
Computational Science of Computer Systems

Méthodologies d’expérimentation pour
l’informatique distribuée à large échelle

Martin Quinson

March 8th, 2013

What is Science anyway?

Doing Science = Acquiring Knowledge

Experimental Science Theoretical Science Computational Science

I Thousand years ago

I Observations-based

I Can describe

I Prediction tedious

I Last few centuries

I Equations-based

I Can understand

I Prediction long

I Nowadays

I Compute-intensive

I Can simulate

I Prediction easier

Prediction is very difficult, especially about the future. – Niels Bohr

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 2/30

Observations still base Science
Space telescope Large Hadron Collider Mars Explorer

NMR Spectroscope Synchrotrons Turntable

Tsunamis Earthquake vs. Bridge Climate vs. Ecosystems

(who said that science is not fun??)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 3/30

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

This requires large computers

Upscale project:
15,000 computing-years in 2012!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 4/30

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

This requires large computers

Upscale project:
15,000 computing-years in 2012!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 4/30

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

This requires large computers

Upscale project:
15,000 computing-years in 2012!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 4/30

Modern Computers are Large and Complex

Massive Parallelism
I Cannot miniaturize further (atom limit)

I Cannot increase frequency (energy limit)

I Solution: Multiply compute cores!

I Sequoia, second fastest computer: 1,572,864 cores

ExaScale Systems, used in Computational Science

I Systems computing 1 Exaflop per second arrive (with billions of cores)

I 1 Exaflop = 1018 operations. One million million million operations. . .

I At humanly doable speed, that requires 10 times the age of the universe

I Each node: 20 millions lines of code (10× Encyclopedia Britannica)

Other very large computer systems in the wide

I Google computers dissipate 300MW on average (150,000 households, 1
3
reactor)

I Botnets: BredoLab estimated to control 30 millions of zombie computers

I In addition, these systems are heterogeneous and dynamic

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 5/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

La simulation d’applications pour la recherche
en applications de simulation pour la recherche

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Assessing Distributed Applications

Correctness Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

C
o

u
rt

es
y

o
f

L
u

ca
s

N
u

ss
b

a
u

m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 7/30

Assessing Distributed Applications

Correctness Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

C
o

u
rt

es
y

o
f

L
u

ca
s

N
u

ss
b

a
u

m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 7/30

Assessing Distributed Applications

Correctness Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

C
o

u
rt

es
y

o
f

L
u

ca
s

N
u

ss
b

a
u

m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 7/30

Simulating Distributed Systems

Big Idea: Simulation is the fastest path from idea to scientific results
Idea to test

1

3 4 5

6

2

Root

End

+
Experimental setup

1

2

5

4
3

6 +
Simulation Model

⇒
Scientific results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000
 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Comfort to the user
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scientific idea, ignore technical subtleties (for now)

Challenges for the tools
I Validity: Get realistic results (controlled experimental bias)

I Scalability: Fast enough and Big enough; Tooling: runner, post-processing

Scientific practices sometimes unfortunate in this field
I Experimental settings not detailed enough in literature
I Many short-lived simulators; few sound and established tools

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 8/30

SimGrid: Versatile Simulator of Distributed Apps

Scientific Instrument
I Versatile: Grid, P2P, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Community-driven: 30 contributors (5 not affiliated), 5 contributed tools, GPL

Scientific Object
I Allows comparison of network models on non-trivial applications

I High-Performance Simulation on realistic workload

I Full model checker of distributed applications; Emulator under way

Large Established Project

I Started in 1998; Collab. Loria / Inria Grenoble / CC-IN2P3 / U. Hawaii

I Impact: 120 publications (110 distinct authors, 5 continents), 4 PhD

I Co-leader with A. Legrand (CNRS Grenoble) and F. Suter (CNRS IN2P3)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 9/30

Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton;

I GridSim/CloudSim: naive packet level or buggy flow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

SimGrid provides several Network Models

I Flow-based: Contention, Slow-start, TCP congestion, Cross-traffic effects

I Constant time: A bit faster, but no hope of realism

I Coordinate-based: Easier to instantiate in P2P scenarios

I Packet-level: NS3 bindings

Real Sweep3D Simulated Sweep3D
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 10/30

Major Contributions (with many contributors)

1/ Proto-Emulation: Assessing Real Applications
I GRAS: Middleware to run simulation prototypes on real platforms

I SMPI: Study real MPI applications within SimGrid

2/ HPS: High Performance and Scalable Simulation
I Fast Enough: Innovative PDES; Efficient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

3/ Formal: Correctness Studies in SimGrid
I Seamless integration of a complete Model Checker (enforces code invariants)

I Exhaustive reachability analysis, with innovative versatile DPOR technique

Scientific Community Management

I Project Coordinator: 2 ANR projects, 1 regional CPER project (total: 4Me)

I Methodological convergence: Board member of Grid’5000 experimental grid

I Scientific Animation (SimGrid, Grid’5000): 4 summer schools, 3 R&D engineers

+ leading role in teaching, pedagogical tools, popularization and didactic projects

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 11/30

Major Contributions (with many contributors)

1/ Proto-Emulation: Assessing Real Applications
I GRAS: Middleware to run simulation prototypes on real platforms

I SMPI: Study real MPI applications within SimGrid

2/ HPS: High Performance and Scalable Simulation
I Fast Enough: Innovative PDES; Efficient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

3/ Formal: Correctness Studies in SimGrid
I Seamless integration of a complete Model Checker (enforces code invariants)

I Exhaustive reachability analysis, with innovative versatile DPOR technique

Scientific Community Management

I Project Coordinator: 2 ANR projects, 1 regional CPER project (total: 4Me)

I Methodological convergence: Board member of Grid’5000 experimental grid

I Scientific Animation (SimGrid, Grid’5000): 4 summer schools, 3 R&D engineers

+ leading role in teaching, pedagogical tools, popularization and didactic projects

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 12/30

Parallel Simulation of Discrete Event Systems
I 30 years of literature on efficient Simulation Engines, FES and distribution

I Yet, all DES simulator for P2P were sequential (but dPeerSim)

The dPeerSim attempt

I Distributed implementation of PeerSim

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Evaluation
I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I Very good speedup results: 4h on 2 LPs ; 1h on 16 LPs

I But 47s in the original sequential PeerSim (and 5s in precise SimGrid)

I Yet, best known parallelization of DES simulator of P2P systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 13/30

New Parallelization Schema for DES

Split at Virtualization, not Simulation Engine
I Virtualization contains threads (user’s stack)

I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Understanding the trade-off

I Sequential time:
∑

SR

(engine + model + virtu + user)

I Classical schema:
∑

SR

(
max
i∈LP

(enginei + modeli + virtui + useri) + proto

)

I Proposed schema:
∑

SR

(
engine + model + max

i∈WT
(virtui + useri) + sync

)

I Synchronization protocol expensive wrt the engine’s load to be distributed

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 14/30

Toward Parallel P2P Simulation in SimGrid
Keep models sequential, execute processes in parallel

OS-inspired Approach toward Process Separation

I Fine-locking would be difficult, inefficient and would hinder reproducibility

I Mediate any process interactions through simcalls
(conceptually identical to syscalls of real OSes)

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3

Leveraging Multicores

⇒ More processes than cores ; Worker Threads (execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 15/30

Sequential Performance in State of the Art

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10000

20000

30000

40000

0 500000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

OverSim (OMNeT++)
PeerSim

OverSim (simple underlay)
SimGrid (sequential)
SimGrid (4 threads)

Largest simulated scenario
Size Time

Omnet++ 10k 1h40
PeerSim 100k 4h36
OverSim 300k 10h

SG, precise
10k 130s

300k 32mn
2M 6h23

SG, simple 2M 5h30

Memory Usage

I 2M precise nodes: 32 GiB

I That is 18kiB per process

(User stack: 12kiB)

Extra complexity of parallel execution don’t impact sequential performance

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 16/30

Benefits of the Parallel Execution

0.8

0.9

1

1.1

1.2

1.3

1.4

S
pe

ed
up

 (
pr

ec
is

e
m

od
el

)

1 thread
2 threads
4 threads
8 threads

16 threads
24 threads

0.8

0.9

1

1.1

1.2

1.3

1.4

0 500000 1e+06 1.5e+06 2e+06

S
pe

ed
up

 (
co

ns
ta

nt
 m

od
el

)

Number of nodes

I Speedup (
tseq
tpar

): up to 45%

I More efficient with simple model:
I Less work in engine + Amhdal law

I Speedup depends on thread amount
I 8 threads (of 24 cores) often better
I Synch costs remain hard to amortize
I They depend on thread amount

Parallel Efficiency (speedup
#cores

) for 2M nodes

Model 4 threads 8 th. 16 th. 24 th.
Precise 0.28 0.15 0.07 0.05

Constant 0.33 0.16 0.08 0.06

I Baaaaad efficiency results

I Remember, P2P and Chord:
Worst case scenarios

Yet, first time that Chord’s parallel simulation is faster than best known sequential

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 17/30

Future Work on HPS

Distributed Simulation toward size
I Leverage the memory of more nodes; Useless in P2P, more adapted to SMPI

Design: split our design under the simcall layer

Functional View

Network

Maestro
Simulation Modelske

rn
e
l

Repetitore

Process Process

SimCall

Repetitore

Process Process

SimCall

Temporal View

Models+Engines

Virtualization + Synchro + Network
User (isolated)

simcall
request answer

actual interaction

M

N
etw

ork

N
etw

ork

Increase level of parallelism

I Pessimistic execution (as now): efficient for 500,000 processes and more. . .

I Optimistic execution unfeasible because of our complex state

I Vision: realistic execution run optimistically only if it is safe to do so
Determining independent actions is easy using formal methods

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 18/30

Major Contributions (with many contributors)

1/ Proto-Emulation: Assessing Real Applications
I GRAS: Middleware to run simulation prototypes on real platforms

I SMPI: Study real MPI applications within SimGrid

2/ HPS: High Performance and Scalable Simulation
I Fast Enough: Innovative PDES; Efficient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

3/ Formal: Correctness Studies in SimGrid
I Seamless integration of a complete Model Checker (enforces code invariants)

I Exhaustive reachability analysis, with innovative versatile DPOR technique

Scientific Community Management

I Project Coordinator: 2 ANR projects, 1 regional CPER project (total: 4Me)

I Methodological convergence: Board member of Grid’5000 experimental grid

I Scientific Animation (SimGrid, Grid’5000): 4 summer schools, 3 R&D engineers

+ leading role in teaching, pedagogical tools, popularization and didactic projects

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 19/30

Exhaustive Testing for Correctness Formal Assesment

Model Checking’s Big Idea

I Explore all possible executions of the system

I Actively searching for property violations

Testing can only prove the presence of bugs. — Dijsktra
well, unless it’s exhaustive :)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 20/30

Model Checking in Wonderland

A warrior seeks her prince.
She can grab , grab , move , move .

Model checking: Actively search for a counter example

I If not found, then the property was true after all

I If found, we got a counter-example (very precious during bug squashing)

Safety Property: 2(¬)

I Search an invalidating state

I Exhaustive traversal: property true

Liveness Property: 2((∧)⇒ 3)

I Search a cycle w/ property is false

I Counter-example is infinite

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 21/30

The Problem with Model Checking

I use programs, not models

I Model-checking usually done on logical models, e.g. expressed with TLA+

I Some technics require the full graph, that I never have

⇒ Explicit exploration of Implicit graph is called Dynamic Verification

Liveness Properties

I Nice properties are liveness ones, not safeties, but that’s much harder

I Counter example must be of infinite length, so encoded as Buchi automaton

1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

×
q0

q1

¬cs && r

1

¬cs

Any process that asks the critical section will get it

I r: request

I cs: critical section

I LTL property: 2(r ⇒ 3cs)

State-space Explosion

I Nice problems require 22100

years in practice (or more)

I Several reduction technics exists, but preserving cycles is harder
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 22/30

Dynamic Verification in SimGrid

Verifying safety properties

I It works (MSG & SMPI); Reduction with DPOR-based reduction techniques

I Found wild bugs in medium-sized programs (Chord protocol)

Verifying liveness properties (ongoing)

I Problem: detect when the system reenters an (accepting) state

I We need system-level state equality

Kernel space

Stack

Memory Mapping Segment

Dynamic libraries

Heap

BSS segment
Uninitialized static variables

Data segment
Initialized static variables

Text segment
Executable

Text

Internal data

Data

BSS

Text

Internal data

Data

BSS

libc.so

libsimgrid.so

Anonymous mapping

Anonymous mapping

User mode space

Dynamic system state

I Byte-per-byte comparison
ineffective

I Lots of false negatives
(aka undetected violations)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 23/30

Challenges of System-level State Equality

Over provisioning

fragment size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

Syntactic differences

I In malloc, blocs order can vary without impacting applicative semantic

0x100

0x100

0x200

0x200

0x300

0x300

0x400

0x400

0x500

0x500

123456

123456

aSd25

aSdYY

ffe

gcc

gcc

ffe

= 6= = =

Padding Bytes

I Data is aligned in memory for efficiency, leaving holes

Irrelevant differences
I Host-related data (pid, files), simulation-related data (time)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 24/30

Toward Liveness Properties in SimGrid

System Solutions to this Formal Problem

Problem Heap solution Stack solution

Over provisioning Memset 0 + requested size Stack pointer
Padding bytes Memset 0 DWARF + libunwind
Irrelevant differences MC ignore DWARF + libunwind
Syntactic differences Canonicalization N/A

Current state
I Toy artificial bugs found; Toy property on non-tivial code (NeverJoin in Chord)

I State equality gives a new reduction that works on liveness, too

Future
I MPI3 asynchrone collective operations are a call for semantic bugs

I Assessing properties on communication schema toward easier checkpointing

I Assessing linearizability (service is robust to concurrent usages)

I Explore specific reduction techniques for distributed apps

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 25/30

Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; LGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 26/30

http://simgrid.gforge.inria.fr/

The Computational Science Nightmare

Computational Science is rarely Reproducible!

I Scientific publications must include all information needed for reproduction

I Knowledge is not the finding, but the method. – Boyle

Issue shared with other scientific disciplines

I Why Most Published Research Findings are False. Ioannidis, PloS Med, 2005.

I Reproducibility in Computational and Experimental Maths workshop, 12/2012

JASA June Computational Articles Code Available
1996 9 of 20 0%
2006 33 of 35 9%
2009 32 of 32 16%
2011 29 of 29 21% V. Stodden

Non-CS major will teach us about Computational Science!

(inspired from Victoria Stodden, Department of Statistics, Columbia University)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 27/30

Open Science, and CS2

Required Tools

I Standard tools: Matlab, R in statistics, . . .

I Dissemination Platforms: RunMyCode.org

I Workflow Tracking and Research Environments: VisTrails, MyExperiment.org

I Embedded Publishing: Sweeve

I Journal Policy: Things evolve veeeery slowly

My Research Plan

I SimGrid is a standard tool; use it as troyan to pass best practices along

I Ease experiment packaging and sharing

I Increase associated tools (adaptative runners) to increase the incentive

I Improve our own best practices within the team

I Learn from other disciplines, and build upon this

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 28/30

Conclusion
Scientific Instruments for Distributed Systems

I Common Belief in 2008: Simulation as a toy methodology

I Consensus in 2013: SimGrid as a scientific instrument (w/ Grid’5000)
I Consensus in 2020? We were näıve in 2010, but it works better now

log(cost + coordination)

log(realism)

math simulation emulation live systems

MicroGrid
GridSim
Bricks
NS, etc.Model

Protocol proof

Data Grid eXplorer
WANinLab
Emulab

Grid’5000
DAS3
PlanetLab
GENI
OneLab, PANLab
SensLab, etc.

Major challenge

Challenging

Reasonable

RAMP
Dave Patterson’s
Project on Muticore

Multi-processor emulator
SimGrid

Courtesy of Franck Cappello (Gri5000 keynote @ EGEE, Feb 2008 :)

But there is still a long way to go!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 29/30

Conclusion
Scientific Instruments for Distributed Systems

I Common Belief in 2008: Simulation as a toy methodology
I Consensus in 2013: SimGrid as a scientific instrument (w/ Grid’5000)

I Consensus in 2020? We were näıve in 2010, but it works better now

log(cost + coordination)

log(realism)

math simulation emulation live systems

MicroGrid
GridSim
Bricks
NS, etc.Model

Protocol proof

Data Grid eXplorer
WANinLab
Emulab

Grid’5000
DAS3
PlanetLab
GENI
OneLab, PANLab
SensLab, etc.

Major challenge

Challenging

Reasonable

RAMP
Dave Patterson’s
Project on Muticore

Multi-processor emulator

SimGrid

Simulation turned into a reliable scientific instrument!

But there is still a long way to go!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 29/30

Conclusion
Scientific Instruments for Distributed Systems

I Common Belief in 2008: Simulation as a toy methodology
I Consensus in 2013: SimGrid as a scientific instrument (w/ Grid’5000)
I Consensus in 2020? We were näıve in 2010, but it works better now

log(cost + coordination)

log(realism)

math simulation emulation live systems

MicroGrid
GridSim
Bricks
NS, etc.Model

Protocol proof

Data Grid eXplorer
WANinLab
Emulab

Grid’5000
DAS3
PlanetLab
GENI
OneLab, PANLab
SensLab, etc.

Major challenge

Challenging

Reasonable

RAMP
Dave Patterson’s
Project on Muticore

Multi-processor emulator

SimGrid

Simulation turned into a reliable scientific instrument!

But there is still a long way to go!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 29/30

Research Program

Computational Science of Computer Systems
pursued convergence of Simulation, Dynamic Verification and Emulation

1/ Modeling of Large-Scale Systems
I Scalability and Accuracy still not enough for Exascale studies

I Semantic modeling of MPI 3.0 collectives (implementation-depend)

2/ Formal Methods for Large-Scale and HPC Systems
I Liveness properties on legacy code (OS-level introspection tooling)

I Domain-specific properties and reduction techniques

3/ Simulation of Real Applications
I OS Virtualization layer for the simulation of legacy code

I Distributed simulation, and increase parallelism in our simulation

4/ Scientific Instrument and Open Science
I Produce a de facto standard tool, with associated tools

I Foster the emergence of a vivid research community, with best practices

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 30/30

Question slides

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 31/30

What is Science anyway?

Doing Science = Acquiring Knowledge

Experimental Science Theoretical Science Computational Science

I Thousand years ago

I Observations-based

I Can describe

I Prediction tedious

I Last few centuries

I Equations-based

I Can understand

I Prediction long

I Nowadays

I Compute-intensive

I Can simulate

I Prediction easier

Prediction is very difficult, especially about the future. – Niels Bohr

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 2/30

Observations still base Science
Space telescope Large Hadron Collider Mars Explorer

NMR Spectroscope Synchrotrons Turntable

Tsunamis Earthquake vs. Bridge Climate vs. Ecosystems

(who said that science is not fun??)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 3/30

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

This requires large computers

Upscale project:
15,000 computing-years in 2012!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 4/30

Modern Computers are Large and Complex

Massive Parallelism
I Cannot miniaturize further (atom limit)

I Cannot increase frequency (energy limit)

I Solution: Multiply compute cores!

I Sequoia, second fastest computer: 1,572,864 cores

ExaScale Systems, used in Computational Science

I Systems computing 1 Exaflop per second arrive (with billions of cores)

I 1 Exaflop = 1018 operations. One million million million operations. . .

I At humanly doable speed, that requires 10 times the age of the universe

I Each node: 20 millions lines of code (10× Encyclopedia Britannica)

Other very large computer systems in the wide

I Google computers dissipate 300MW on average (150,000 households, 1
3
reactor)

I Botnets: BredoLab estimated to control 30 millions of zombie computers

I In addition, these systems are heterogeneous and dynamic

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 5/30

Computational Science of Computer Systems

This essential complexity mandates adapted scientific instruments

Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scientifically sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently artificial artifacts, but complexity reaches “natural” levels

I Other sciences routinely use computers to understand complex systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 6/30

Assessing Distributed Applications

Correctness Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

C
o

u
rt

es
y

o
f

L
u

ca
s

N
u

ss
b

a
u

m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 7/30

Simulating Distributed Systems

Big Idea: Simulation is the fastest path from idea to scientific results
Idea to test

1

3 4 5

6

2

Root

End

+
Experimental setup

1

2

5

4
3

6 +
Simulation Model

⇒
Scientific results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Comfort to the user
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scientific idea, ignore technical subtleties (for now)

Challenges for the tools
I Validity: Get realistic results (controlled experimental bias)

I Scalability: Fast enough and Big enough; Tooling: runner, post-processing

Scientific practices sometimes unfortunate in this field
I Experimental settings not detailed enough in literature
I Many short-lived simulators; few sound and established tools

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 8/30

SimGrid: Versatile Simulator of Distributed Apps

Scientific Instrument
I Versatile: Grid, P2P, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Community-driven: 30 contributors (5 not affiliated), 5 contributed tools, GPL

Scientific Object
I Allows comparison of network models on non-trivial applications

I High-Performance Simulation on realistic workload

I Full model checker of distributed applications; Emulator under way

Large Established Project

I Started in 1998; Collab. Loria / Inria Grenoble / CC-IN2P3 / U. Hawaii

I Impact: 120 publications (110 distinct authors, 5 continents), 4 PhD

I Co-leader with A. Legrand (CNRS Grenoble) and F. Suter (CNRS IN2P3)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 9/30

Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton;

I GridSim/CloudSim: naive packet level or buggy flow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

SimGrid provides several Network Models

I Flow-based: Contention, Slow-start, TCP congestion, Cross-traffic effects

I Constant time: A bit faster, but no hope of realism

I Coordinate-based: Easier to instantiate in P2P scenarios

I Packet-level: NS3 bindings

Real Sweep3D Simulated Sweep3D
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 10/30

Major Contributions (with many contributors)

1/ Proto-Emulation: Assessing Real Applications
I GRAS: Middleware to run simulation prototypes on real platforms

I SMPI: Study real MPI applications within SimGrid

2/ HPS: High Performance and Scalable Simulation
I Fast Enough: Innovative PDES; Efficient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

3/ Formal: Correctness Studies in SimGrid
I Seamless integration of a complete Model Checker (enforces code invariants)

I Exhaustive reachability analysis, with innovative versatile DPOR technique

Scientific Community Management

I Project Coordinator: 2 ANR projects, 1 regional CPER project (total: 4Me)

I Methodological convergence: Board member of Grid’5000 experimental grid

I Scientific Animation (SimGrid, Grid’5000): 4 summer schools, 3 R&D engineers

+ leading role in teaching, pedagogical tools, popularization and didactic projects

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 11/30

Parallel Simulation of Discrete Event Systems
I 30 years of literature on efficient Simulation Engines, FES and distribution

I Yet, all DES simulator for P2P were sequential (but dPeerSim)

The dPeerSim attempt

I Distributed implementation of PeerSim

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Evaluation
I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I Very good speedup results: 4h on 2 LPs ; 1h on 16 LPs

I But 47s in the original sequential PeerSim (and 5s in precise SimGrid)

I Yet, best known parallelization of DES simulator of P2P systems

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 13/30

New Parallelization Schema for DES

Split at Virtualization, not Simulation Engine
I Virtualization contains threads (user’s stack)

I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Understanding the trade-off

I Sequential time:
∑

SR

(engine + model + virtu + user)

I Classical schema:
∑

SR

(
max
i∈LP

(enginei + modeli + virtui + useri) + proto

)

I Proposed schema:
∑

SR

(
engine + model + max

i∈WT
(virtui + useri) + sync

)

I Synchronization protocol expensive wrt the engine’s load to be distributed

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 14/30

Toward Parallel P2P Simulation in SimGrid
Keep models sequential, execute processes in parallel

OS-inspired Approach toward Process Separation

I Fine-locking would be difficult, inefficient and would hinder reproducibility

I Mediate any process interactions through simcalls
(conceptually identical to syscalls of real OSes)

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3

Leveraging Multicores

⇒ More processes than cores ; Worker Threads (execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 15/30

Sequential Performance in State of the Art

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10000

20000

30000

40000

0 500000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

OverSim (OMNeT++)
PeerSim

OverSim (simple underlay)
SimGrid (sequential)
SimGrid (4 threads)

Largest simulated scenario
Size Time

Omnet++ 10k 1h40
PeerSim 100k 4h36
OverSim 300k 10h

SG, precise
10k 130s

300k 32mn
2M 6h23

SG, simple 2M 5h30

Memory Usage

I 2M precise nodes: 32 GiB

I That is 18kiB per process

(User stack: 12kiB)

Extra complexity of parallel execution don’t impact sequential performance

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 16/30

Benefits of the Parallel Execution

0.8

0.9

1

1.1

1.2

1.3

1.4

S
pe

ed
up

 (
pr

ec
is

e
m

od
el

)

1 thread
2 threads
4 threads
8 threads

16 threads
24 threads

0.8

0.9

1

1.1

1.2

1.3

1.4

0 500000 1e+06 1.5e+06 2e+06

S
pe

ed
up

 (
co

ns
ta

nt
 m

od
el

)

Number of nodes

I Speedup (
tseq
tpar

): up to 45%

I More efficient with simple model:
I Less work in engine + Amhdal law

I Speedup depends on thread amount
I 8 threads (of 24 cores) often better
I Synch costs remain hard to amortize
I They depend on thread amount

Parallel Efficiency (speedup
#cores

) for 2M nodes

Model 4 threads 8 th. 16 th. 24 th.
Precise 0.28 0.15 0.07 0.05

Constant 0.33 0.16 0.08 0.06

I Baaaaad efficiency results

I Remember, P2P and Chord:
Worst case scenarios

Yet, first time that Chord’s parallel simulation is faster than best known sequential

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 17/30

Future Work on HPS

Distributed Simulation toward size
I Leverage the memory of more nodes; Useless in P2P, more adapted to SMPI

Design: split our design under the simcall layer

Functional View

Network

Maestro
Simulation Modelske

rn
e
l

Repetitore

Process Process

SimCall

Repetitore

Process Process

SimCall

Temporal View

Models+Engines

Virtualization + Synchro + Network
User (isolated)

simcall
request answer

actual interaction

M

N
etw

ork

N
etw

ork

Increase level of parallelism

I Pessimistic execution (as now): efficient for 500,000 processes and more. . .

I Optimistic execution unfeasible because of our complex state

I Vision: realistic execution run optimistically only if it is safe to do so
Determining independent actions is easy using formal methods

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 18/30

Exhaustive Testing for Correctness Formal Assesment

Model Checking’s Big Idea

I Explore all possible executions of the system

I Actively searching for property violations

Testing can only prove the presence of bugs. — Dijsktra
well, unless it’s exhaustive :)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 20/30

Model Checking in Wonderland

A warrior seeks her prince.
She can grab , grab , move , move .

Model checking: Actively search for a counter example

I If not found, then the property was true after all

I If found, we got a counter-example (very precious during bug squashing)

Safety Property: 2(¬)

I Search an invalidating state

I Exhaustive traversal: property true

Liveness Property: 2((∧)⇒ 3)

I Search a cycle w/ property is false

I Counter-example is infinite

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 21/30

The Problem with Model Checking

I use programs, not models

I Model-checking usually done on logical models, e.g. expressed with TLA+

I Some technics require the full graph, that I never have

⇒ Explicit exploration of Implicit graph is called Dynamic Verification

Liveness Properties

I Nice properties are liveness ones, not safeties, but that’s much harder

I Counter example must be of infinite length, so encoded as Buchi automaton

1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

×
q0

q1

¬cs && r

1

¬cs

Any process that asks the critical section will get it

I r: request

I cs: critical section

I LTL property: 2(r ⇒ 3cs)

State-space Explosion

I Nice problems require 22100

years in practice (or more)

I Several reduction technics exists, but preserving cycles is harder
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 22/30

Dynamic Verification in SimGrid

Verifying safety properties

I It works (MSG & SMPI); Reduction with DPOR-based reduction techniques

I Found wild bugs in medium-sized programs (Chord protocol)

Verifying liveness properties (ongoing)

I Problem: detect when the system reenters an (accepting) state

I We need system-level state equality

Kernel space

Stack

Memory Mapping Segment

Dynamic libraries

Heap

BSS segment
Uninitialized static variables

Data segment
Initialized static variables

Text segment
Executable

Text

Internal data

Data

BSS

Text

Internal data

Data

BSS

libc.so

libsimgrid.so

Anonymous mapping

Anonymous mapping

User mode space

Dynamic system state

I Byte-per-byte comparison
ineffective

I Lots of false negatives
(aka undetected violations)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 23/30

Challenges of System-level State Equality

Over provisioning

fragment size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

Syntactic differences

I In malloc, blocs order can vary without impacting applicative semantic

0x100

0x100

0x200

0x200

0x300

0x300

0x400

0x400

0x500

0x500

123456

123456

aSd25

aSdYY

ffe

gcc

gcc

ffe

= 6= = =

Padding Bytes

I Data is aligned in memory for efficiency, leaving holes

Irrelevant differences
I Host-related data (pid, files), simulation-related data (time)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 24/30

Toward Liveness Properties in SimGrid

System Solutions to this Formal Problem

Problem Heap solution Stack solution

Over provisioning Memset 0 + requested size Stack pointer
Padding bytes Memset 0 DWARF + libunwind
Irrelevant differences MC ignore DWARF + libunwind
Syntactic differences Canonicalization N/A

Current state
I Toy artificial bugs found; Toy property on non-tivial code (NeverJoin in Chord)

I State equality gives a new reduction that works on liveness, too

Future
I MPI3 asynchrone collective operations are a call for semantic bugs

I Assessing properties on communication schema toward easier checkpointing

I Assessing linearizability (service is robust to concurrent usages)

I Explore specific reduction techniques for distributed apps

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 25/30

Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; LGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 26/30

The Computational Science Nightmare

Computational Science is rarely Reproducible!

I Scientific publications must include all information needed for reproduction

I Knowledge is not the finding, but the method. – Boyle

Issue shared with other scientific disciplines

I Why Most Published Research Findings are False. Ioannidis, PloS Med, 2005.

I Reproducibility in Computational and Experimental Maths workshop, 12/2012

JASA June Computational Articles Code Available
1996 9 of 20 0%
2006 33 of 35 9%
2009 32 of 32 16%
2011 29 of 29 21% V. Stodden

Non-CS major will teach us about Computational Science!

(inspired from Victoria Stodden, Department of Statistics, Columbia University)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 27/30

Open Science, and CS2

Required Tools

I Standard tools: Matlab, R in statistics, . . .

I Dissemination Platforms: RunMyCode.org

I Workflow Tracking and Research Environments: VisTrails, MyExperiment.org

I Embedded Publishing: Sweeve

I Journal Policy: Things evolve veeeery slowly

My Research Plan

I SimGrid is a standard tool; use it as troyan to pass best practices along

I Ease experiment packaging and sharing

I Increase associated tools (adaptative runners) to increase the incentive

I Improve our own best practices within the team

I Learn from other disciplines, and build upon this

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 28/30

Conclusion
Scientific Instruments for Distributed Systems

I Common Belief in 2008: Simulation as a toy methodology
I Consensus in 2013: SimGrid as a scientific instrument (w/ Grid’5000)
I Consensus in 2020? We were näıve in 2010, but it works better now

log(cost + coordination)

log(realism)

math simulation emulation live systems

MicroGrid
GridSim
Bricks
NS, etc.Model

Protocol proof

Data Grid eXplorer
WANinLab
Emulab

Grid’5000
DAS3
PlanetLab
GENI
OneLab, PANLab
SensLab, etc.

Major challenge

Challenging

Reasonable

RAMP
Dave Patterson’s
Project on Muticore

Multi-processor emulator

SimGrid

Simulation turned into a reliable scientific instrument!

But there is still a long way to go!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 29/30

Research Program

Computational Science of Computer Systems
pursued convergence of Simulation, Dynamic Verification and Emulation

1/ Modeling of Large-Scale Systems
I Scalability and Accuracy still not enough for Exascale studies

I Semantic modeling of MPI 3.0 collectives (implementation-depend)

2/ Formal Methods for Large-Scale and HPC Systems
I Liveness properties on legacy code (OS-level introspection tooling)

I Domain-specific properties and reduction techniques

3/ Simulation of Real Applications
I OS Virtualization layer for the simulation of legacy code

I Distributed simulation, and increase parallelism in our simulation

4/ Scientific Instrument and Open Science
I Produce a de facto standard tool, with associated tools

I Foster the emergence of a vivid research community, with best practices

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 30/30

Question slides

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 31/30

Emulating Large-Scale Applications

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let’s look at what engineers do in other fields

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country you can simulate it.

But then, you have

I To assess models

I Technical burden

I No real car

Why don’t you. . . just control the climate? or tweak the car’s reality?

C
o

u
rtesy

o
f

L
u

ca
s

N
u

ssb
a

u
m

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 32/30

GRAS (Grid Reality And Simulation)

Personal Use: develop real applications within the simulator

�
�
�
���
��
��
��SimGrid

GRDK GRE

API

Research & Development

With GRAS

Code

Without GRAS

Research

Code

Simulation Application

Code

Development

rewrite
GRAS

Develop Once, Deploy Twice

I Develop and tune on the simulator; Deploy in situ without modification

How: One API, two implementations

Grid Runtime Environment (result = application 6= prototype)

I Performance: efficient wire protocol for structured data

I Portable: across OSes, across CPU architectures, zero dependency

But this forces an API to the users!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 33/30

Simulated MPI: Simulating real MPI applications

Online simulation of unmodified MPI application within SimGrid

I Algorithm prototyping; Platform dimensionning; What-if analysis . . .

PB 1: Enable this mode of MPI execution
I (partially) Reimplement MPI on top of SimGrid

I Fold MPI processes as threads

I Allow to manually factorize data memory

PB 2: Useless if not realistic enough

I Improve model ; piece-wise linear model
Accurate also for small messages

I Preserve good modeling of network contention

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 34/30

SMPI Future Work

Improve the enabling of MPI simulation

I Passes (almost) all MPICH tests

I Privatization of variable still difficult ; separate MPI processes

I Simulate 106 MPI Linpack processes within SimGrid?

I Distribute simulation to achieve this size-up

Push the validity limit further

I Validity is acceptable on simple examples

I Further improve the modeling of one-to-one communications

I Model global communications (OpenMPI vs. MPICH2)

I Model CPU and memory performance (with MESCAL team)

Vision

I Be the best alternative to simulate ExaScale Systems

I ANR SONGS project coordinates these efforts (tool versatility considered helpful)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 35/30

Quick Overview of Internals Organization

User-visible SimGrid Components

I MSG: heuristics as Concurrent Sequential Processes (Java/Ruby/Lua bindings)

I SimDag: heuristics as DAG of (parallel) tasks

I SMPI: simulate real applications written using MPI

SimGrid internal layers

I MSG: User-friendly syntactic sugar

I Simix: Processes, synchronizations

I SURF: Resources usage interface

I Models: Compute completion dates

SIMIX

SURF

MSG SMPI SIMDAG

User Code

Platform
Description372

435work

remaining

variable

530
530

50
664

245
245

Concurrent
processes

Synchro.
abstractions

...

...

...

App. spec. as concurrent code

App. spec. as
task graph

...

x1

x2

x3

x3

+

xn

...

+

+ xn

Variables Resource
Constraints

≤ CLm

≤ CL2

≤ CP

≤ CL1x1

... ...

Activities

...

{

CL2

CLm CL1

Cp

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 36/30

SimGrid Scalability

Simulation Versatility should not hinder Scalability

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

Versatile yet Scalable Platform Descriptions
I Hierarchical organization in ASes

; cuts down complexity
; recursive routing

I Efficient on each classical structures
Flat, Floyd, Star, Coordinate-based

I Allow bypass at any level

; Grid’5000 platform in 22KiB
(10 sites, 40 clusters, 1500 nodes)

; King’s dataset in 290KiB
(2500 nodes, coordinate-based)

Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 37/30

Visualizing SimGrid Simulations

I Visualization scriptable: easy but powerful configuration; Scalable tools

I Right Information: both platform and applicative visualizations

I Right Representation: gantt charts, spatial representations, tree-graphs

I Easy navigation in space and time: selection, aggregation, animation

I Easy trace comparison: Trace diffing (still partial ATM)

time slice

time slice time slicetime slice

1st Space Aggregation 2nd Space AggregationGroupA

GroupB

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 38/30

Other Associated Tools

Workflow to any Experiments through Simulation

1. Prepare the experimental scenarios

2. Launch thousands of simulations

3. Post-processing and result analysis

; Each simulation is only a brick
Visualization

Statistics

Textual logsApplication
User

Parameters
Input

Settings
Experimental

SimulatorScenario Outputs

Simulation
Kernel

Workload Generation
I Platforms: Simulacrum (generation), PDA (archive) and MintCAR (mapping)

I Applicative Workload: Tau-based trace collection + replay

Topology
Model

Topological
Graph

Generation Promotion

Real World
Platform

Platform
Blank

Selection

Export

Graph

Other
Outputs

Setting

XML

Initial

Platform
Synthetic Experimental

OR

Description

Labelling

Extraction

Description

Cluster

Simulated

Execution

Time

Traces

Indepentdent

Replay

In
st

ru
m

en
ta

ti
o
n

Site 1 Site2 p
ro

ce
ss

0
.t

ra
ce

Execution

Traces

p
ro

ce
ss

1
.t

ra
ce

Instrumented

Version
Application

SG_process0.trace

SG_process1.trace

SG_processN.trace

p
ro

ce
ss

N
.t

ra
ce

Execution

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 39/30

Max-Min Fairness between Network Flows

x1

CPU1

x2, x3

CPU2

link1

ρ1, ρ2

link2

ρ1, ρ3

x1 ≤ Power CPU1 (1a)

x2 + x3 ≤ Power CPU2 (1b)

ρ1 + ρ2 ≤ Power link1 (1c)

ρ1 + ρ3 ≤ Power link2 (1d)

Computing the sharing between flows

I Objective function: maximize min
f∈F

(ρf) [Massoulié & Roberts 2003]

I Equilibrium: increasing any ρf decreases a ρ′f (with ρf > ρ′f)

I (actually, that’s a simplification of our real objective function)

Efficient Algorithm

1. Search for the bottleneck link l so that:
Cl

nl
= min

{
Ck

nk
, k ∈ L

}

2. This determines any flow f on this link: ρf = Cl

nl

3. Update all nl and Cl to remove these flows; Loop until all ρf are fixed

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 40/30

Max-Min Fairness Example

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = 0 n2 = 0

ρ0 = C/2
ρ1 = C/2
ρ2 = C/2

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 41/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������
������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

How big and how fast? (1/3 – Grid and VC)

Comparison to GridSim
A master distributes 500, 000 fixed size jobs to 2, 000 workers (round robin)

GridSim SimGrid
Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB

Volunteer Computing settings

I Loosely coupled scenario as in Boinc

I SimGrid: full modeling (clients and servers), precise network model

I SimBA: Servers only, descisions based on simplistic markov modeling

; SimGrid shown 25 times faster

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 43/30

How big and how fast? (2/3 – P2P)

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10 000

20 000

30 000

40 000

0 500 000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I Orders of magnitude more scalable than state-of-the-art P2P simulators

I Precise model incurs a ≈ 20% slowdown, but accuracy is not comparable

I Also, parallel simulation (faster simulation at scale); Distributed sim. ongoing

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 44/30

How big and how fast? (3/3 – HPC)

Simulating a binomial broadcast

0.01

0.1

1

10

100

1000

10000

10 12 14 16 18 20 22 24

S
im
ul
at
io
n
Ti
m
e
(s
)

Log2 of the Number of Processes

SimGrid
LogGoPSim

Model:

I SimGrid: contention + cabinets
hierarchy

I LOGGOPSIM: simple delay-based model

Results:

I SimGrid is roughly 75% slower

I SimGrid is about 20% more fat
(15GB required for 223 processors)

The genericity of SimGrid data structures comes at the cost of a slight overhead

BUT scalability does not necessarily comes at the price of realism

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 45/30

Contributions to Experimental Facilities (in vivo)

Grid’5000 Project: world leading scientific instrument for dist. apps
I Instrument for research in computer science (deployment of customized OSes)

1500 nodes (2800 cpus, 7200 cores), 9 sites; dedicated 10Gb network

Personal Contributions
I National steering committee; Local project co-leader (CPER, Aladdin, Hemera)

I Scientific animation, event co-organization: Nancy is a leading site

I Collaboration: Production grids (IdG), CEA, Arcelor-Mittal

Project: Experimentation Process Industrialization (with L. Nussbaum)

I Open science: ensure that experiments can be shared, reviewed, improved

I Convergence of simulation and direct execution

I Methodological framework and practical tools (+administrative duties)
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 46/30

One Methodology to Rule Them All

Several scientific instruments implementing different scientific methodologies

M
et

h
o

d
o

lo
g

ic
a

l
st

a
ck

Substrate /

hardware

Sensors

& actuators

Run one

experiment

Describe one

experiment

Answer

a question

E
M

U
L

A
B

Cluster nodes

+

switches

Topology

script

Home-made

Grid’5000

Distem

G5K Monitoring infra

...

XPFlow

HP Simulation

Virtualization/Folding

Models

Model-checking

→ exhaustive simulation

→ tactical simulation

(no need for complex runner)

Reality

Facts

Understanding

Hypothesis

Analyse (Viz., Data Mining)

Test (DoE, MC)⇒

Experiment description

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 47/30

Médiation scientifique

Sciences Manuelles du Numérique

I Faire des activités d’initiation à la science informatique

I Pour la fête de la science, pour les TS (1/3 du temps hors machine)

I Boolier: Codage binaire de l’information, code correcteur, transmission

I Crêpier psycho-rigide: Notion d’algorithme, tri

I Base-ball coloré: Algorithme, algorithme efficace, algorithme correct

I Robozzle: Programmation (instruction, boucle, fonction)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 48/30

Emulating Large-Scale Applications

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let’s look at what engineers do in other fields

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country you can simulate it.

But then, you have

I To assess models

I Technical burden

I No real car

Why don’t you. . . just control the climate? or tweak the car’s reality?

C
o

u
rtesy

o
f

L
u

ca
s

N
u

ssb
a

u
m

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 32/30

GRAS (Grid Reality And Simulation)

Personal Use: develop real applications within the simulator

ApplicationSimulation

Research & Development

With GRAS

Code

Without GRAS

Research

Code

Simulation Application

Code

Development

rewrite

Develop Once, Deploy Twice

I Develop and tune on the simulator; Deploy in situ without modification

How: One API, two implementations

Grid Runtime Environment (result = application 6= prototype)

I Performance: efficient wire protocol for structured data

I Portable: across OSes, across CPU architectures, zero dependency

But this forces an API to the users!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 33/30

GRAS (Grid Reality And Simulation)

Personal Use: develop real applications within the simulator

�
�
�
���
��
��
��SimGrid

GRDK GRE

API

Research & Development

With GRAS

Code

Without GRAS

Research

Code

Simulation Application

Code

Development

rewrite
GRAS

Develop Once, Deploy Twice

I Develop and tune on the simulator; Deploy in situ without modification

How: One API, two implementations

Grid Runtime Environment (result = application 6= prototype)

I Performance: efficient wire protocol for structured data

I Portable: across OSes, across CPU architectures, zero dependency

But this forces an API to the users!

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 33/30

Simulated MPI: Simulating real MPI applications

Online simulation of unmodified MPI application within SimGrid

I Algorithm prototyping; Platform dimensionning; What-if analysis . . .

PB 1: Enable this mode of MPI execution
I (partially) Reimplement MPI on top of SimGrid

I Fold MPI processes as threads

I Allow to manually factorize data memory

PB 2: Useless if not realistic enough

I Improve model ; piece-wise linear model
Accurate also for small messages

I Preserve good modeling of network contention

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 34/30

SMPI Future Work

Improve the enabling of MPI simulation

I Passes (almost) all MPICH tests

I Privatization of variable still difficult ; separate MPI processes

I Simulate 106 MPI Linpack processes within SimGrid?

I Distribute simulation to achieve this size-up

Push the validity limit further

I Validity is acceptable on simple examples

I Further improve the modeling of one-to-one communications

I Model global communications (OpenMPI vs. MPICH2)

I Model CPU and memory performance (with MESCAL team)

Vision

I Be the best alternative to simulate ExaScale Systems

I ANR SONGS project coordinates these efforts (tool versatility considered helpful)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 35/30

Quick Overview of Internals Organization

User-visible SimGrid Components

I MSG: heuristics as Concurrent Sequential Processes (Java/Ruby/Lua bindings)

I SimDag: heuristics as DAG of (parallel) tasks

I SMPI: simulate real applications written using MPI

SimGrid internal layers

I MSG: User-friendly syntactic sugar

I Simix: Processes, synchronizations

I SURF: Resources usage interface

I Models: Compute completion dates

SIMIX

SURF

MSG SMPI SIMDAG

User Code

Platform
Description372

435work

remaining

variable

530
530

50
664

245
245

Concurrent
processes

Synchro.
abstractions

...

...

...

App. spec. as concurrent code

App. spec. as
task graph

...

x1

x2

x3

x3

+

xn

...

+

+ xn

Variables Resource
Constraints

≤ CLm

≤ CL2

≤ CP

≤ CL1x1

... ...

Activities

...

{

CL2

CLm CL1

Cp

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 36/30

SimGrid Scalability

Simulation Versatility should not hinder Scalability

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

Versatile yet Scalable Platform Descriptions
I Hierarchical organization in ASes

; cuts down complexity
; recursive routing

I Efficient on each classical structures
Flat, Floyd, Star, Coordinate-based

I Allow bypass at any level

; Grid’5000 platform in 22KiB
(10 sites, 40 clusters, 1500 nodes)

; King’s dataset in 290KiB
(2500 nodes, coordinate-based)

Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 37/30

Visualizing SimGrid Simulations

I Visualization scriptable: easy but powerful configuration; Scalable tools

I Right Information: both platform and applicative visualizations

I Right Representation: gantt charts, spatial representations, tree-graphs

I Easy navigation in space and time: selection, aggregation, animation

I Easy trace comparison: Trace diffing (still partial ATM)

time slice

time slice time slicetime slice

1st Space Aggregation 2nd Space AggregationGroupA

GroupB

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 38/30

Other Associated Tools

Workflow to any Experiments through Simulation

1. Prepare the experimental scenarios

2. Launch thousands of simulations

3. Post-processing and result analysis

; Each simulation is only a brick
Visualization

Statistics

Textual logsApplication
User

Parameters
Input

Settings
Experimental

SimulatorScenario Outputs

Simulation
Kernel

Workload Generation
I Platforms: Simulacrum (generation), PDA (archive) and MintCAR (mapping)

I Applicative Workload: Tau-based trace collection + replay

Topology
Model

Topological
Graph

Generation Promotion

Real World
Platform

Platform
Blank

Selection

Export

Graph

Other
Outputs

Setting

XML

Initial

Platform
Synthetic Experimental

OR

Description

Labelling

Extraction

Description

Cluster

Simulated

Execution

Time

Traces

Indepentdent

Replay

In
st

ru
m

en
ta

ti
o

n

Site 1 Site2 p
ro

ce
ss

0
.t

ra
ce

Execution

Traces

p
ro

ce
ss

1
.t

ra
ce

Instrumented

Version
Application

SG_process0.trace

SG_process1.trace

SG_processN.trace

p
ro

ce
ss

N
.t

ra
ce

Execution

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 39/30

Max-Min Fairness between Network Flows

x1

CPU1

x2, x3

CPU2

link1

ρ1, ρ2

link2

ρ1, ρ3

x1 ≤ Power CPU1 (1a)

x2 + x3 ≤ Power CPU2 (1b)

ρ1 + ρ2 ≤ Power link1 (1c)

ρ1 + ρ3 ≤ Power link2 (1d)

Computing the sharing between flows

I Objective function: maximize min
f∈F

(ρf) [Massoulié & Roberts 2003]

I Equilibrium: increasing any ρf decreases a ρ′f (with ρf > ρ′f)

I (actually, that’s a simplification of our real objective function)

Efficient Algorithm

1. Search for the bottleneck link l so that:
Cl

nl
= min

{
Ck

nk
, k ∈ L

}

2. This determines any flow f on this link: ρf = Cl

nl

3. Update all nl and Cl to remove these flows; Loop until all ρf are fixed

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 40/30

Max-Min Fairness Example

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

ρ0 =
ρ1 =
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 41/30

Max-Min Fairness Example

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

ρ0 = C/2
ρ1 = C/2
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 41/30

Max-Min Fairness Example

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = C/2 n2 = 1

ρ0 = C/2
ρ1 = C/2
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 41/30

Max-Min Fairness Example

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = 0 n2 = 0

ρ0 = C/2
ρ1 = C/2
ρ2 = C/2

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 41/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������

������������
������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������

������������
������

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

������
������
������

������������
������

��
��
��
��

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
���

�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 42/30

How big and how fast? (1/3 – Grid and VC)

Comparison to GridSim
A master distributes 500, 000 fixed size jobs to 2, 000 workers (round robin)

GridSim SimGrid
Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB

Volunteer Computing settings

I Loosely coupled scenario as in Boinc

I SimGrid: full modeling (clients and servers), precise network model

I SimBA: Servers only, descisions based on simplistic markov modeling

; SimGrid shown 25 times faster

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 43/30

How big and how fast? (2/3 – P2P)

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10 000

20 000

30 000

40 000

0 500 000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I Orders of magnitude more scalable than state-of-the-art P2P simulators

I Precise model incurs a ≈ 20% slowdown, but accuracy is not comparable

I Also, parallel simulation (faster simulation at scale); Distributed sim. ongoing

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 44/30

How big and how fast? (3/3 – HPC)

Simulating a binomial broadcast

0.01

0.1

1

10

100

1000

10000

10 12 14 16 18 20 22 24

S
im
ul
at
io
n
Ti
m
e
(s
)

Log2 of the Number of Processes

SimGrid
LogGoPSim

Model:

I SimGrid: contention + cabinets
hierarchy

I LOGGOPSIM: simple delay-based model

Results:

I SimGrid is roughly 75% slower

I SimGrid is about 20% more fat
(15GB required for 223 processors)

The genericity of SimGrid data structures comes at the cost of a slight overhead

BUT scalability does not necessarily comes at the price of realism

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 45/30

Contributions to Experimental Facilities (in vivo)

Grid’5000 Project: world leading scientific instrument for dist. apps
I Instrument for research in computer science (deployment of customized OSes)

1500 nodes (2800 cpus, 7200 cores), 9 sites; dedicated 10Gb network

Personal Contributions
I National steering committee; Local project co-leader (CPER, Aladdin, Hemera)

I Scientific animation, event co-organization: Nancy is a leading site

I Collaboration: Production grids (IdG), CEA, Arcelor-Mittal

Project: Experimentation Process Industrialization (with L. Nussbaum)

I Open science: ensure that experiments can be shared, reviewed, improved

I Convergence of simulation and direct execution

I Methodological framework and practical tools (+administrative duties)
Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 46/30

One Methodology to Rule Them All

Several scientific instruments implementing different scientific methodologies

M
et

h
o

d
o

lo
g

ic
a

l
st

a
ck

Substrate /

hardware

Sensors

& actuators

Run one

experiment

Describe one

experiment

Answer

a question

E
M

U
L

A
B

Cluster nodes

+

switches

Topology

script

Home-made

Grid’5000

Distem

G5K Monitoring infra

...

XPFlow

HP Simulation

Virtualization/Folding

Models

Model-checking

→ exhaustive simulation

→ tactical simulation

(no need for complex runner)

Reality

Facts

Understanding

Hypothesis

Analyse (Viz., Data Mining)

Test (DoE, MC)⇒

Experiment description

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 47/30

Médiation scientifique

Sciences Manuelles du Numérique

I Faire des activités d’initiation à la science informatique

I Pour la fête de la science, pour les TS (1/3 du temps hors machine)

I Boolier: Codage binaire de l’information, code correcteur, transmission

I Crêpier psycho-rigide: Notion d’algorithme, tri

I Base-ball coloré: Algorithme, algorithme efficace, algorithme correct

I Robozzle: Programmation (instruction, boucle, fonction)

Martin Quinson Computational Science of Computer Systems Introduction CS2 SimGrid PDES Formal Open Science Conclusion 48/30

