
Practical SimGrid

Da SimGrid Team

January 31, 2012

Outline

Installing SimGrid
Stable release
Unstable Version
The Bindings

Your First SimGrid Program
User Interface(s)
Master/Workers
Trace Replay

Further topics
Configuring your simulators
Surviving in C
Bindings Performance

Conclusion

Da SimGrid Team Practical SimGrid 2/26

Installing a stable version (most advised for users)

On Debian, Ubuntu and similar
I sudo apt-get install simgrid

On Windows
I Get the installer (from page below), execute it and follow the instructions

From the sources
1. Get the archive: (see below for URL)

2. Open it: tar xfz simgrid-*.tar.gz

3. Configure it: cmake . or ccmake .

4. Install it: make install

Download page of the project:

I Direct access: https://gforge.inria.fr/frs/?group_id=12

I Idem + more info: http://simgrid.gforge.inria.fr/download.php

Details: http://simgrid.gforge.inria.fr/simgrid/<version>/doc/install.html

Da SimGrid Team Practical SimGrid Installing SimGrid 3/26

https://gforge.inria.fr/frs/?group_id=12
http://simgrid.gforge.inria.fr/download.php
http://simgrid.gforge.inria.fr/simgrid/<version>/
doc/install.html

Installing an unstable version (developers only!)

Is unstable for you?
I Simple Rule of Thumb:

I You plan to use SimGrid ; nope, play safe with stable
I You plan to improve SimGrid ; yes, use unstable

I The reason why we name it “unstable”: we didn’t test it on all platforms

I It can be relatively usable at a given time, but we cannot promise.

I It may fail strangely on you, too. You’re on your own here.

Actually installing unstable

I Get source from git:
git clone git://scm.gforge.inria.fr/simgrid/simgrid.git

I Configure and installing (see instructions for stable)

Build Dependencies
I Depending on what you’re touching, you may need more softwares:

I If you change the XML parsers, you need both flexml and flex

Da SimGrid Team Practical SimGrid Installing SimGrid 4/26

The Bindings

Some people don’t like coding in C

I That’s reasonable since C is the modern assembly language:
It can reveal faster but rather verbose and really tedious to get right

I Using C is not enough for maximal performance: you need to really master it

Bindings available for: Java, lua and Ruby

I Why Java: Every potential intern knows it (I guess)

I Why Lua: As simple as script language, but as efficient as C

I Why Ruby: Our team counts very effective Ruby lobbyists

I “Will you add my favorite language?”
I We could, but it’s rather time consuming (threading mess, at least)
I We probably won’t do it ourselves (our time is limited); we welcome patches

Installing the Bindings

I lua is included in the main archive, the others are separated

I Grab their archives, open it, read the README, build it, install it

I You need to install the main SimGrid archive to get the bindings working

Da SimGrid Team Practical SimGrid Installing SimGrid 5/26

Outline

Installing SimGrid
Stable release
Unstable Version
The Bindings

Your First SimGrid Program
User Interface(s)
Master/Workers
Trace Replay

Further topics
Configuring your simulators
Surviving in C
Bindings Performance

Conclusion

Da SimGrid Team Practical SimGrid Your First SimGrid Program 6/26

User-visible SimGrid Components

GRAS
Framework
to develop
distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I SimDag: specify heuristics as DAG of (parallel) tasks
I MSG: specify heuristics as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I GRAS: develop real applications, studied and debugged in simulator
I SMPI: simulate MPI codes

Which API should I choose?
I Your application is a DAG ; SimDag
I You have a MPI code ; SMPI
I You study concurrent processes, or distributed applications

I You need graphs about several heuristics for a paper ; MSG
I You develop a real application (or want experiments on real platform) ; GRAS

I Most popular API: MSG (by far)

Da SimGrid Team Practical SimGrid Your First SimGrid Program 7/26

The MSG User Interface
Main MSG abstractions

I Agent: some code, some private data, running on a given host

one function + arguments coming from deployment XML file

I Task: amount of work to do and of data to exchange

I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {send,recv}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}

I Host: location on which agents execute

I Mailbox: Rendez-vous points between agents (think of MPI tags)
I You send stuff to a mailbox; you receive stuff from a mailbox
I Network location of sender & receiver have no impact on rendez-vous;

Communication timings of course take these locations into account
I Mailboxes’ identifiers are strings, making user code ways easier

(either host:port, yellow page mechanism or whatever you want)

More information
I examples/msg in archive; Reference doc: doc/group__MSG__API.html

I Interface extended, never modified since 2002 (if using MSG USE DEPRECATED)

Da SimGrid Team Practical SimGrid Your First SimGrid Program 8/26

host:port
doc/group__MSG__API.html

The MSG User Interface
Main MSG abstractions

I Agent: some code, some private data, running on a given host
one function + arguments coming from deployment XML file

I Task: amount of work to do and of data to exchange
I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {send,recv}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}
I Host: location on which agents execute

I Mailbox: Rendez-vous points between agents (think of MPI tags)
I You send stuff to a mailbox; you receive stuff from a mailbox
I Network location of sender & receiver have no impact on rendez-vous;

Communication timings of course take these locations into account
I Mailboxes’ identifiers are strings, making user code ways easier

(either host:port, yellow page mechanism or whatever you want)

More information
I examples/msg in archive; Reference doc: doc/group__MSG__API.html

I Interface extended, never modified since 2002 (if using MSG USE DEPRECATED)

Da SimGrid Team Practical SimGrid Your First SimGrid Program 8/26

host:port
doc/group__MSG__API.html

Executive Summary (detailed below)
1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data);
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM

"http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<AS routing="Full">

<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...

<link name="link1" bandwidth="1E6"
latency="1E-2" />...

<route src="host1" dst="host2">
<link ctn id="link1"/>

</route>
</AS>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM

"http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>

3. Write a main gluing things together, link and run
Da SimGrid Team Practical SimGrid Your First SimGrid Program 9/26

Master/Workers: Describing the Agents (1/2)

The master has a large number of tasks to dispatch to its workers for execution

int master(int argc, char *argv[]) {
int number_of_tasks = atoi(argv[1]); double task_comp_size = atof(argv[2]);
double task_comm_size = atof(argv[3]); int workers_count = atoi(argv[4]);
char mailbox[80]; char buff[64];
int i;

/* Dispatching (dumb round-robin algorithm) */
for (i = 0; i < number_of_tasks; i++) {

sprintf(buff, "Task_%d", i);
task = MSG_task_create(buff, task_comp_size, task_comm_size, NULL);
sprintf(mailbox,"worker-%d",i % workers_count);
XBT INFO("Sending %̈s¨ to mailbox %̈s"̈, task->name, mailbox);
MSG_task_send(task, mailbox);

}

/* Send finalization message to workers */
XBT INFO("All tasks dispatched. Let’s stop workers");
for (i = 0; i < workers_count; i++) {

sprintf(mailbox,"worker-%ld",i % workers_count);
MSG_task_send(MSG_task_create("finalize", 0, 0, 0), mailbox);

}

XBT INFO("Goodbye now!"); return 0;
}

Da SimGrid Team Practical SimGrid Your First SimGrid Program 10/26

Master/Workers: Describing the Agents (2/2)

int worker(int argc, char *argv[]) {
m_task_t task; int errcode;
int id = atoi(argv[1]);
char mailbox[80];

sprintf(mailbox,"worker-%d",id);

while(1) {
errcode = MSG_task_receive(&task, mailbox);
xbt_assert(errcode == MSG_OK, "MSG_task_get failed");

if (!strcmp(MSG_task_get_name(task),"finalize")) {
MSG_task_destroy(task);
break;

}

XBT INFO("Processing ’%s’", MSG_task_get_name(task));
MSG_task_execute(task);
XBT INFO("’%s’ done", MSG_task_get_name(task));
MSG_task_destroy(task);

}

XBT INFO("I’m done. See you!");
return 0;

}

Da SimGrid Team Practical SimGrid Your First SimGrid Program 11/26

Master/Workers: gluing things together

int main(int argc, char *argv[]) {
MSG_global_init(&argc,argv);

/* Declare all existing agent, binding their name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

/* Load a platform instance */
MSG_create_environment("my_platform.xml");
/* Load a deployment file */
MSG_launch_application("my_deployment.xml");

/* Launch the simulation (until its end) */
MSG_main();

XBT INFO("Simulation took %g seconds",MSG_get_clock());
}

Compiling and Executing the result

$ gcc *.c -lsimgrid -o my simulator
$./my simulator platform.xml deployment.xml
[verbose output removed]

Da SimGrid Team Practical SimGrid Your First SimGrid Program 12/26

Master/Workers: deployment file

Specifying which agent must be run on which host, and with which arguments

XML deployment file

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<!-- The master process (with some arguments) -->
<process host="Tremblay" function="master">

<argument value="6"/> <!-- Number of tasks -->
<argument value="50000000"/> <!-- Computation size of tasks -->
<argument value="1000000"/> <!-- Communication size of tasks -->
<argument value="3"/> <!-- Number of workers -->

</process>

<!-- The worker process (argument: mailbox number to use) -->
<process host="Jupiter" function="worker"><argument value="0"/></process>
<process host="Fafard" function="worker"><argument value="1"/></process>
<process host="Ginette" function="worker"><argument value="2"/></process>

</platform>

Thanks to mailboxes, the master doesn’t have to know where the workers are
(nor the contrary)

Da SimGrid Team Practical SimGrid Your First SimGrid Program 13/26

Master/Worker in Java (1/2)

import simgrid.msg.*;
public class BasicTask extends simgrid.msg.Task {

public BasicTask(String name, double computeDuration, double messageSize) {
super(name, computeDuration, messageSize);

}
}
public class FinalizeTask extends simgrid.msg.Task {

public FinalizeTask() {
super("finalize",0,0);

}
}
public class Worker extends simgrid.msg.Process {

public void main(String[] args)
throws TransferFailureException, HostFailureException,

TimeoutException, TaskCancelledException {
String id = args[0];

while (true) {
Task t = Task.receive("worker-" + id);
if (t instanceof FinalizeTask)

break;
BasicTask task = (BasicTask)t;
Msg.info("Processing ’" + task.getName() + "’");
task.execute();
Msg.info("’" + task.getName() + "’ done ");

}
Msg.info("Received Finalize. I’m done. See you!");

} }

Da SimGrid Team Practical SimGrid Your First SimGrid Program 14/26

Master/Workers in Java (2/2)

import simgrid.msg.*;
public class Master extends simgrid.msg.Process {

public void main(String[] args) throws MsgException {
int numberOfTasks = Integer.valueOf(args[0]).intValue();
double taskComputeSize = Double.valueOf(args[1]).doubleValue();
double taskCommunicateSize = Double.valueOf(args[2]).doubleValue();
int workerCount = Integer.valueOf(args[3]).intValue();

Msg.info("Got "+ workerCount + " workers and " + numberOfTasks + " tasks.");

for (int i = 0; i < numberOfTasks; i++) {
BasicTask task = new BasicTask("Task_" + i ,taskComputeSize,taskCommunicateSize);
task.send("worker-" + (i % workerCount));

Msg.info("Send completed for the task " + task.getName() +
" on the mailbox ’worker-" + (i % workerCount) + "’");

}
Msg.info("Goodbye now!");

}
}

The rest of the story

I No need to write the glue (thanks to Java introspection)

I The XML files are exactly the same (beware of capitalization for deployment)

I Output very similar too
Da SimGrid Team Practical SimGrid Your First SimGrid Program 15/26

Master/Workers in Lua (1/2)

function Master(...)
local nb_task, comp_size, comm_size, slave_count = unpack(arg)

-- Dispatch the tasks
for i = 1, nb_task do

local tk = simgrid.task.new("Task " .. i, comp_size, comm_size)
local alias = "worker " .. (i % worker_count)
simgrid.info("Sending ’" .. tk:get_name() .."’ to ’" .. alias .."’")
tk:send(alias)
simgrid.info("Done sending ’".. tk:get_name() .."’ to ’" .. alias .."’")

end
-- Sending finalize message to others
for i = 0, worker_count - 1 do

local alias = "worker " .. i;
simgrid.info("Sending finalize to " .. alias)
local finalize = simgrid.task.new("finalize", comp_size, comm_size)
finalize:send(alias)

end
end

Da SimGrid Team Practical SimGrid Your First SimGrid Program 16/26

Master/workers in Lua (2/2)

The worker

function Worker(...)
local my_mailbox="worker " .. arg[1]

while true do
local tk = simgrid.task.recv(my_mailbox)
if (tk:get_name() == "finalize") then

simgrid.info("Got finalize message")
break

end
tk:execute()

end

simgrid.info("Worker ’" ..my_mailbox.."’: I’m done. See you!")
end

Setting up your experiment

require "simgrid"
simgrid.platform("my_platform.xml")
simgrid.application("my_deployment.xml")
simgrid.run()
simgrid.info("Simulation’s over. See you.")

Da SimGrid Team Practical SimGrid Your First SimGrid Program 17/26

Master/Workers in Ruby (1/2)

Some mandatory headers

require ’simgrid’
include MSG

The master
class Master < MSG::Process

def main(args)
numberOfTask = Integer(args[0])
taskComputeSize = Float(args[1])
taskCommunicationSize = Float(args[2])
workerCount = Integer(args[3])
for i in 0..numberOfTask-1

task = Task.new("Task_"+ i.to_s, taskComputeSize , taskCommunicationSize);
mailbox = "worker " + (i%workerCount).to_s
MSG::info("Master Sending "+ task.name + " to " + mailbox)
task.send(mailbox)
MSG::info("Master Done Sending " + task.name + " to " + mailbox)

end
for i in 0..workerCount-1

mailbox = "worker " + i.to_s
finalize_task = Task.new("finalize",0,0)
finalize_task.send(mailbox)

end
end

end

Da SimGrid Team Practical SimGrid Your First SimGrid Program 18/26

Master/Workers in Ruby (2/2)

The worker
class Worker < MSG::Process

def main(args)
mailbox = "worker " + args[0]
while true

task = Task.receive(mailbox)
if (task.name == "finalize")

break
end
task.execute
MSG::debug("Worker ’" + mailbox + "’ done executing task "+ task.name + ".")

end
MSG::info("I’m done, see you")

end
end

Setting up your experiment

MSG.createEnvironment("platform.xml")
MSG.deployApplication("deploy.xml")
MSG.run
puts "Simulation time : " + MSG.getClock .to_s
MSG.exit

Some more polishing is needed

I Exceptions on timeout/host failure and so on?
Da SimGrid Team Practical SimGrid Your First SimGrid Program 19/26

Trace Replay: Separate your applicative workload

C code

static void action_blah(xbt_dynar_t parameters) { ... }
static void action_blih(xbt_dynar_t parameters) { ... }
static void action_bluh(xbt_dynar_t parameters) { ... }
int main(int argc, char *argv[]) {

MSG_global_init(&argc, argv);
MSG_create_environment(argv[1]);
MSG_launch_application(argv[2]);
/* No need to register functions as usual: actions started anyway */
MSG_action_register("blah", blah);
MSG_action_register("blih", blih);
MSG_action_register("bluh", bluh);

MSG_action_trace_run(argv[3]); // The trace file to run
}

Deployment

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<process host="Tremblay" function="toto"/>
<process host="Jupiter" function="tutu"/>
<process host="Fafard" function="tata"/>

</platform>

Trace file
tutu blah toto 1e10
toto blih tutu
tutu bluh 12
toto blah 12

Da SimGrid Team Practical SimGrid Your First SimGrid Program 20/26

Trace Replay (2/2)

Separating the trace of each process

I Because it’s sometimes more convenient (for MPI, you’d have to merge them)

I Simply pass NULL to MSG action trace run()

I Pass the trace file to use as argument to each process in deployment

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<process host="Tremblay" function="toto">
<argument value="actions_toto.txt"/>

</process>
<process host="Jupiter" function="tutu">

<argument value="actions_tutu.txt"/>
</process>

</platform>

Action Semantic
I This mecanism is completely agnostic: attach the meaning you want to events

I In examples/actions/action.c, we have pre-written event functions for:
I Basics: send, recv, sleep, compute
I MPI-specific: isend, irecv, wait, barrier, reduce, bcast, allReduce

Da SimGrid Team Practical SimGrid Your First SimGrid Program 21/26

SimGrid is not a Simulator

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

That’s a Generic Simulation Framework

Da SimGrid Team Practical SimGrid Your First SimGrid Program 22/26

Configuring your simulators

Every simulator using SimGrid accepts a set of options

- -help: get some help (demo)

- -help-models: long help on models (3.4-only; demo)

- -log: configure the verbosity

- -cfg: change some settings

Note: SMPI-specific settings, are only visible in SMPI simulators

The log argument

I It’s similar to Log4J, but in C

I You can increase the amount of output for some specific parts of SimGrid

I Example: See everything by using –log=root.thres:debug (demo)

I List of all existing channels: doc/html/group XBT log cats.html

Da SimGrid Team Practical SimGrid Further topics 23/26

XBT from 10,000 feets
C is a basic language: we reinvented the wheel for you
Logging support: Log4C

XBT_LOG_NEW_DEFAULT_CATEGORY(test,
"my own little channel");

XBT_LOG_NEW_SUBCATEGORY(details, test,
"Another channel");

INFO1("Value: %d", variable);
CDEBUG3(details,"blah %d %f %d", x,y,z);

Exception support

xbt_ex_t e;
TRY {

block
} CATCH(e) {

block /* DO NOT RETURN FROM THERE */
}

Debugging your code

I Ctrl-C once: see processes’ status
I Press it twice (in 5s): kill simulator

xbt backtrace display current()

Backtrace (displayed in thread 0x90961c0):
---> In master() at masterslave_mailbox.c:35
---> In ?? ([0x4a69ba5])

Advanced data structures
I Hash tables (Perl’s ones)
I Dynamic arrays, FIFOs
I SWAG (don’t use); Graphs

String functions

I bprintf: malloc()ing sprintf
I trim, split, subst, diff
I string buffers

Threading support

I Portable wrappers (Lin, Win, Mac, Sim)

I Synchro (mutex, conds, semaphores)

Other
I Mallocators
I Configuration support
I Unit testing (check src/testall)
I Integration tests (tesh: testing shell)

Da SimGrid Team Practical SimGrid Further topics 24/26

Bindings Performance

What about performance loss for Java?

(Warning: these values are several years old)
XXXXXXXXXXtasks

workers
100 500 1,000 5,000 10,000

1,000 native .16 .19 .21 .42 0.74
java .41 .59 .94 7.6 27.

10,000 native .48 .52 .54 .83 1.1
java 1.6 1.9 2.38 13. 40.

100,000 native 3.7 3.8 4.0 4.4 4.5
java 14. 13. 15. 29. 77.

1,000,000 native 36. 37. 38. 41. 40.
java 121. 130. 134. 163. 200.

I Small platforms: ok

I Larger ones: not quite. . .

What about the others?
I Very old preliminary results for Master/workers (10 workers; 200,000 tasks):

C (native) 7s
Lua 10.5s

Ruby 45s
Java 47s

I That’s improvable

I It’s garbage-collected

I User stack is dynamic in lua&ruby(?)
⇒ better scalability?

Da SimGrid Team Practical SimGrid Further topics 25/26

Conclusion: Finding the documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Da SimGrid Team Practical SimGrid Conclusion 26/26

Conclusion: Finding the documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Da SimGrid Team Practical SimGrid Conclusion 26/26

Conclusion: Finding the documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Da SimGrid Team Practical SimGrid Conclusion 26/26

Conclusion: Finding the documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway
Da SimGrid Team Practical SimGrid Conclusion 26/26

	Installing SimGrid
	Stable release
	Unstable Version
	The Bindings

	Your First SimGrid Program
	User Interface(s)
	Master/Workers
	In C
	In Java
	In lua
	In Ruby

	Trace Replay

	Further topics
	Configuring your simulators
	Surviving in C
	Bindings Performance

	Conclusion

