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Our Scientific Objects: Distributed Systems

Grid Computing: Distributed infrastructure for Computational Science

I Massive systems federating numerous organizations worldwide

I Main issues: Large production infrastructures, challenging to experiment with

P2P Systems

I Exploit resources at network edges (storage, CPU, human presence)

I Main issues: Intermittent connectivity (churn); Network locality; Anonymity

Cloud Computing

I Large infrastructures underlying commercial Internet (eBay, Amazon, Google)

I Main issues: Optimize costs; Keep up with the load (flash crowds)

Systems already in use, but characteristics hard to assess

I Performance: makespan, economics, energy, . . . . ← context of this project

I Correction: absence of crash, race conditions, deadlocks and other defects
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Assessing Distributed Applications’ Performance

Most Performance Studies are conducted through Experimentation
I Experimental Facilities: real applications on real platforms (in vivo)

I Emulation: real applications on models of platforms (in vitro)

I Simulation: models (prototypes) of applications on system’s models (in silico)

Simulating Distributed Systems ← context of this project

Idea to test
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Simulation’s Advantages
I Less simplistic than proposed theoretical models (which are useful too)

I Better XP control (; reproducible) than production systems (+ not disruptive)

I Not as tedious, time/labor consuming than experimental platforms

I Plus: Lower technical burden; Quick and easy experiments; What if analysis
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USS-SimGrid

Purpose of the SimGrid Project

I Allow a scientific approach of Large-Scale Distributed Systems simulation

I Propose ready to use tools enforcing methodological best practices

Main challenges

I Validity: Get realistic results (controlled experimental bias)

I Scalability: Simulate fast enough problems big enough

I Usability: Associated Tools; Ease of use; Applicability to context of interest

The USS-SimGrid project

I Main Goal: Make SimGrid usable in studies mandating extreme scaling

; Perimeter increase from Grid Computing to Peer-to-peer

; Improving simulation scalability: mandatory but not enough

; Campaign data management pre- & post-processing not trivial anymore

Coming next: Some scientific achievements on these main challenges
USS-SimGrid (Ultra Scalable Simulation with SimGrid – ANR 08 SEGI 022) Introduction Validity Scalability Usability Conclusion 3/14



Validity Challenge

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton; GridSim: naive packet level

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Validity evaluation: tricky, requires meticulous attention & sound methodology

Quality Levels of Validity
I Level -1: not validated (probably plainly wrong)

I Level 0 (visually ok): a few curves that look similar (generally hides a lot)

I Level 1 (ratios ok): A < B in Simulation ⇔ A < B in Reality

I Level 2 (prediction abilities): bounded distance between simulation and reality

SIMGRID validity before USS: Research focus in SimGrid since 2002

I Several models: GTNeTs; Fast sound model ; Ultra-fast simplistic model

I Sound model proposed 10 years ago after observations and results from the
network literature. Validity checked on a few simple scenarios.

I More thorough error evaluation started in 2007: in percents if TCP steady
state (flows > 10Mb) and latency-bound (WAN). Pretty bad otherwise.
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Validity: SimGrid compared to Packet-Level Tools

Settings: Synthetic App. + Synthetic WAN. Compare against GTNetS

I Errors were hunted down + unexpected phenomenon were understood

I Sharing mechanism from theoretical literature experimentally proved wrong

; The model and its instanciation were considerably improved
Widen validity range to flows > 100Kb and WAN with small latencies

I SimGrid and packet-level simulators now mostly diverge in extreme WAN cases

GTNetS

Time
SimGrid

data rate of flow 66

← result divergences

← BW given to red flow

In this scenario, GTNetS and SG agree on termination date of most flows. The most diverging gets no bandwidth for a while although all others are done.

Going Further: developed SMPI ; Real App. (NAS PB) + clusters (LAN)

I Good prediction for short messages is crucial; Numerical instabilities deadly

I Accurately modeling MPI semantic (asynchronous & collectives ops) is tricky

I Need to account for MPI overhead; what is Real with several MPI implems?
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Accuracy of MPI simulations
SkaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model
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I No affine fonction can match for all message sizes

I A 3-parts piecewise affine gives satisfying results
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I Rather good (visual) accuracy
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I This is only one collective

Still a work in progress for complete MPI applications
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I Performance prediction not correct

I Trashing particularly challenging

I Although not perfect, accuracy comparable / better to other MPI simulators
I Ways better than the most precise existing P2P simulators
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Scalability Challenge

Scalability constitutes the main objective of the USS SimGrid

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

Situation before the project
I Timings from CERN guys I Maximal amount of user processes

I GridSim: 10,922 (hard limit)
I SimGrid: 200k (memory limit, 4Gb)

I But needs of the users:
I CERN: 300 × bigger than that (10 days/run)
I BOINC: 600k volatile hosts over a year

I PeerSim simulates millions of processes
I but with simplistic models only
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Approaches to Scalability in USS-SimGrid

Algorithmic optimization

I Compact Routing Representation: From O(n2) to O(n) memory consumption

I Lazy Evaluation: Arbitrary speedups on loosely coupled scenarios

Leverage several computing units

I Parallel simulation: P2P’s grain so fine that classical // schema not applicable

I Distributed simulation: Still TBD, but not needed due to other optimizations

Simpler models (but with potential loss of realism)

I Coordinate-based: extremely efficient, but only encodes latency

I Last-mile models (Manhattan distances): very efficient; controlled realism loss
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SimGrid Scalability Results

Millions of small processes
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Usability Challenge

Workflow to any Experiments through Simulation

1. Prepare the experimental scenarios

2. Launch thousands of simulations

3. Post-processing and result analysis

; Each simulation is only a brick
Visualization

Statistics

Textual logsApplication
User

Parameters
Input

Settings
Experimental

SimulatorScenario Outputs

Simulation
Kernel

Situation before the project

I Others simulators come with ad hoc tools (but many demowares)

I SimGrid: nothing public/generic, but each user grows home-made scripts

Building a demoware is easy. Helping understanding is harder
I Often specific to a given simulator; often scalability issues

I Show only what the authors needed (platform/app. state, tracing/profiling)
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Approaches to Usability in USS-SimGrid

Visualization

Statistics

Textual logsApplication
User

Parameters
Input

Settings
Experimental

SimulatorScenario Outputs

Simulation
Kernel

USS-SimGrid Proposal

1. Workload generation:
I Platforms: Simulacrum (generation), PDA (archive) and MintCAR (mapping)
I Applicative Workload: Tau-based trace collection + replay
I Background Workload: Pilgrim (trace aggregation tool)

2. Campaign management: Workflow engine

3. Single simulation analysis: Visualization
I Builds upon separate established projects: Triva and Paje
I Generic and dedicated to visualization: SimGrid only produces adapted traces

(but SimGrid heavily modified to that extend by Triva author)
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Visualizing SimGrid Simulations

I Visualization scriptable: easy but powerful configuration; Scalable tools

I Right Information: both platform and applicative visualizations

I Right Representation: gantt charts, spatial representations, tree-graphs

I Easy navigation in space and time: selection, aggregation, animation

I Easy trace comparison: Trace diffing (still partial ATM)

time slice

time slice time slicetime slice

1st Space Aggregation 2nd Space AggregationGroupA

GroupB
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Conclusion: Project Outcomes

Scientific Production
I Publications

I 22 international publications (including 5 multi-site publications)
I 4 submitted articles (including 2 multi-site publications)

I Software: 11 releases of SimGrid (including 4 major releases)
I Visualization: 4 releases of Triva, 1 release of Pajé
I Automatic Platform Mapping: release of MintCar and UMCTool
I Synthetic Platform Generation: release of Simulacrum

Dissemination
I 2 Tutorials: HPCS’10, CLCAR’10; 2 Invited talks: P2P’09, RGE
I SuperComputing presence every year of project (@INRIA booth)
I 3-day Workshop: The SimGrid User Days (SUD’10)

USS-SimGrid as a Flagship (collaborative projects associated to this)
I Collaboration with ANR CIP (that use SimGrid to assess P2P HPC middleware)
I PHC Tournesol with the University of Antwerp (on scalable simulation)
I PICS CNRS Hawai‘i/Villeurbanne (on MPI simulation)
I INRIA ADT (engineering forces devoted to SimGrid)
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Conclusion and Open questions

Answers to good questions lead to new questions
I The work planned in this project was done on time
I But these developments gave us new ideas about going even further
I These new ideas are paving our future work

SONGS (Simulation Of Next Generation Systems) ANR project
I Making SimGrid usable in 2 more domains

I Task 1: [Data]Grid (distributed Data mgnt for LHC; Hierarchical Storage System)
I Task 2: Peer-to-Peer and Volunteer Computing (Replica Placement in VOD;. . . )
I Task 3: IaaS Clouds (study from client or provider POV; energy metrics, EC2 APIs)
I Task 4: High Performance Computing (exascale; memory & energy models)

I Further improve our Simulation Fundamentals
I Task 5: Simulation Kernel (Efficient Simulation Kernel; DEVS Standard)
I Task 6: Concepts and Models (energy, storage, memory, networks, volatility)
I Task 7: Analysis and Visualization (Scalable Visualization, Causes Inference)
I Task 8: Support to Experimental Methodology (Open Science, DoE)

I Project funded as platform project on INFRA call for 4 years (2012-2016)

I The USS adventure revealed to be the first step of the campaign. . .
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Any questions?
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SimGrid Internals in a Nutshell

Example of user code to execute
Alice

(some computation)
Send "toto" to Bob
(other computation)
Receive from Bob

Bob

(some code)
Receive from Alice
(other code)
Send "blah" to Alice

BobAliceMaestro

Send

Receive

Receive

Send

some code

some computation

other computation

more code

t = 0

t = 42

t = 0

t = 42
t = 54

SimGrid Internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action

4. Update simulated clock

5. Unlock user code waiting on this action

Alice

Bob

changes
availability

finishing
actions

t420 54

link

resource
usage
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Simulation Speed Improvement (1/2)

Context: Volunteer Computing

I One task per CPU; Availability trace; network not relevant to the study
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Figure 2: SimGrid layers and data structures for the
example in Section 3.3.

lation clock, returns the actions that have just completed.
In general, for this example, there is a single such action
since the amount of work for each action is random and
host processing speeds are heterogeneous. Then SIMIX re-
turns control to the corresponding user process, which de-
stroys the action that has just completed. At this point,
the entire LMM system for the CPU simulation model is
invalidated. The user-level MSG_task_execute function re-
turns and is called again immediately by the user process,
to compute the second task on the host. A new action is
created and the user process blocks again. Due to the new
action, the LMM system is invalidated. SIMIX then calls
surf_solve again to determine the next action termination.

The complexity incurred between two SIMIX calls to surf_
solve is thus Θ(1). However, since the system has been com-
pletely invalidated, the complexity of surf_solve is Θ(N)
again, which is true for all subsequent calls as the LMM
system is always invalidated between two calls.

3.3.4 Discussion
Whenever an action ends, the whole resource allocation

is recomputed and all actions are updated. However, there
is very little modification to the system. Indeed when an
action ends on a host, it does not affect the other hosts nor
the other action completion dates. In our example, when a
variable xi is removed from the LMM system it is immedi-
ately replaced by a new xi variable constrained by the same
bound. There will be as many calls to surf_solve as the
total number actions in the simulation. Since there are N
hosts and P tasks per hosts, there is a total of NP actions.
Thus the overall complexity of SimGrid to run such a simple
example is Θ(N2P ). One would hope for a complexity that
is much lower than quadratic with respect to N , since in
VC scenarios on expects N to be routinely as high as tens
or hundreds of thousands.

In our example, the computational power of the hosts does
not change over time. Assume that each host is annotated
with a trace with T state change events, where each state
change could be a change in the host’s available computation
power. In this case, there would be a total of NT state
change events. The LMM system would be invalidated at
each state change. The time needed to retrieve an event
would be Θ(log N) (using a heap to store the next event

for each resource), which is negligible when compared to the
calls to surf_solve. Therefore the overall complexity for
running such an example would be Θ(N2(P + T )), which is
also unacceptably high for large N and large traces.

4. IMPROVING THE SIMGRID CORE
In this section we propose solutions for the issues raised in

the previous section. The first improvement removes unnec-
essary LMM system recomputations between two successive
calls to surf_solve (Section 4.1). This improvement is ef-
fective only when combined with a better management of
actions (Section 4.2). Both these improvements are gen-
eral and can be applied to both CPU and network models
within the SimGrid simulation core. We also propose a third
improvement, which is applicable to hosts with CPU avail-
ability that varies over time (Section 4.3).

4.1 Partial LMM Invalidation
For the example in Section 3.3, the LMM system is inval-

idated between each call to surf_solve, mandating a full
solve even though only a few variables have changed. We
say that two variables x and y interfere with each other (de-
noted by x ∼ y) if there exists a constraint C constraining
both x and y. We denote by ∼+ the transitive closure of ∼.
Between two calls to lmm_solve we only need to recompute
all variables belonging to the equivalence classes of variables
that have been added or removed.

Our first improvement is to compute on-the-fly the above
transitive closure in order to recompute only the needed
variables. Using our sparse data structure combined with
efficient set data structures, the overall complexity of in-
validation and resolving becomes linear in the size of the
connected components (this complexity is thus optimal).

In our simple example, only one variable needs to be re-
computed so the cost of lmm_solve is Θ(1) (to be compared
to Θ(N) previously). This optimization also applies to more
general linear systems such as the ones used for network
models. When the interaction between the variables is more
widespread, one may need to recompute up to the whole sys-
tem. In this worst case the overall complexity is still linear
in the system size, i.e., the same complexity as without the
partial invalidation mechanism.

4.2 Lazy Action Management
Partial invalidation makes it possible to reduce the com-

plexity of lmm_solve but the complexity of share_resources
is still Θ(|actions|) as the completion date of each action is
recomputed after the call to lmm_solve. Yet, only the ac-
tions whose resource shares have just been modified in lmm_

solve need to be updated. We introduce a future event set,
implemented as a heap, in which we store the completion
date of the different actions. When a resource share is mod-
ified, all corresponding actions are removed from the set.
The completion date of each such action is then updated and
the action is reinserted into the heap. Removing and insert-
ing elements in the heap has Θ(log(|actions|)) complexity
and computing the minimum completion date to return to
SURF’s main loop is now O(1).

The last remaining expensive function is update_action_
state. This function is supposed to update the state of
all actions, namely remaining work amounts, and return
completed and failed actions. There is thus no hope to re-
duce its Θ(|actions|) complexity if all actions need to be up-
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Lazy Evaluation

I LMM model is a MaxMin system

I Used to recompute it all on each change

I Waste of time if system is loosely coupled

I Ex: 3h to simulate 2500 hosts for one week
No coupling ; dumb full recomputes

; Invalidate only changed parts of the system

Availability Trace Integration

I Before: ∀step, ∀action, compute if done

I Waste of time if only one action per resource

; Precompute termination date only once
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Simulation Speed Improvement (2/2)
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Results
I From 3 hours to 10 seconds to simulate one week of 2500 dynamic hosts

I Arbitrary speedup depending on scenario (less coupling ; more speedup)

I Huge gain in typical P2P and Desktop Grid settings
I 60 times faster than BOINC client simulator
I 20-30 times faster than SimBA (an ad hoc BOINC simulator designed to scale)
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Memory Scalability: Simpler Models (1/3)

Classical Network Model in SimGrid

I Precise platform graph

I Needs complete routing table: quadratic size

I Limiting factor to consider larger platforms

I Acquisition/Generation is a problem

I P2P community: constant time for all coms
Not enough info available to instanciate this

Simpler models: compact distance labeling
I Assign a label (eg coordinates) to each host

I Evaluate distance between 2 hosts from their labels

I Complexity: linear size, constant time

I Good compact representation for latencies

Ex.: Vivaldi model

x

y

h

A′
B ′

dA,B = ‖A′B ′‖+ hA + hB

A B
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Memory Scalability: Simpler Models (2/3)

Example of application: Peer-assisted video streaming

I Send a large message to a large number of hosts

I Peers may help by forwarding the message to other peers

I Algorithmic problem: organizing communications to maximize throughput

I Natural value of interest: available bandwidth

Last-mile model
I Hosts are characterized by their incoming and outgoing bandwidth

I BWA,B = min(bout
A , bin

B )

I Allows to model the asymmetry of actual bandwidth measures

I Instanciation is possible from a small number of measurements

I Theoretical result: near-optimal allocation for streaming with bounded degree
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Memory Scalability: Simpler Models (3/3)

Precision of the simple models

I Assess quality of recomputed values wrt original

I Comparison made from measures from PlanetLab

; Error last mile < 2 for 85% of measurements

I Simple models can provide interesting results

I Asymmetry is an important feature 0 2 4 6 8 10
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Future directions
I Evaluate validity through the behavior of applications

I Combine bandwidth and latency

I Add complexity to the last-mile model for increased precision
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Scalability: Planned Work

Hierarchical routing: memory footprint (large platforms)

I The current representation relies on a full N × N routing table
This table alone exhausts gigabytes for 1000 hosts only

I Exploit hierarchy and regularity to gain several orders of magnitude

Distribution and Parallelization (large amount of processes)

I Tweaking stack size enable to reach 200,000 user threads (not always possible)

I Adopt a real OS-like architecture to distribute user code on several machines

I Factorize common parts of simulations

I Exploit semantic independence of events to increase parallelism

Storage modeling

I Modeling the performance of a single hard drive seems impossible

I Stochastic modeling of thousands of tapes and hard drives may be easier
(in collaboration with the CERN team in charge of the data management)
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