### AlGorille: Algorithms for the Grid

Jens Gustedt

### INRIA Nancy – Grand Est AlGorithmes pour la Grille









INRIA project team since 2007

### The Team

### **Permanents:**

| (Pr. UL)     |                                                        |
|--------------|--------------------------------------------------------|
| (DR INRIA)   |                                                        |
| (As. Pr. UL) |                                                        |
| (As. Pr. UL) | Nancy                                                  |
|              | (Pr. UL)<br>(DR INRIA)<br>(As. Pr. UL)<br>(As. Pr. UL) |

### Associates:

S. Vialle (Pr. SUPÉLEC) Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)

### Strasbourg

(nría-

Loria

| Gusleul (IINNIA |
|-----------------|
|-----------------|

AlGorille

### The Team

### 2008

#### **Permanents:**

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum





### Associates:

S. Vialle

(Pr. SUPÉLEC)

Res l

S. Genaud J. Gossa ( --- -)

Metz

(As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Intia

### The Team

### 2008-2012

#### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Inta

### The Team

### 2008-2012

#### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Inta

AlGorille

### The Team

### 2008-2012

#### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Inta

AlGorille

### The Team

### 2008-2012

#### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Inta

AlGorille

### The Team

### 2012

### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Strasbourg

Intia

### The Team

### End 2012

#### Permanents:

S. Contassot-Vivier J. Gustedt M. Quinson L. Nussbaum (Pr. UL) (DR INRIA) (As. Pr. UL) (As. Pr. UL)



Nancy

### Associates:

S. Vialle

(Pr. SUPÉLEC)



Metz

S. Genaud J. Gossa (As. Pr. U Stbg) (As. Pr. U Stbg)



Inta

Loria

### Strasbourg

Gustedt (INRIA)

AlGorille

Introduction

### Parallel and distributed computing: a layered approach



- Goal: Executing applications over a large-scale distributed infrastructure
- Generic services can be shared accross middleware solutions
- Our work: applications and services
- Experiments mandatory for validation

## Outline



### Introduction

### Three Challenges — Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

### Two Focuses

- Mastering Control- and Dataflow in Applications
- Simulation of Real HPC Code
- A Lot of Perspectives

### Conclusion

## Outline

One Team

### Introduction

### Three Challenges — Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

#### **Two** Focuses

- Mastering Control- and Dataflow in Applications
- Simulation of Real HPC Code
- 5 A Lot of Perspectives

### Conclusion

e Challenges — Three Research Themes

pplication Laver

# Structuring applications for scalability executive summary

### Challenge

## Efficient parallel applications for hierarchical and heterogeneous systems

#### Our approach

- Programming Models high level, easy to use
- theoretical foundations and proofs
- efficient and portable realizations



6/26

e Challenges — Three Research Themes

oplication Laver

# Structuring applications for scalability executive summary

### Application related

- Collaborations with application domains: physics, geology, biology, medicine, machine learning, finance
- Large scale cellular automata for fine grained applications

InterCell project (regional collaboration)



Efficient linear algebra on accelerators
 A sparse linear solver for GPUs
 (*T. Jost, S. Contassot-Vivier and S. Vialle, book chapter, 2010*)

Challenges — Three Research Themes

oplication Laver

# Structuring applications for scalability executive summary

### Foundations

 Convergence detection of asynchronous iterative computations (VECPAR, 2008)

 Random genesis of large graphs (*Physica A, 2011*)



ree Challenges — Three Research Themes

Service Laver

### Transparent Resource Management executive summary

### Challenge

Optimize resource usage for different actors with multiple objectives

### Our approach:

- Resource management algorithms
- Implemented as services
- Plugged into middleware





AlGorille **Lorio** 

Intia

ee Challenges — Three Research Themes

Service Laver

### Transparent Resource Management executive summary

### Contributions:

- Fault tolerance: automatic and user-guided services (*IJPP, 2009*)
- Scheduling in unreliable environments: robustness vs. makespan (IEEE TPDS)
- Client-side resource provisioning: (*CLOUD, 2011*)

elastic Clouds

Experiments

### Experimental validation executive summary

### Challenge

Evaluation and validation of distributed algorithms and applications



Experiments

### Experimental validation contributions – Experimentation on experimental testbeds

### Grid'5000: one of the most advanced testbeds world-wide

- Major role in testbed design and evolutions
- Development and maintenance of key software (Kadeploy)

### Advanced experimentation techniques

- Long experience on emulation (Wrekavoc  $\rightarrow$  Distem)
- Preliminary work on orchestration of large experiments
- SCALE Challenge 2012 finalist
   4000 VM in 1 hour with Kadeploy on 668 Grid'5000 nodes

## Experimental validation

contributions – Simulation of Large-Scale Distributed Applications

### SimGrid as a Scientific Instrument

- Tool in Top 3 World-wide for Grids and P2P studies
- We are leading this project (in collab with Mescal and Avalon)
  - Other Inria teams involved: Cepage, Mascotte, Ascola, Runtime, ...

### Simulation as a Scientific Object



## Outline

One Team

### Introduction

### Three Challenges — Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

### Two Focuses

- Mastering Control- and Dataflow in Applications
- Simulation of Real HPC Code
- 5 A Lot of Perspectives

### Conclusion

#### Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

#### shared memory



#### Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add message passing



Focuses

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add message passing



Gustedt (INRIA)



Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications problem statement

### Control- and Dataflow:

### add message passing



AlGorille

Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications problem statement

### Control- and Dataflow:

### add message passing



Gustedt (INRIA)

AlGorille



Focuses

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add message passing



Gustedt (INRIA)

(nría\_

Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add message passing



Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add message passing



| Gustedt ( | (INRIA) |
|-----------|---------|
|           |         |

Focuses Mastering Control- and Dataflow in Application:

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

#### add message passing



Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

#### add message passing





Gustedt (INRIA)

Focuses Mastering Control- and Dataflow in Applications

## Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

#### add message passing



Focus I: Control- and Dataflow in Applications

### Control- and Dataflow:

### add accelerators or other devices



## Focuse I: Control- and Dataflow in Applications problem statement

### Control- and Dataflow:

### several domains of control



### A unifying model:

### Ordered Read-Write Locks – ORWL

Innia-

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

#### Theorem

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.

### A unifying model:

### Ordered Read-Write Locks – ORWL

Innia-

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

 $\bigcap$ 

precise notions of iterative access and critical section

#### Theorem

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.

Gustedt (INRIA)

AlGorille

### A unifying model:

Theorem

Ordered Read-Write Locks – ORWL

Innia-

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.



### A unifying model:

Theorem

### Ordered Read-Write Locks – ORWL

Innia-

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.



### A unifying model:

Theorem

### Ordered Read-Write Locks – ORWL

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

### (Clauss & Gustedt 2010)

Any iterative ORWL algorithm is deadlock-free and fair.

$$L_1$$
  $L_2$   $L_1$   $C$ 



### A unifying model:

Theorem

### Ordered Read-Write Locks – ORWL

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

### (Clauss & Gustedt 2010)

Any iterative ORWL algorithm is deadlock-free and fair.

OLI L2 LIO



### A unifying model:

### Ordered Read-Write Locks – ORWL

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

#### Theorem

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$ 



### A unifying model:

### Ordered Read-Write Locks – ORWL

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

#### Theorem

### (Clauss & Gustedt 2010)

Lorio

Any iterative ORWL algorithm is deadlock-free and fair.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array}\end{array}$ 



### A unifying model:

### Ordered Read-Write Locks – ORWL

- a resource comprises location, control and data access
- access is regulated: handles, FIFO, read or write
- the typical sequence of access is

 $\texttt{request} \Longrightarrow \texttt{acquire} \implies \texttt{map} \implies \texttt{release}$ 

precise notions of iterative access and critical section

#### Theorem

### (Clauss & Gustedt 2010)

Any iterative ORWL algorithm is deadlock-free and fair.



Innia-

# Focus I: Control- and Dataflow in Applications ongoing and beyond

A portable implementation:

Ordered Read-Write Locks – ORWL

Innia-

Simple: only a handful concepts, a local view per task

Efficient: good overlap, low overhead

Portable: modern C, C11 (atomics, threads), sockets

Compatible: OpenMP, user threads, CUDA

Extensible: accelerators (CUDA in the works), devices (camera)

### Application

|  | Gustedt ( | INRIA |
|--|-----------|-------|
|--|-----------|-------|

Focuses Mastering Control- and Dataflow in Applications

# Focus I: Control- and Dataflow in Applications ongoing and beyond

A portable implementation:

Ordered Read-Write Locks – ORWL

#### Application

2011- American Option Pricer on GPU cluster

(S. Vialle & L. Abbas-Turki)

2012- Radiative transfer equations (F. Asllanaj)

### 2013- HPC for numerical simulations of plasma physics LabEx IRMIA, Strasbourg (CALVI/TONUS)

### 2014- integrate to system level INRIA Lab on multi-cores and accelerators

(CAMUS)

## Focus 2: Simulated MPI (SMPI) problem statement

### Goal: Online simulation of unmodified MPI application within SimGrid

• Algorithm prototyping; Platform dimensionning; What-if analysis ...



### PB 1: Enable this mode of MPI execution

- (partially) Reimplement MPI on top of SimGrid
- Fold MPI processes as threads
- Allow to manually factorize data memory

### PB 2: Useless if not realistic enough

- Improve model → piece-wise linear model Accurate also for small messages
- Preserve good modeling of network contention

Loric

Focuses Simulation of Real HPC Code

## Focus 2: Simulated MPI (SMPI)





### Scalability: Scatter (4 MiB/msg)



#### **Reduced Footprint of DT**



Gustedt (INRIA)

AlGorille

Inia AlGorill

19/26

# Focus 2: Simulated MPI (SMPI) ongoing and beyond

### Improve the enabling of MPI simulation

- Simulate 10<sup>6</sup> MPI Linpack processes within SimGrid?
- Distribute simulation to achieve this size-up

### Push the validity limit further

- Model global communications
- Model CPU and memory performance

(OpenMPI vs. MPICH2)

(with MESCAL team)

### Vision

- Be the best alternative to simulate ExaScale Systems
- ANR SONGS project coordinates these efforts (7 INRIA teams)

## Outline

One Team

### Introduction

### Three Challenges — Three Research Themes

- Structuring applications for scalability
- Transparent resource management
- Experimental validation

### Two Focuses

- Mastering Control- and Dataflow in Applications
- Simulation of Real HPC Code
- 5 A Lot of Perspectives

### Conclusion

#### A Lot of Perspectives

### A lot of Perspectives

### integrate modeling, algorithm design and experiments



### mutual feedback

- "applicative control flow" and "scheduling"
- service API and online simulation
- performance guarantees on all scales

#### organizational framework



A Lot of Perspectives

# Structuring applications for scalability perspectives

### Seamless Efficiency Engineering at All Scales

Provide an integrated view of application programming:

from efficient programming on a PC ...

```
... HPC on a large scale
```

Innia-

(ORWL)

Loria

- Don't forget the users in the middle
  - can't afford to launch an industrial project for each application
  - have them use a cluster, mainframe, Cloud ... occasionally

#### Seamless Efficiency Engineering at All Scales

Concentrate our efforts around Control- and Dataflow

- develop and extend API application programming
- connect ORWL into the Cloud
- connect ORWL to the system level

Gustedt (INRIA)

#### A Lot of Perspectives

# Transparent Resource Management

### Transparent Cloud Resources Brokering

- Operate clouds as black boxes, on behalf of the client
  - From usage to price
  - Comprehensive run management

### Key Issues

- Adaptive resource provisioning strategies
- Characterization of user workloads in Clouds
- Complex cost models

### **Cloud Exploitation**

- Cloud simulation: SimCloud to interface with SimGrid analyze complex setups through simulation
- HPC-Cloud: Experiment and adapt our effort for HPC to Clouds

# Experimental validation

### No Experimental Methodology is Sufficient: We Need Them All

| Whiteboard               | Idea | Algorithm | Prototype | Application |
|--------------------------|------|-----------|-----------|-------------|
| Whiteboard               |      |           |           |             |
| Simulator                |      |           |           |             |
| Experimental<br>Facility |      |           |           |             |
| Production<br>Platform   |      |           |           |             |

#### One Workbench to Rule Them All

• Leverage our expertise on all methodologies to combine them

| Gustedt |  |
|---------|--|
|         |  |

# Experimental validation

### No Experimental Methodology is Sufficient: We Need Them All



| ne Workbench to Rul                        | e Them All                 |          |                 |   |
|--------------------------------------------|----------------------------|----------|-----------------|---|
| <ul> <li>Leverage our expension</li> </ul> | ertise on all methodologie | s to con | nbine them      | 1 |
|                                            |                            |          |                 |   |
| Gustedt (INRIA)                            | AlGorille                  | (nria-   | AlGorille Lorio |   |

#### Conclusion

### Conclusion



### Focus on Algorithms

- structuring application for scalability
- Itransparent resource management

Innia-

Lorio

experimental validation

### AlGorille team

- young dynamic team, primarily university staff
- important engineering support by INRIA and ANR
- people on three sites (and it works!)
- University of Lorraine will be recruiting in 2013

Gustedt (INRIA)

AlGorille

#### Conclusion

### Conclusion



### Focus on Algorithms

- structuring application for scalability
- Itransparent resource management

Innia-

Lorio

experimental validation

### AlGorille team

- young dynamic team, primarily university staff
- important engineering support by INRIA and ANR
- people on three sites (and it works!)

### • University of Lorraine will be recruiting in 2013

Gustedt (INRIA)

AlGorille