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The Accuracy vs. Speed tradeoff

I Common Belief in 2008: Simulation as a toy methodology

I Consensus in 2012: SimGrid as a scientific instrument (w/ Grid’5000)
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Courtesy of Franck Cappello (Gri5000 keynote @ EGEE, Feb 2008)
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Purpose of this Talk

How did we turn Simulation into a
Reliable and Versatile Scientific Instrument

for Distributed Computing Research?

I A Performant et Versatile Simulation Kernel
(high-performance simulation for computer science)

I Simulating Real MPI Applications
(beyond prototypes)

I Toward a Coherent Workbench for Distributed Applications
(when simulation is not enough)
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Layered Infrastructure for a Versatile Tool

SimGrid: strictly layered and built bottom-up

SimGrid Functional Organization

I Models: Actions get mapped onto resources
Resource sharing and termination dates

I Activities: Processes interact and synchronize

I User interfaces: User-friendly syntaxic sugar
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SimGrid user APIs
I SimDag: heuristics as DAG of (parallel) tasks

I MSG: heuristics as CSP (Java/Lua/Ruby bindings)

I SMPI: simulate MPI codes
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Models: Resource Sharing between Actions

How to Model the Platform?

x1

CPU1

x2, x3

CPU2

link1

y1, y2

link2

y1, y3

x1 6 Power CPU1 (1a)

x2 + x3 6 Power CPU2 (1b)

y1 + y2 6 Power link1 (1c)

y1 + y3 6 Power link2 (1d)

Production-grade Implementation

I Efficiency: Sparse structure; Cache oblivious; Lazy evaluation

I Realism: Several fairnesses can be expressed this way (or NS3 bindings)
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Putting the Models in Use

Alice

(some computation)
Send "toto" to Bob
(other computation)
Receive from Bob

Bob

(some code)
Receive from Alice
(other code)
Send "blah" to Alice

BobAliceMaestro

Send

Receive

Receive

Send

some code

some computation

other computation

more code

t = 0

t = 42

t = 0

t = 42
t = 54

SimGrid Internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action; update clock
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Production-grade Implementation

I Scalability: Contextes instead of threads; Hierarchical networks

I Speed: Context switches in assembly; Futexes; Original parallelisation schema

I Other: Resource availability changes and failures; Dynamic Formal Verification
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How big and how fast? (1/3 – Grid)

Size of platform description files
Community Scenario Size

P2P 2,500 peers with Vivaldi coordinates 294KB
VC 5120 volunteers 435KB + 90MB

Grid Grid5000: 10 sites, 40 clusters, 1500 nodes 22KB
HPC 1 cluster of 262144 nodes 5KB
HPC Hierarchy of 4096 clusters of 64 nodes 27KB
Cloud 3 small data centers + Vivaldi 10KB

Speed of Grid Scenario

A master distributes 500, 000 fixed size jobs to 2, 000 workers (round robin)
GRIDSIM SIMGRID

Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB
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How big and how fast? (2/3 – P2P)

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)
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Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I SIMGRID orders of magnitude more scalable than state-of-the-art P2P simulators

I Precise model incurs a ≈ 20% slowdown, but accuracy is not comparable
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How big and how fast? (3/3 – HPC)

Simulating a binomial broadcast
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Model:

I SIMGRID: contention + cabinets hierarchy

I LOGGOPSIM: simple delay-based model

Results:

I SIMGRID is roughly 75% slower

I SIMGRID is about 20% more fat
(15GB required for 223 processors)

The genericity of SIMGRID data structures comes at the cost of a slight overhead

BUT scalability does not necessarily comes at the price of realism
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Conclusion

SimGrid is ready to ground your Research

I Versatile: Grid, P2P, HPC, Volunteer Computing, Clouds, . . .

I Valid: Accuracy limits studied and pushed further for years

I Scalable: 3M chord nodes; 1000× faster than other (despite sound models)

I Usable: Tooling (generators, runner, vizu); Open-souce, Portable, . . .

SimIX

SURF

SimDag MSG SMPI GRAS

Platform Simulator

Simulated POSIX

{
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But a simulation kernel is not sufficient
I Users need love (Coming: Simulating MPI applications)

I Simulation is no universal solution (Coming: coherent workbench)
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Single online simulation with SMPI

October 12th, 2012
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On-line simulation in SMPI

I General Motivation: offer domain specific interfaces to SimGrid

I SMPI: allows a user to simulate (possibly) unmodified MPI source code
(C/Fortran)

I Partial implementation of MPI on top of SimGrid
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On-line simulation in SMPI

I Computations: real execution on the host computer
I CPU bursts are benched
I Scale linearly CPU time according to power ratios

I Communications: simulated
I Network models are flow-based models (TCP)
I Validity of these models for MPI applications

I Folding of the parallel program processes onto a single node
I Serialization of computations
I Single address space
I Requires to reduce

I Memory footprint (scalability)
I Simulation time (speed)
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Reworked Network Model

I Simple Model: T (S) = L + S
B

I Improved model: T (S) = α · L + S
min(β·B, γ

2·L )
I α accounts for TCP slow-start
I β accounts for the overhead induced by TCP/IP headers (e.g 92%)
I γ enables the modeling of the TCP window induced behavior

I Model valid for S ≥ 100 KiB, does not address a lot of message sizes found in
MPI applications

I Need for a new, accurate network model when S < 100 KiB
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Point-to-point Communication

SKaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
u

n
ic

at
io

n
T

im
e

(i
n
µ

s)

Message Size (in Bytes)

Experimental measurement using SKaMPI
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Experimental measurement using SKaMPI
Default linear model, error: 32.1%
Ok with asymptotic message sizes,
but wrong for 1KiB-1MiB messages

Simulation for Large-Scale Distributed Computing Research 5/10



Point-to-point Communication

SKaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
u

n
ic

at
io

n
T

im
e

(i
n
µ

s)

Message Size (in Bytes)

Experimental measurement using SKaMPI
Best-fitted linear model (α, β, γ), error: 18.5%
Better for a lot of sizes,
but cannot fit all real values
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Point-to-point Communication
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Experimental measurement using SKaMPI
Breakdown depending on message size
– packet size < MTU,
– eager/rendezvous switch limit
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Point-to-point Communication

SKaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model
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Experimental measurement using SKaMPI
New piece-wise linear model, error: 8.63%
Correctly adjust linear segments
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Collectives and Contention

Scatter: 16-processes test

I Comparison SMPI/OpenMPI: error 5.3%

I Taking contention into account is important
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Reducing the Memory Footprint

I Idea: Share arrays between processes

I Implemented as optional macros

double* data = (double*)SMPI SHARED MALLOC(...);

...

SMPI SHARED FREE

(data);
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Reducing the Memory

SMPI
SMPI + Memory Reduction
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I Average reduction by factor of 11.9 (maximum 40.5x)

I Class C can now be simulated
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Reducing the Simulation Time

I Idea: Do not execute all the iterations

I Use sampling instead
I LOCAL: each process executes a specified number of iterations
I GLOBAL: a specified number of samples is produced by all processors

I Remaining iterations are replaced by average of measured values

I Implemented as optional macros

for(i = 0; i < n; i++) SMPI SAMPLE LOCAL( 0.75*n , 0.01 ) { ...

}

...

for(j = 0; j < k; j++) SMPI SAMPLE GLOBAL(0.5*k,0.01) {

...

}

max part of iterations performed

threshold average variability
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Wrap-up

I SMPI is a functional simulation tool
I Open Source and freely available
I Reproducible simulation of unmodified MPI application
I On a single node
I Main issues addressed:

I scalability and speed through macros,
I accuracy through extensions of the network model

I However, microscopic behaviors are difficult to capture, e.g:
I network communication jitters,
I network catastrophes,
I cache effects,
I ...

And hence, simulation must be used in conjunction with other experimental
approaches: emulation or experimentation in the real environment.
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Experimentation methodologies in Algorille

Simulator

I M. Quinson – core team,
PI ANR SONGS 2012-2016

I S. Genaud, J. Gossa,
L. Nussbaum also active

Testbed

Grid’5000

I L. Nussbaum – testbed design
Proxy steering / tech. committees

I Team Focus on emulation and
orchestration of experiments

I Engineering manpower (3 eng.)

Towards an unified workbench 1/3
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I L. Nussbaum – testbed design
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I Team Focus on emulation and
orchestration of experiments
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Key role in both projects
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Experimentation methodologies in Algorille

Simulator

I M. Quinson – core team,
PI ANR SONGS 2012-2016

I S. Genaud, J. Gossa,
L. Nussbaum also active

Testbed

Grid’5000

I L. Nussbaum – testbed design
Proxy steering / tech. committees

I Team Focus on emulation and
orchestration of experiments

I Engineering manpower (3 eng.)

Complementary solutions:

, Work on algorithms
, More scalable, easier

, Work on applications
, Perceived as more realistic
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Leading users from ideas to applications

Whiteboard

Simulator

Experimental
Facility

Production
Platform

Idea Algorithm Prototype Application

Grid’5000

SMPI

Goal: convergence of methodologies
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Challenges and opportunities

I Share experimental methods and software
I Infrastructure for Design of Experiment
I Frameworks for data analysis and vizualisation
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Challenges and opportunities

I Share experimental methods and software
I Infrastructure for Design of Experiment
I Frameworks for data analysis and vizualisation

I Design better models and better testbeds using the common expertise
e.g. network or power consumption modelling vs instrumentation

I Attack the same goals together, from both sides
Reproducibility, trustworthiness, Open Science

We are in a unique position
to address those challenges
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