
LMM

SURF

SIMIX

x1

x2

x3

! C1

! C2

! C3...
xN ! CN

  

Constraints

                                  
Variables

Actions{

...
P1 P2 P3 PN

Conditions{

Process

{

Figure 2: SimGrid layers and data structures for the
example in Section 3.3.

lation clock, returns the actions that have just completed.
In general, for this example, there is a single such action
since the amount of work for each action is random and
host processing speeds are heterogeneous. Then SIMIX re-
turns control to the corresponding user process, which de-
stroys the action that has just completed. At this point,
the entire LMM system for the CPU simulation model is
invalidated. The user-level MSG_task_execute function re-
turns and is called again immediately by the user process,
to compute the second task on the host. A new action is
created and the user process blocks again. Due to the new
action, the LMM system is invalidated. SIMIX then calls
surf_solve again to determine the next action termination.

The complexity incurred between two SIMIX calls to surf_
solve is thus Θ(1). However, since the system has been com-
pletely invalidated, the complexity of surf_solve is Θ(N)
again, which is true for all subsequent calls as the LMM
system is always invalidated between two calls.

3.3.4 Discussion
Whenever an action ends, the whole resource allocation

is recomputed and all actions are updated. However, there
is very little modification to the system. Indeed when an
action ends on a host, it does not affect the other hosts nor
the other action completion dates. In our example, when a
variable xi is removed from the LMM system it is immedi-
ately replaced by a new xi variable constrained by the same
bound. There will be as many calls to surf_solve as the
total number actions in the simulation. Since there are N
hosts and P tasks per hosts, there is a total of NP actions.
Thus the overall complexity of SimGrid to run such a simple
example is Θ(N2P). One would hope for a complexity that
is much lower than quadratic with respect to N , since in
VC scenarios on expects N to be routinely as high as tens
or hundreds of thousands.

In our example, the computational power of the hosts does
not change over time. Assume that each host is annotated
with a trace with T state change events, where each state
change could be a change in the host’s available computation
power. In this case, there would be a total of NT state
change events. The LMM system would be invalidated at
each state change. The time needed to retrieve an event
would be Θ(log N) (using a heap to store the next event

for each resource), which is negligible when compared to the
calls to surf_solve. Therefore the overall complexity for
running such an example would be Θ(N2(P + T)), which is
also unacceptably high for large N and large traces.

4. IMPROVING THE SIMGRID CORE
In this section we propose solutions for the issues raised in

the previous section. The first improvement removes unnec-
essary LMM system recomputations between two successive
calls to surf_solve (Section 4.1). This improvement is ef-
fective only when combined with a better management of
actions (Section 4.2). Both these improvements are gen-
eral and can be applied to both CPU and network models
within the SimGrid simulation core. We also propose a third
improvement, which is applicable to hosts with CPU avail-
ability that varies over time (Section 4.3).

4.1 Partial LMM Invalidation
For the example in Section 3.3, the LMM system is inval-

idated between each call to surf_solve, mandating a full
solve even though only a few variables have changed. We
say that two variables x and y interfere with each other (de-
noted by x ∼ y) if there exists a constraint C constraining
both x and y. We denote by ∼+ the transitive closure of ∼.
Between two calls to lmm_solve we only need to recompute
all variables belonging to the equivalence classes of variables
that have been added or removed.

Our first improvement is to compute on-the-fly the above
transitive closure in order to recompute only the needed
variables. Using our sparse data structure combined with
efficient set data structures, the overall complexity of in-
validation and resolving becomes linear in the size of the
connected components (this complexity is thus optimal).

In our simple example, only one variable needs to be re-
computed so the cost of lmm_solve is Θ(1) (to be compared
to Θ(N) previously). This optimization also applies to more
general linear systems such as the ones used for network
models. When the interaction between the variables is more
widespread, one may need to recompute up to the whole sys-
tem. In this worst case the overall complexity is still linear
in the system size, i.e., the same complexity as without the
partial invalidation mechanism.

4.2 Lazy Action Management
Partial invalidation makes it possible to reduce the com-

plexity of lmm_solve but the complexity of share_resources
is still Θ(|actions|) as the completion date of each action is
recomputed after the call to lmm_solve. Yet, only the ac-
tions whose resource shares have just been modified in lmm_
solve need to be updated. We introduce a future event set,
implemented as a heap, in which we store the completion
date of the different actions. When a resource share is mod-
ified, all corresponding actions are removed from the set.
The completion date of each such action is then updated and
the action is reinserted into the heap. Removing and insert-
ing elements in the heap has Θ(log(|actions|)) complexity
and computing the minimum completion date to return to
SURF’s main loop is now O(1).

The last remaining expensive function is update_action_
state. This function is supposed to update the state of
all actions, namely remaining work amounts, and return
completed and failed actions. There is thus no hope to re-
duce its Θ(|actions|) complexity if all actions need to be up-

