRecv

56

[(2)c-2.me] Wait [(1)->(2)]

57

[(2)c-2.me] iSend

58

[(1)c-1.me] Wait [(2)->(1)]

59

[(1)c-1.me] iRecv

60

[(2)c-2.me] Wait [(2)->(1)]

61

[(2)c-2.me] iSend

62

[(1)c-1.me] Wait [(2)->(1)]

63

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 15/20

Example: Out of order receive

I Two processes send a message to a third one
I The receiver expects the message to be in order
I This may happen. . . or not

rank1

rank2

rank0

send(1)

send(2)

x ← 1 y ← 2

x < y

if (MPI_rank() == 0) {

MPI_Recv(&x , MPI_ANY_SOURCE);

MPI_Recv(&y , MPI_ANY_SOURCE);

MC_assert(x < y);

} else {

MPI_Send (&rank , 0);

}

rank1

rank2

rank0

send(1)

send(2)

x ← 2 y ← 1

x 6< y

*** PROPERTY NOT VALID ***

Counter-example execution trace:

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(3)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(3)sender -> (1)recver])

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(2)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(2)sender -> (1)recver])

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 16/20

Mitigating the State Space Explosion
Many execution paths are redundant ; cut exploration when possible

Dynamic Partial Ordering Reduction (DPOR)

I Works on histories: test only one transitions' interleaving if independent
I Independence theorems: Local events are independent; iSend+iRecv also; . . .
I Must be conservative (exploration soundness at risk!)
I It works well (for safety properties)

System-Level State Equality

I Works on states: detect when a given space was previously explored
I Complementary to DPOR (but not compatible yet)
I Introspect the C/C++/Fortran app just like gdb (+some black magic)

[AVOCS'10] [PDP'15]

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 17/20

Some Results

Wild safety bug in our Chord implementation (≈ 500 lines of C)

I Simulation: bug on large instances only; MC �nds small trace (1s with DPOR)

Mocked liveness bug

I Buggy centralized mutual exclusion: last client never obtains the CS
I About 100 lines � state snapshot size: 5Mib; Veri�ed with up to 7 processes

Verifying MPICH3 complience tests

I Looking for assertion failures, deadlocks and non-progressive cycles
I 6 tests; ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

I We veri�ed several MPI2 collectives too © (but all good so far /)

Protocol-wide Properties

I e.g, Send-deteministic: On each node, send and recv evts always in same order
(allows more e�cient application checkpointing)

I Even harder than liveness properties (not LTL), but doable in SimGrid
Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 18/20

Much more to say about SimGrid (too little time)

Hybrid Network Models

I Fluid model: model contention in steady state for large messages
I LogOP model: model intra-node delays and synchronization
I Also: MPI collectives, TCP (slow-start, cross-tra�c), soon IB

Realistic Emulation
I SMPI: Study real MPI applications within SimGrid
I Simterpose: Study real arbitrary applications (ongoing)

High Performance Simulation

I Fast Enough: Innovative PDES; E�cient algorithms and implementations
I Big Enough: Scalable and versatile platform representation

Formal Veri�cation of Distributed Apps

I Safety, Liveness or CTL properties, with DPOR or state equality

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 19/20

Research Project for the Next 10 Years

Make Large-Scale Distributed Systems Easier to Use
I They are pervasive in our connected societies, yet almost uncontrolled
I Research Plan: Computational Science of Computer Systems

I Leveraging computers to understand computers

I Expected Visible Outcome: Propose a valgrind-like for Distributed Systems
I This is perfectly in line with what I'm doing since 15 years

Why in Myriads?

I Distributed Systems, with focus on experimentation (Grid'5000, etc)
I Many works that solve hard OS-level issues to help distributed systems

Why at ENS Rennes?

I We need more teachers that are pro�cient with Systems Internals

I Teaching of paramount importance to me. Lots of activities on teaching CS:
I Unplugged activities; Programming exercisers; Research groups; National Days

I More on this on Friday 12:30 :)

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 20/20

What is SMPI?
I Reimplementation of MPI on top of SimGrid
I Imagine a VM running real MPI applications on

platforms that does not exist
I Horrible over-simpli�cation, but you get the idea

I Computations run for real on your laptop,
Communications are faked

What is it good for?
I Performance Prediction (�what-if?� scenarios)

I Platform dimensioning; Apps' parameter tuning

I Teaching parallel programming and HPC
I Reduced technical burden
I No need for real hardware, or hack your hardware

Studies that you should NOT attempt with SMPI

I Predict the impact of L2 caches' size on your code
I Interactions of TCP Reno vs. TCP Vegas vs. UDP
I Claiming a simulation of 1000 billions nodes

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 20/20

SimGrid Network Model
Measurements

Small

Medium1
Medium2

Detached

Small

Medium1
Medium2

Detached

MPI_Send MPI_Recv

1e−04

1e−02

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Message size (bytes)

D
ur

at
io

n
(s

ec
on

ds
) group

Small

Medium1

Medium2

Detached

Large

Hybrid Model

Asynchronous (k 6 Sa)

T3

Pr

Ps

T1

T2

Detached (Sa < k 6 Sd)

Ps

Pr

T2T4

T1

Synchronous (k > Sd)

Ps

Pr

T4 T2

Fluid model: account for contention and network topology

1-39 40-74 105-14475-104

1G
10G

;

DownUp DownUp DownUp DownUp

10G
1G

1−39 40−74 105−14475−104

13G

10G

Limiter

...
1.5G

1G

Limiter

DownUp

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 20/20

SimGrid Modeling of MPI
MPI Collectives

I SimGrid implements more than 120 algorithms for the 10 main MPI collectives
I Selection logic from OpenMPI, MPICH can be reproduced

HPC Topologies
Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Torus Fat-trees Hierarchies of ASes
But also

I External load (availability changes), Host and link failures, Energy (DVFS)
I Virtual Machines, that can be migrated; Random platform generators

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 20/20

SimTerpose Project

Dream: Simulate any applications on top of SimGrid

Simulated Setup

P1

Po
rt

 8
0

Host A

P2

Host B

Network

Po
rt ??

Take 1: ptrace plumbering

P1 P2SimTerpose

10042 Real Port

Hosting Computer

1

2

3

4

ptrace interceptor

10042

1

2

3

connect(host,10042)

connect(A,80)accept(80)

accept(10042)

Take 2: Full Emulation

P1 P2 P3

ptrace interceptor

Threads in simulator

Direct memory
access

Current State
I Functional POC: send/recv exchange
I Need to handle the other 200 syscalls

I Intercept, store metadata
I Inform simulator, report e�ect on procs

I Time and DNS need love at link time
I We are redeveloping a libC! (in strange way ;)

Computational Science of Computer Systems Introduction CS2 Models PDES Formal CC 20/20

	Introduction
	Computational Science of Computer Systems (CS2)
	Simulation Models
	Parallel Simulation of Discrete Event Systems
	Dynamic Verification of Distributed Applications
	Conclusion
	Appendix
	What is SMPI
	Network Model
	Applicative Models
	SimTerpose

