
Simulation Of Next Generation Systems
Computational Science of Distributed Systems

Martin Quinson

November 20, 2012

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 1/21

Our Scientific Objects: Distributed Systems

Cloud Computing

I Large infrastructures underlying commercial Internet (eBay, Amazon, Google)

I Main issues: Optimize costs; Keep up with the flash crowds load

P2P Systems

I Exploit resources at network edges (storage, CPU, human presence)

I Main issues: Churn and Resilience; Network locality; Anonymity

Scientific Computing: High Performance Computing / Computational Grids

I Infrastructure underlying Computational science: Massive / Federated systems

I Main issues: Have the world’s biggest one / compatibility, trust, accountability

Systems already in use, but characteristics hard to assess
I Correction: absence of crash, race conditions, deadlocks and other defects

I Performance: makespan, economics, energy, ← main context of SimGrid

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 2/21

Assessing Distributed Applications

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 3/21

Assessing Distributed Applications

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 3/21

Assessing Distributed Applications

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 3/21

Why Simulating Distributed Systems??

Why are Theoretical Studies not enough?

I Computers are Artificial Artifacts

I But computer systems present an Unpreceded Complexity
I Heterogeneous components, Dynamic and Complex platforms
I Numerous: milions of cores expected within the decade (ExaScale)
I Large: Linux kernel only is 15M lines – over 10 times Encyclopedia Britanica

Toward a Computational Science of Distributed Computer Systems

I Empirically consider Distributed Systems as “Natural” Objects

I Other sciences routinely use computers to understand complex systems

Claim: Simulation is both sound and convenient
I Less simplistic than proposed theoretical models

I Easier and faster than experimental platforms

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 4/21

Simulating Distributed Systems

Big Idea: Simulation is the fastest path from idea to scientific results
Idea to test

1

3 4 5

6

2

Root

End

+
Experimental setup

1

2

5

4
3

6 +
Simulation Model

⇒
Scientific results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Comfort to the user
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scientific idea, don’t fiddle with technical subtleties (yet)

Challenges for the tools

I Validity: Get realistic results (controlled experimental bias)

I Scalability: Simulate fast enough problems big enough

I Associated tools: campaign mgmt, result analysis, settings generation, . . .

I Applicability: If it doesn’t simulate what is important to the user, it’s void

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 5/21

Computational Science of Distributed Systems?

Requirements for a Scientific Approach

I Reproducible results: read a paper, reproduce the results and improve

I Standard tools that Grad students can learn quickly

Current practice in the field is quite different

I Experimental settings not detailed enough in literature

I Many short-lived simulators; few sound and established tools

Domain CPU Disk Network Application Scale
OptorSim (Data)Grid Analytic Amount. (buggy) Analytic Programmatic 1,000
GridSim Grid

Analytic Analytic
(buggy) wormhole

Programmatic 1,000
CloudSim Cloud (buggy) Analytic

OverSim P2P None None Euclidian or Pkt-lvl Programmatic 100,000
PeerSim P2P None None Constant time State machine 1,000,000

SimGrid
Grid, VC, P2P,

HPC, cloud, . . .
Analytic Amount

Flow, Cste-time or
Packet-level (NS3)

Program, Trace

or Emulation
1,000,000

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 6/21

SimGrid: Versatile Simulator of Distributed Apps

Toward Computational Science of Large-Scale Distributed Systems

Scientific Instrument
I Versatile: Grid, P2P, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Open: Grounded +100 papers; 100 members on simgrid-user@; LGPL

Scientific Object (and lab)
I Allows comparison of network models on non-trivial applications

I Experimental Model-Checker; full Emulator under way

Scientific Project since 12 years
I Initially a toolbox to factorize code between PhD students, in 1999

I Soon a collaboration Loria / Inria Rhône-Alpes / CCI-N2P3 / U. Hawaii

I Funding and support from INRIA since 2002

I Funding from French ANR: USS SimGrid (08-11) and SONGS (12-16)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 7/21

Quick Overview of Internals Organization

User-visible SimGrid Components

SimDag

Framework for

DAGs of parallel tasks

MSG

Simple application-

level simulator

XBT: Grounding features (logging, etc.), data structures (lists, etc.), portability

applications on top of

a virtual environment

Library to run MPI
SMPI

I MSG: heuristics as Concurrent Sequential Processes (Java/Ruby/Lua bindings)

I SimDag: heuristics as DAG of (parallel) tasks

I SMPI: simulate real applications written using MPI

SimGrid is Strictly Layered internaly

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

Constraints

Variables

Conditions{

... Process

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 8/21

Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton;

I GridSim: naive packet level or buggy flow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

SimGrid provides several Network Models

I Fast flow-based model, toward realism and speed (by default)
Accounts for Contention, Slow-start, TCP congestion, Cross-traffic effects

I Constant time: A bit faster, but no hope of realism

I Coordinate-based: Easier to instantiate in P2P scenarios

I Packet-level: NS3 bindings

I Controlled by command line switches (exact comparison on a given application)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 9/21

Max-Min Fairness between Network Flows

x1

CPU1

x2, x3

CPU2

link1

ρ1, ρ2

link2

ρ1, ρ3

x1 ≤ Power CPU1 (1a)

x2 + x3 ≤ Power CPU2 (1b)

ρ1 + ρ2 ≤ Power link1 (1c)

ρ1 + ρ3 ≤ Power link2 (1d)

Computing the sharing between flows

I Objective function: maximize min
f∈F

(ρf) [Massoulié & Roberts 2003]

I Equilibrium: increasing any ρf decreases a ρ′f (with ρf > ρ′f)

I (actually, that’s a simplification of our real objective function)

Efficient Algorithm

1. Search for the bottleneck link l so that:
Cl

nl
= min

{
Ck

nk
, k ∈ L

}
2. This determines any flow f on this link: ρf = Cl

nl

3. Update all nl and Cl to remove these flows; Loop until all ρf are fixed

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 10/21

Max-Min Fairness Example

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

ρ0 =
ρ1 =
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 11/21

Max-Min Fairness Example

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

ρ0 = C/2
ρ1 = C/2
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 11/21

Max-Min Fairness Example

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = C/2 n2 = 1

ρ0 = C/2
ρ1 = C/2
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 11/21

Max-Min Fairness Example

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = 0 n2 = 0

ρ0 = C/2
ρ1 = C/2
ρ2 = C/2

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ ρ0 = C/2 and ρ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

Efficient Implementation
I Lazy updates, Trace integration, preserving Cache locality

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 11/21

Validity of GridSim and CloudSim

“Since SimJava and GridSim have been extensively utilized in conducting cutting
edge research in Grid resource management by several researchers, bugs that may
compromise the validity of the simulation have been already detected and fixed.”

GridSim 5.2 on a single link

I Packet-level:

latency paid for every packet, not only the first one

Expected: T = lat + size
BW ; Observed: T = n × lat + size

BW

I Flow sharing:

buggy, code intend seems ok, but fails on tests

Expected: ρi = BW
n ; Observed: ρ1 = BW

1 ; ρ2 = BW
2 ; ρ3 = BW

3 ; ρ4 = BW
4 ; . . .

CloudSim on a single link

I Sharing unchanged when flows start or end ⇒ no sharing between t and t + ε

I Most simulated scenarios are then as realistic as a dice roll
(you could implement you own model in GridSim and CloudSim, but hey)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 12/21

Validity of GridSim and CloudSim

“Since SimJava and GridSim have been extensively utilized in conducting cutting
edge research in Grid resource management by several researchers, bugs that may
compromise the validity of the simulation have been already detected and fixed.”

GridSim 5.2 on a single link

I Packet-level: latency paid for every packet, not only the first one

Expected: T = lat + size
BW ; Observed: T = n × lat + size

BW

I Flow sharing: buggy, code intend seems ok, but fails on tests

Expected: ρi = BW
n ; Observed: ρ1 = BW

1 ; ρ2 = BW
2 ; ρ3 = BW

3 ; ρ4 = BW
4 ; . . .

CloudSim on a single link

I Sharing unchanged when flows start or end ⇒ no sharing between t and t + ε

I Most simulated scenarios are then as realistic as a dice roll
(you could implement you own model in GridSim and CloudSim, but hey)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 12/21

Accuracy of simulations with SimGrid
SkaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
u

n
ic

at
io

n
T

im
e

(i
n
µ

s)

Message Size (in Bytes)

Timings of each MPI communication
I λ+ size × τ not sufficient (TCP congestion)

I No affine fonction can match for all message sizes

I A 3-parts piecewise affine gives satisfying results

SMPI w/ contention
SMPI w/o contention
OpenMPI
MPICH2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
(i

n
se

co
n

d
s)

Rank

Taking resource sharing into account
I Cannot ignore contention (as other simulators do)

I Our “error” ≈ difference between runtimes

I This is only one collective; full application in progress

Invalidation studies (synthetic invalidating XP for SimGrid)

GTNetS

Time
SimGrid

data rate of flow 66

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 13/21

SimGrid Scalability

Simulation Versatility should not hinder Scalability

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

Versatile yet Scalable Platform Descriptions
I Hierarchical organization in ASes

; cuts down complexity
; recursive routing

I Efficient on each classical structures
Flat, Floyd, Star, Coordinate-based

I Allow bypass at any level

; Grid’5000 platform in 22KiB
(10 sites, 40 clusters, 1500 nodes)

; King’s dataset in 290KiB
(2500 nodes, coordinate-based)

Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 14/21

How big and how fast? (1/3 – Grid and VC)

Comparison to GridSim
A master distributes 500, 000 fixed size jobs to 2, 000 workers (round robin)

GridSim SimGrid
Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB

Volunteer Computing settings

I Loosely coupled scenario as in Boinc

I SimGrid: full modeling (clients and servers), precise network model

I SimBA: Servers only, descisions based on simplistic markov modeling

; SimGrid shown 25 times faster

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 15/21

How big and how fast? (2/3 – P2P)

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10 000

20 000

30 000

40 000

0 500 000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I Orders of magnitude more scalable than state-of-the-art P2P simulators

I Precise model incurs a ≈ 20% slowdown, but accuracy is not comparable

I Also, parallel simulation (faster simulation at scale); Distributed sim. ongoing

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 16/21

How big and how fast? (3/3 – HPC)

Simulating a binomial broadcast

0.01

0.1

1

10

100

1000

10000

10 12 14 16 18 20 22 24

S
im
ul
at
io
n
Ti
m
e
(s
)

Log2 of the Number of Processes

SimGrid
LogGoPSim

Model:

I SimGrid: contention + cabinets
hierarchy

I LOGGOPSIM: simple delay-based model

Results:

I SimGrid is roughly 75% slower

I SimGrid is about 20% more fat
(15GB required for 223 processors)

The genericity of SimGrid data structures comes at the cost of a slight overhead

BUT scalability does not necessarily comes at the price of realism

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 17/21

Visualizing SimGrid Simulations

I Visualization scriptable: easy but powerful configuration; Scalable tools

I Right Information: both platform and applicative visualizations

I Right Representation: gantt charts, spatial representations, tree-graphs

I Easy navigation in space and time: selection, aggregation, animation

I Easy trace comparison: Trace diffing (still partial ATM)

time slice

time slice time slicetime slice

1st Space Aggregation 2nd Space AggregationGroupA

GroupB

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 18/21

Practical Trust onto SimGrid?

I Internal code base rather complex because of hacks for versatile efficiency

Continuous Integration

I Current version tested every night

I 250 integration tests; 10,000 unit tests; 70% coverage

I 2 SimGrid configurations on 10 Linux versions

I Performance regression testing soon operational

Release tests
I Windows and Mac considered as additional release goals

I Actually works on all Debian arch.: hurd, kfreebsd, mips, arm, ppc, s390 ;)

This is free software anyway

I The code base is currently LGPL (probably soon GPL)

I Come, check it out and participate! (5 of 25 commiters not affiliated to us)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 19/21

SimGrid goes to the Clouds

EC2-like interface provided for VM manipulation

I vm=VM start(host, coreAmount)

I VM bind(vm, process); VM unbind(vm, process)

I VM suspend(vm); VM resume(vm)

I VM migrate(vm, host)

I VM shutdown(vm); VM reboot(vm); VM destroy(vm)

I This can be used jointly with the Disk storage API for increased realism

; Simple, but hopefully sufficient (and lasting) base interface

Work in progress: toward a full Cloud Broker simulation

I Jonathan Rouzaud currently working on Bag-of-Task scheduling on the Cloud

I Algorithms: 7 provisionning, 18 allocation; Models: 3 pricing

I TODO: VM interaction modeling; Synthetic workload for provider-side

I Come and join the discussion!

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 20/21

Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; LGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

http://simgrid.gforge.inria.fr/

Question slides

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Parallel P2P simulators: the dPeerSim attempt

dPeerSim
I Parallel implementation of PeerSim/DES (not by PeerSim main authors)

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Experimental Results

I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I Very good speedup results: 4h10 on 2 LPs, only 1h06 using 16 LPs

I But 47s in the original sequential PeerSim (and 5s in precise SimGrid)

I Yet, best previously known parallelization of DES simulator of P2P systems

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Benefits of the Parallel Execution

0.8
0.9

1
1.1
1.2
1.3
1.4

S
pe

ed
up

(p
re

ci
se

 m
od

el
) 1 thread

2 threads
4 threads
8 threads

16 threads
24 threads

0.8
0.9

1
1.1
1.2
1.3
1.4

0 500000 1e+06 1.5e+06 2e+06

(c
on

st
an

t m
od

el
)

Number of nodes

S
pe

ed
up

I Speedup (
tseq
tpar

): up to 45%

I More efficient with simple model:
I Less work in engine + Amhdal law

I Speedup depends on thread amount
I 8 threads (of 24 cores) often better
I Synch costs remain hard to amortize
I They depend on thread amount

Parallel Efficiency (speedup
#cores

) for 2M nodes

Model 4 threads 8 th. 16 th. 24 th.
Precise 0.28 0.15 0.07 0.05

Constant 0.33 0.16 0.08 0.06

I Baaaaad efficiency results

I Remember, P2P and Chord:
Worst case scenarios

Yet, first time that Chord’s parallel simulation is faster than best known sequential

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n0 = 1
C1 = 1000 n1 = 1
C2 = 1000 n2 = 2
C3 = 1000 n3 = 1
C4 = 1000 n4 = 1

ρ1 =

ρ2 =

I The limiting link is link 0
(
since 1

1 = min
(
1
1 ,

1000
1 , 10002 , 10001 , 10001

))
I This fixes ρ2 = 1. Update the links

I The limiting link is link 2
(
since 999

1 = min
(
1000
1 , 9991 ,

1000
1 , 10001

))
I This fixes ρ1 = 999

I Done. We know ρ1 and ρ2

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1000 n1 = 1
C2 = 999 n2 = 1
C3 = 1000 n3 = 1
C4 = 999 n4 = 0

ρ1 =

ρ2 = 1

I The limiting link is link 0
(
since 1

1 = min
(
1
1 ,

1000
1 , 10002 , 10001 , 10001

))
I This fixes ρ2 = 1. Update the links

I The limiting link is link 2
(
since 999

1 = min
(
1000
1 , 9991 ,

1000
1 , 10001

))
I This fixes ρ1 = 999

I Done. We know ρ1 and ρ2

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1000 n1 = 1
C2 = 999 n2 = 1
C3 = 1000 n3 = 1
C4 = 999 n4 = 0

ρ1 =

ρ2 = 1

I The limiting link is link 0
(
since 1

1 = min
(
1
1 ,

1000
1 , 10002 , 10001 , 10001

))
I This fixes ρ2 = 1. Update the links

I The limiting link is link 2
(
since 999

1 = min
(
1000
1 , 9991 ,

1000
1 , 10001

))
I This fixes ρ1 = 999

I Done. We know ρ1 and ρ2

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1 n1 = 0
C2 = 0 n2 = 0
C3 = 1 n3 = 0
C4 = 999 n4 = 0

ρ1 = 999

ρ2 = 1

I The limiting link is link 0
(
since 1

1 = min
(
1
1 ,

1000
1 , 10002 , 10001 , 10001

))
I This fixes ρ2 = 1. Update the links

I The limiting link is link 2
(
since 999

1 = min
(
1000
1 , 9991 ,

1000
1 , 10001

))
I This fixes ρ1 = 999

I Done. We know ρ1 and ρ2

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Max-Min Fairness on Backbone

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1 n1 = 0
C2 = 0 n2 = 0
C3 = 1 n3 = 0
C4 = 999 n4 = 0

ρ1 = 999

ρ2 = 1

I The limiting link is link 0
(
since 1

1 = min
(
1
1 ,

1000
1 , 10002 , 10001 , 10001

))
I This fixes ρ2 = 1. Update the links

I The limiting link is link 2
(
since 999

1 = min
(
1000
1 , 9991 ,

1000
1 , 10001

))
I This fixes ρ1 = 999

I Done. We know ρ1 and ρ2

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Validity of OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: ρf = min
l∈f

(
Cl

nl

)

C0 = 1 n1 = 1 share =

1

C1 = 1000 n1 = 1 share =

1000

C2 = 1000 n2 = 2 share =
C3 = 1000 n3 = 1 share =

1000

C4 = 1000 n4 = 1 share =

1000

ρ1 =

min(1000, 500, 1000) = 500!!

ρ2 =

ρ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Validity of OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: ρf = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share =

1

C1 = 1000 n1 = 1 share =

1000

C2 = 1000 n2 = 2 share =
C3 = 1000 n3 = 1 share =

1000

C4 = 1000 n4 = 1 share =

1000

ρ1 =

min(1000, 500, 1000) = 500!!

ρ2 =

ρ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Validity of OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: ρf = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share = 1
C1 = 1000 n1 = 1 share = 1000
C2 = 1000 n2 = 2 share = 500
C3 = 1000 n3 = 1 share = 1000
C4 = 1000 n4 = 1 share = 1000

ρ1 = min(1000, 500, 1000)

= 500!!

ρ2 = min(1 , 500, 1000)

ρ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

Validity of OptorSim 2.1 on Backbone

OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using simplistic packet-level routing

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: ρf = min
l∈f

(
Cl

nl

)

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n1 = 1 share = 1
C1 = 1000 n1 = 1 share = 1000
C2 = 1000 n2 = 2 share = 500
C3 = 1000 n3 = 1 share = 1000
C4 = 1000 n4 = 1 share = 1000

ρ1 = min(1000, 500, 1000) = 500!!
ρ2 = min(1 , 500, 1000) = 1

ρ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������

������������
������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
��
��
��
��
��

������
������
������

������������
������

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

������
������
������

������������
������

��
��
��
��

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

��
��
��
���

�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

���
���
���

���
���
���

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

The CPU model in a Nutshell

Modeling computations in SimGrid

CPU = rate R in Mflop/s ⊕ Computation = amount A of Flops ; Time = A/R

Simulation kernel main loop

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

t

���
���
���

���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������
������
������

������������
������

��
��
��
��

Simulated time

��
��
��

��
��
��

�
�
�

�
�
�

In addition in SimGrid
I Availabilities & Failures

Traces and Generators

I Sharing for networks is
a bit more complex

Martin Quinson Simulation Of Next Generation Systems Introduction Simulation SimGrid Valid Scalable Usable Clouds CC 21/21

