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Scientific Computation Applications
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Classical Approaches in science and engineering

1. Theoretical work: equations on a board

2. Experimental study on an scientific instrument

That’s not always desirable (or even possible)

I Some phenomenons are intractable theoretically

I Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

3. Study in silico using computers
Modeling / Simulation of the phenomenon or data-mining

; High Performance Computing Systems

These systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

I Science of the in silico science
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Large-Scale Distributed Systems Science?

Requirement for a Scientific Approach
I Reproducible results

I You can read a paper,
I reproduce a subset of its results,
I improve

I Standard methodologies and tools
I Grad students can learn their use and become operational quickly
I Experimental scenario can be compared accurately

Current practice in the field: quite different

I Very little common methodologies and tools

I Experimental settings rarely detailed enough in literature

Purpose of this tutorial

I Present “emerging” methodologies and tools

I Show how to use some of them in practice

I Discuss open questions and future directions
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Agenda

Experiments for Large-Scale Distributed Systems Research
Methodological Issues
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Existing evaluation tools for HPC ideas / applications

The SimGrid Project
User Interface(s)
Models underlying the SimGrid Framework
SimGrid Evaluation
Associated Tools

Conclusions
Tutorial Recap
Going Further: Experiment planning and Open Science
Take-home Messages
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Distributed Systems: Analytical or Experimental?

Analytical works?
I Some purely mathematical models exist

, Allow better understanding of principles in spite of dubious applicability
impossibility theorems, parameter influence, . . .

/ Theoretical results are difficult to achieve
I Everyday practical issues (routing, scheduling) become NP-hard problems

Most of the time, only heuristics whose performance have to be assessed are proposed
I Models too simplistic, rely on ultimately unrealistic assumptions.

⇒ One must run experiments

; Most published research in the area is experimental

I In vivo: Direct experimentation

I In silico: Simulation

I In vitro: Emulation
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Outline

Experiments for Large-Scale Distributed Systems Research
Methodological Issues
Main Methodological Approaches: In Vivo, In Silico, In Vitro

In vivo approach (direct experimentation)
In silico approach (simulation)
In vitro approach (emulation)

Existing evaluation tools for HPC ideas / applications

The SimGrid Project
User Interface(s)
Models underlying the SimGrid Framework
SimGrid Evaluation
Associated Tools

Conclusions
Tutorial Recap
Going Further: Experiment planning and Open Science
Take-home Messages
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In vivo approach to HPC experiments (direct experiment)

, Eminently believable to demonstrate the proposed approach applicability

/ Very time and labor consuming
I Entire application must be functional I Parameter-sweep; Design alternatives

/ Choosing the right testbed is difficult
I My own little testbed?

, Well-behaved, controlled,stable / Rarely representative of production platforms
I Real production platforms?

I Not everyone has access to them; CS experiments are disruptive for users
I Experimental settings may change drastically during experiment

(components fail; other users load resources; administrators change config.)

/ Results remain limited to the testbed
I Impact of testbed specificities hard to quantify ⇒ collection of testbeds...
I Extrapolations and explorations of “what if” scenarios difficult

(what if the network were different? what if we had a different workload?)

/ Experiments are uncontrolled and unrepeatable
No way to test alternatives back-to-back (even if disruption is part of the experiment)

Difficult for others to reproduce results
even if this is the basis for scientific advances!
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Example of Tools for Direct Experimentation

I Principle: Real applications, controlled environment
I Challenges: Hard and long. Experimental control? Reproducibility?

Grid’5000 project: a scientific instrument for the HPC
I Instrument for research in computer science (deploy your own OS)
I 9 sites, 1500 nodes (3000 cpus, 4000 cores); dedicated 10Gb links

Luxembourg

Brésil

Other existing platforms

I PlanetLab: No experimental control ⇒ no reproducibility
I Production Platforms (EGEE): must use provided middleware
I FutureGrid: future US experimental platform loosely inspired from Grid’5000
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In silico approach to HPC experiments (simulation)

, Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged application

I Ability to conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
I Predict aspects of the behavior of a system using an approximate model of it

I Model: Set of objects defined by a state ⊕ Rules governing the state evolution

I Simulator: Program computing the evolution according to the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world

I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest
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Simulation in Computer Science

Microprocessor Design

I A few standard “cycle-accurate” simulators are used extensively
http://www.cs.wisc.edu/~arch/www/tools.html

⇒ Possible to reproduce simulation results

Networking

I A few established “packet-level” simulators: NS-2, DaSSF, OMNeT++, GTNetS

I Well-known datasets for network topologies

I Well-known generators of synthetic topologies

I SSF standard: http://www.ssfnet.org/

⇒ Possible to reproduce simulation results

Large-Scale Distributed Systems?

I No established simulator up until a few years ago

I Most people build their own “ad-hoc” solutions
Naicken, Stephen et Al., Towards Yet Another Peer-to-Peer Simulator, HET-NETs’06.

From 141 P2P sim.papers, 30% use a custom tool, 50% don’t report used tool
Martin Quinson Experimenting HPC Systems with Simulation Experiments for Large-Scale Distributed Systems Research 10/72
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Simulation in Parallel and Distributed Computing

I Used for decades, but under drastic assumptions in most cases

Simplistic platform model

I Fixed computation and communication rates (Flops, Mb/s)

I Topology either fully connected or bus (no interference or simple ones)

I Communication and computation are perfectly overlappable

Simplistic application model

I All computations are CPU intensive (no disk, no memory, no user)

I Clear-cut communication and computation phases

I Computation times even ignored in Distributed Computing community

I Communication times sometimes ignored in HPC community

Straightforward simulation in most cases

I Fill in a Gantt chart or count messages with a computer rather than by hand

I No need for a “simulation standard”
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Large-Scale Distributed Systems Simulations?

Simple models justifiable at small scale

I Cluster computing (matrix multiply application on switched dedicated cluster)

I Small scale distributed systems

Hardly justifiable for Large-Scale Distributed Systems
I Heterogeneity of components (hosts, links)

I Quantitative: CPU clock, link bandwidth and latency
I Qualitative: ethernet vs myrinet vs quadrics; Pentium vs Cell vs GPU

I Dynamicity
I Quantitative: resource sharing ; availability variation
I Qualitative: resource come and go (churn)

I Complexity
I Hierarchical systems: grids of clusters of multi-processors being multi-cores
I Resource sharing: network contention, QoS, batches
I Multi-hop networks, non-negligible latencies
I Middleware overhead (or optimizations)
I Interference of computation and communication (and disk, memory, etc)
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In silico approach to HPC experiments (simulation)

I Principle: Prototypes of applications, models of platforms
I Challenges: Get realistic results (experimental bias)

SimGrid: generic simulation framework for distributed applications

I Scalable (time and memory), modular, portable. +70 publications.

I Collaboration Loria / Inria Rhône-Alpes / CCIN2P3 / U. Hawaii
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Other existing tools

I Large amount of existing simulator for distributed platforms:
GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS.

I Few are really usable: Diffusion, Software Quality Assurance, Long-term availability

I No other study the validity, the induced experimental bias
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In vitro approach to HPC experiments (emulation)

I Principle: Injecting load on real systems for the experimental control
≈ Slow platform down to put it in wanted experimental conditions

I Challenges: Get realistic results, tool stack complex to deploy and use

Wrekavoc: applicative emulator

I Emulates CPU and network

I Homogeneous or Heterogeneous platforms

Nodes Virtualization

Host machine 2Host machine 1

Host machine 3 Host machine 4

Emulated Network

Other existing tools

I Network emulation: ModelNet, DummyNet, . . .
Tools rather mature, but limited to network

I Applicative emulation: MicroGrid, eWan, Emulab
Rarely (never?) used outside the lab where they were created
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Existing evaluation tools for HPC ideas/applications
CPU Disk Network Application Requirement Settings Scale

Grid’5000 direct direct direct direct access fixed <5000
PlanetLab virtualize virtualize virtualize virtualize access uncontrolled hundreds

ModelNet - - emulation emulation lot material controlled dozens
MicroGrid emulation - fine d.e. emulation none controlled hundreds

ns-2 - - fine d.e. coarse d.e. C++/tcl controlled <1,000
SSFNet - - fine d.e. coarse d.e. Java controlled <100,000
GTNetS - - fine d.e. coarse d.e. C++ controlled <177,000

PlanetSim - - cste time coarse d.e. Java controlled 100,000
PeerSim - - - state machine Java controlled 1,000,000

ChicSim coarse d.e. - coarse d.e. coarse d.e. C controlled thousands
OptorSim coarse d.e. amount coarse d.e. coarse d.e. Java controlled few 100
GridSim coarse d.e. math coarse d.e. coarse d.e. Java controlled few 1,000

SIMGRID math/d.e. (some day) math/d.e. d.e./emul C or Java controlled few 10,000

I Large platforms: getting access is problematic, fixed experimental settings
I Virtualization: no control over experimental settings
I Emulation: hard to setup, can have high overheads
I Packet-Level simulators: too network-centric (no CPU) and rather slow
I P2P simulators: great scalability, poor realism
I Grid simulators: limited scope, limited scalability, validity not assessed
I SIMGRID: analytic network models ⇒ scalability and validity ok
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Recap: Studying Large Distributed HPC Systems

Why? Compare aspects of the possible designs/algorithms/applications
I Response time

I Throughput

I Scalability

I Robustness

I Fault-tolerance

I Fairness

How? Several methodological approaches

I Theoretical approch: mathematical study [of algorithms]
, Better understanding, impossibility theorems; / Everything NP-hard

I Experimentations (≈ in vivo): Real applications on Real platforms
, Believable; / Hard and long. Experimental control? Reproducibility?

I Emulation (≈ in vitro): Real applications on Synthetic platforms
, Better experimental control; / Even more difficult

I Simulation (in silico): Prototype of applications on model of systems
, Simple; / Experimental bias

In Practice? A lot of tools exist; Some are even usable
I Key trade-off seem to be accuracy vs speed:

The more abstract the fastest; The less abstract the most accurate. Really?
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Simulation Validation: the FLASH example

FLASH project at Stanford

I Building large-scale shared-memory multiprocessors

I Went from conception, to design, to actual hardware (32-node)

I Used simulation heavily over 6 years

Authors compared simulation(s) to the real world

I Error is unavoidable (30% error in their case was not rare)

Negating the impact of “we got 1.5% improvement”

I Complex simulators not ensuring better simulation results
I Simple simulators worked better than sophisticated ones (which were unstable)
I Simple simulators predicted trends as well as slower, sophisticated ones
⇒ Should focus on simulating the important things

I Calibrating simulators on real-world settings is mandatory

I For FLASH, the simple simulator was all that was needed: Realistic ≈ Credible

Gibson, Kunz, Ofelt, Heinrich, FLASH vs. (Simulated) FLASH: Closing the Simulation Loop,
Architectural Support for Programming Languages and Operating Systems, 2000
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Outline
Experiments for Large-Scale Distributed Systems Research
Methodological Issues
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Existing evaluation tools for HPC ideas / applications

The SimGrid Project
User Interface(s)

MSG: Comparing Heuristics for Concurrent Sequential Processes
GRAS: Developing and Debugging Real Applications
SimDag: Comparing Scheduling Heuristics for DAGs
SMPI: Running MPI applications on top of SimGrid

Models underlying the SimGrid Framework
SimGrid Evaluation

How accurate?
How big?
How fast?

Associated Tools
Platform Instantiation: Catalog, Synthetic Generation, Network Mapping
Visualization

Conclusions
Tutorial Recap
Going Further: Experiment planning and Open Science
Take-home Messages
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User-visible SimGrid Components

GRAS
Framework
to develop

distributed applications

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

toolbox

AMOK

applications on top of

a virtual environment

Library to run MPI
SMPI

SimGrid user APIs
I SimDag: specify heuristics as DAG of (parallel) tasks
I MSG: specify heuristics as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I GRAS: develop real applications, studied and debugged in simulator
I SMPI: simulate MPI codes

Which API should I choose?
I Your application is a DAG ; SimDag
I You have a MPI code ; SMPI
I You study concurrent processes, or distributed applications

I You need graphs about several heuristics for a paper ; MSG
I You develop a real application (or want experiments on real platform) ; GRAS

I Most popular API (for now): MSG
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MSG: Heuristics for Concurrent Sequential Processes

(historical) Motivation

I Centralized scheduling does not scale

I SimDag (and its predecessor) not adapted to study decentralized heuristics

I MSG not strictly limited to scheduling, but particularly convenient for it

Main MSG abstractions
I Agent: some code, some private data, running on a given host

set of functions + XML deployment file for arguments

I Task: amount of work to do and of data to exchange

I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {put,get}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}

I Host: location on which agents execute

I Mailbox: similar to MPI tags
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SIMGRID Usage Workflow: the MSG example (1/2)

1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data );
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);

}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);

}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...
<link name="link1" bandwidth="1E6"

latency="1E-2" />
...
<route src="host1" dst="host2">

<link:ctn id="link1"/>
</route>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>
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SIMGRID Usage Workflow: the MSG example (2/2)

3. Glue things together

int main(int argc, char *argv[ ]) {
/* Bind agents’ name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

MSG_create_environment("my_platform.xml"); /* Load a platform instance */
MSG_launch_application("my_deployment.xml"); /* Load a deployment file */

MSG_main(); /* Launch the simulation */

INFO1("Simulation took %g seconds",MSG_get_clock());
}

4. Compile your code (linked against -lsimgrid), run it and enjoy

Executive summary, but representative
I Similar in others interfaces, but:

I glue is generated by a script in GRAS and automatic in Java with introspection
I in SimDag, no deployment file since no CSP

I Platform can contain trace informations, Higher level tags and Arbitrary data
I In MSG, applicative workload can also be externalized to a trace file
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The MSG master/workers example: colorized output

$ ./my_simulator | MSG_visualization/colorize.pl
[ 0.000][ Tremblay:master ] Got 3 workers and 6 tasks to process
[ 0.000][ Tremblay:master ] Sending ’Task_0’ to ’worker-0’
[ 0.148][ Tremblay:master ] Sending ’Task_1’ to ’worker-1’
[ 0.148][ Jupiter:worker ] Processing ’Task_0’
[ 0.347][ Tremblay:master ] Sending ’Task_2’ to ’worker-2’
[ 0.347][ Fafard:worker ] Processing ’Task_1’
[ 0.476][ Tremblay:master ] Sending ’Task_3’ to ’worker-0’
[ 0.476][ Ginette:worker ] Processing ’Task_2’
[ 0.803][ Jupiter:worker ] ’Task_0’ done
[ 0.951][ Tremblay:master ] Sending ’Task_4’ to ’worker-1’
[ 0.951][ Jupiter:worker ] Processing ’Task_3’
[ 1.003][ Fafard:worker ] ’Task_1’ done
[ 1.202][ Tremblay:master ] Sending ’Task_5’ to ’worker-2’
[ 1.202][ Fafard:worker ] Processing ’Task_4’
[ 1.507][ Ginette:worker ] ’Task_2’ done
[ 1.606][ Jupiter:worker ] ’Task_3’ done
[ 1.635][ Tremblay:master ] All tasks dispatched. Let’s stop workers.
[ 1.635][ Ginette:worker ] Processing ’Task_5’
[ 1.637][ Jupiter:worker ] I’m done. See you!
[ 1.857][ Fafard:worker ] ’Task_4’ done
[ 1.859][ Fafard:worker ] I’m done. See you!
[ 2.666][ Ginette:worker ] ’Task_5’ done
[ 2.668][ Tremblay:master ] Goodbye now!
[ 2.668][ Ginette:worker ] I’m done. See you!
[ 2.668][ ] Simulation time 2.66766
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SimGrid in a Nutshell

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

SimGrid is no simulator, but a simulation framework
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Goals of the GRAS project (Grid Reality And Simulation)

Ease development of large-scale distributed apps
Development of real distributed applications using a simulator

Development

rewrite

Without GRAS

Code

Simulation Application

Code

Research

I Framework for Rapid Development of Distributed Infrastructure

I Develop and tune on the simulator; Deploy in situ without modification
How: One API, two implementations

I Efficient Grid Runtime Environment (result = application 6= prototype)
I Performance concern: efficient communication of structured data

How: Efficient wire protocol (avoid data conversion)

I Portability concern: because of grid heterogeneity
How: ANSI C + autoconf + no dependency
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Main concepts of the GRAS API

Agents (acting entities)

I Code (C function); Private data; Location (hosting computer)

Sockets (communication endpoints)

I Server socket: to receive messages

I Client socket: to contact a server (and receive answers)

Messages (what gets exchanged between agents)

I Semantic: Message type

I Payload described by data type description (fixed for a given type)

I Possible to attach automatic callbacks, or explicitely wait for messages

Differences with MSG
I Messages are typed (+callbacks), where MSG sends raw data chunks

I Socket oriented, where MSG uses mailboxes for rendez-vous

I Code can run in real settings too (so no over-simplification)
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Exchanging structured data

GRAS wire protocol: NDR (Native Data Representation)

Avoid data conversion when possible:
I Sender writes data on socket as they are in memory
I If receiver’s architecture does match, no conversion
I Receiver able to convert from any architecture

GRAS message payload can be any valid C type

I Structure, enumeration, array, pointer, . . .
I Classical garbage collection algorithm to deep-copy it
I Cycles in pointed structures detected & recreated

Describing a data type to GRAS

Manual description (excerpt)

gras_datadesc_type_t gras_datadesc_struct(name);
gras_datadesc_struct_append(struct type,name,field type);
gras datadesc struct close(struct type);

Automatic description of vector

GRAS_DEFINE_TYPE(s_vect,
struct s_vect {
int cnt;
double*data GRAS_ANNOTE(size,cnt);

}
);

C declaration stored into a char* variable to be parsed at runtime
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Communication Performance on a LAN
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I MPICH twice as fast as GRAS, but cannot mix little- and big-endian Linux
I PBIO broken on PPC
I XML much slower (extra conversions + verbose wire encoding)

GRAS is the better compromise between performance and portability
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GRAS eases infrastructure development
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SimIX network proxy

SimIX
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virtual platform simulator

XBT
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SMPI
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”POSIX-like” API on a virtual platform
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API
Code
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With GRAS

GRDK: Grid Research & Development Kit

I API for (explicitly) distributed applications
I Study applications in the comfort of the simulator

GRE: Grid Runtime Environment
I Efficient: twice as slow as MPICH, faster than OmniORB, PBIO, XML
I Portable: Linux (11 CPU archs); Windows; Mac OS X; Solaris; IRIX; AIX
I Simple and convenient:

I API simpler than classical communication libraries (automatic IDL)
I Easy to deploy: C ANSI; no dependency; <400kb
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SimDag: Comparing Scheduling Heuristics for DAGs

1

3 4 5

6

2

Root

End

Main functionalities
1. Create a DAG of tasks

I Vertices: tasks (either communication or computation)
I Edges: precedence relation

2. Schedule tasks on resources

3. Run the simulation (respecting precedences)

; Compute the makespan
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The SimDag interface

DAG creation
I Creating tasks: SD task create(name, data)
I Creating dependencies: SD task dependency {add/remove}(src,dst)

Scheduling tasks

I SD task schedule(task, workstation number, *workstation list,

double *comp amount, double *comm amount,
double rate)

I Tasks are parallel by default; simply put workstation number to 1 if not
I Communications are regular tasks, comm amount is a matrix
I Both computation and communication in same task possible
I rate: To slow down non-CPU (resp. non-network) bound applications

I SD task unschedule, SD task get start time

Running the simulation

I SD simulate(double how long) (how long < 0 ; until the end)
I SD task {watch/unwatch}: simulation stops as soon as task’s state changes

Full API in the doxygen-generated documentation
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SMPI: Running MPI applications on top of SimGrid

Motivations
I Reproducible experimentation of MPI code (debugging)
I Test MPI code on still-to-build platform (dimensioning)

How it works
I smpicc changes MPI calls into SMPI ones (gettimeofday also intercepted)
I smpirun starts a classical simulation obeying -hostfile and -np

⇒ Runs unmodified MPI code after recompilation

Implemented calls

I Isend; Irecv. Recv; Send; Sendrecv. Wait; Waitall; Waitany. Reduce;
Allreduce.

I Barrier; Bcast; Reduce; Allreduce (cmd line switch between binary or flat tree)
I Comm size; Comm rank; Comm split. Wtime. Init; Finalize; Abort.

Current Work
I Implement the rest of the API; Test it more througfully
I Use it to validate SimGrid at application level (with NAS et Al.)
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Analytic Models underlying the SimGrid Framework

Main challenges for SimGrid design
I Simulation accuracy:

I Designed for HPC scheduling community ; don’t mess with the makespan!
I At the very least, understand validity range

I Simulation speed:
I Users conduct large parameter-sweep experiments over alternatives

Microscopic simulator design

I Simulate the packet movements and routers algorithms

I Simulate the CPU actions (or micro-benchmark classical basic operations)

I Hopefully very accurate, but very slow (simulation time � simulated time)

Going faster while remaining reasonable?

I Need to come up with macroscopic models for each kind of resource

I Main issue: resource sharing. Emerge naturally in microscopic approach:
I Packets of different connections interleaved by routers
I CPU cycles of different processes get slices of the CPU
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Modeling a Single Resource

Basic model: Time = L + size
B

I Resource work at given rate (B, in MFlop/s or Mb/s)
I Each use have a given latency (L, in s)

Modeling CPU
I Resource delivers pow flop / sec; task require size flop ⇒ lasts size

pow sec
I Simple (simplistic?) but more accurate become quickly intractable

Modeling Single-Hop Networks
I Simplistic: T = λ+ size

β ;
I More accurate: [Padhye, Firoiu, Towsley, Krusoe 2000]

B = min

(
Wmax

RTT
,

1

RTT
√

2bp/3 + T0 ×min(1, 3
√

3bp/8)× p(1 + 32p2)

)

I p: loss indication rate I b: #packages acknowledged per ACK
I T0: TCP average retransmission timeout value

I p and b not known in general (model hard to instanciable)

I Let’s keep instanciable: use β′ = min(β, Wmax

RTT ) (TCP windowing)
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Modeling Multi-Hop Networks

Simplistic Models
Store & Forward

S

l1

l3

l2

I Quite natural:
cf. time to go from city to city

I Plainly Wrong:
Data not stored on each router

Wormhole

pi ,j

MTU

S

l1

l3

l2

I Appealing: (& used in most tools)
Remember your networking class?

I Really inaccurate:
IP fragmentation, TCP Congestion

What’s in between these two approaches?

NS2 and other packet-level

I study the path of each and every network packet

I , Realism commonly accepted; / Sloooooow
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Analytical Network Models

TCP bandwidth sharing studied by several authors

I Data streams modeled as fluids in pipes

I Same model for single stream/multiple links or multiple stream/multiple links

flow L

link L

flow 2flow 1

flow 0
link 1 link 2

Notations

I L: set of links

I Cl : capacity of link l (Cl > 0)

I nl : amount of flows using link l

I F : set of flows; f ∈ P(L)

I λf : transfer rate of f

Feasibility constraint

I Links deliver their capacity at most: ∀l ∈ L,
∑
f3l

λf ≤ Cl
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Max-Min Fairness

Objective function: maximize min
f ∈F

(λf )

I Equilibrium reached if increasing any λf decreases a λ′f (with λf > λ′f )

I Very reasonable goal: gives fair share to anyone

I Optionally, one can add prorities wi for each flow i
; maximizing min

f∈F
(wf λf )

Bottleneck links
I For each flow f , one of the links is the limiting one l

(with more on that link l , the flow f would get more overall)

I The objective function gives that l is saturated, and f gets the biggest share

∀f ∈ F , ∃l ∈ f ,
∑
f ′3l

λf ′ = Cl and λf = max{λf ′ , f ′ 3 l}

L. Massoulié and J. Roberts, Bandwidth sharing: objectives and algorithms,
IEEE/ACM Trans. Netw., vol. 10, no. 3, pp. 320-328, 2002.
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Max-Min Fairness on Homogeneous Linear Network

Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Algorithm: loop on these steps

I search for the bottleneck link: share of its flows (ie, Ci

ni
) is minimal

I set all flows using it

I remove the link

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

λ0 =
λ1 =
λ2 =

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ λ0 = C/2 and λ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets λ1 = C/2

We’re done computing the bandwidth allocated to each flow
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Algorithm: loop on these steps

I search for the bottleneck link: share of its flows (ie, Ci

ni
) is minimal

I set all flows using it

I remove the link

Homogeneous Linear Network

������������
������
������
������
������

flow 2

C1 = 0 n1 = 0
C2 = 0 n2 = 0

λ0 = C/2
λ1 = C/2
λ2 = C/2

I All links have the same capacity C

I Each of them is limiting. Let’s choose link 1

⇒ λ0 = C/2 and λ1 = C/2

I Remove flows 0 and 1; Update links’ capacity

I Link 2 sets λ1 = C/2

We’re done computing the bandwidth allocated to each flow
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Max-Min Fairness Computation: Backbone Example

Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 1 n0 = 1
C1 = 1000 n1 = 1
C2 = 1000 n2 = 2
C3 = 1000 n3 = 1
C4 = 1000 n4 = 1

λ1 =
λ2 =

I The limiting link is 0

I This fixes λ2 = 1. Update the links

I The limiting link is 2

I This fixes λ1 = 999
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Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2
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Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1000 n1 = 1
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C3 = 1000 n3 = 1
C4 = 999 n4 = 0

λ1 =
λ2 = 1
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Max-Min Fairness Computation: Backbone Example

Cl : capacity of link l ; nl : amount of flows using l ; λf : transfer rate of f .

Flow 2

link 2

link 4

Flow 1

link 3link 1

link 0

C0 = 0 n0 = 0
C1 = 1 n1 = 0
C2 = 0 n2 = 0
C3 = 1 n3 = 0
C4 = 999 n4 = 0

λ1 = 999
λ2 = 1

I The limiting link is 0

I This fixes λ2 = 1. Update the links

I The limiting link is 2

I This fixes λ1 = 999
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Side note: OptorSim 2.1 on Backbone

pi ,j

MTU

S

l1

l3

l2OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using wormhole

Unfortunately, “strange” resource sharing:

1. For each link, compute the share that each flow may get: Cl

nl

2. For each flow, compute what it gets: λf = min
l∈f

(
Cl

nl

)

C0 = 1 n1 = 1 share =

1

C1 = 1000 n1 = 1 share =

1000

C2 = 1000 n2 = 2 share =
C3 = 1000 n3 = 1 share =

1000

C4 = 1000 n4 = 1 share =

1000

λ1 =

min(1000, 500, 1000) = 500!!

λ2 =

λ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...
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l2OptorSim (developped @CERN for Data-Grid)

I One of the rare ad-hoc simulators not using wormhole

Unfortunately, “strange” resource sharing:
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(
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)
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Flow 1
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C0 = 1 n1 = 1 share = 1
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C2 = 1000 n2 = 2 share = 500
C3 = 1000 n3 = 1 share = 1000
C4 = 1000 n4 = 1 share = 1000

λ1 = min(1000, 500, 1000) = 500!!
λ2 = min( 1 , 500, 1000) = 1

λ1 limited by link 2, but 499 still unused on link 2

This “unwanted feature” is even listed in the README file...
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How are these models used in practice?

Simulation kernel main loop

Data: set of resources with working rate

1. Some actions get created (by application) and assigned to resources

2. Compute share of everyone (resource sharing algorithms)

3. Compute the earliest finishing action, advance simulated time to that time

4. Remove finished actions

5. Loop back to 2

Simulated time
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Availability traces are just events
t0 → 100%, t1 → 50%, t2 → 80%, etc.
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Also qualitative state changes (on/off)
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SIMGRID Internals in a Nutshell for Users

SimGrid Layers

I MSG: User interface

I Simix: processes, synchro

I SURF: Resources

I (LMM: MaxMin systems)

Changing the Model

I “--cfg=network model”

I Several fluid models

I Several constant time

I GTNetS wrapper

I Build your own (!)

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints

                                  

Variables

Conditions{

... Process
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Outline
Experiments for Large-Scale Distributed Systems Research
Methodological Issues
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Existing evaluation tools for HPC ideas / applications

The SimGrid Project
User Interface(s)

MSG: Comparing Heuristics for Concurrent Sequential Processes
GRAS: Developing and Debugging Real Applications
SimDag: Comparing Scheduling Heuristics for DAGs
SMPI: Running MPI applications on top of SimGrid

Models underlying the SimGrid Framework
SimGrid Evaluation

How accurate?
How big?
How fast?

Associated Tools
Platform Instantiation: Catalog, Synthetic Generation, Network Mapping
Visualization

Conclusions
Tutorial Recap
Going Further: Experiment planning and Open Science
Take-home Messages
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Validation experiments on a single link
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation Results

NS2

GTNets
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I Packet-level tools don’t completely agree
I SSFNet TCP FAST INTERVAL bad default
I GTNetS is equally distant from others

I Old SimGrid model omitted slow start effects

⇒ Statistical analysis of GTNetS slow-start
; Better instantiation of MaxMin model

β′′ ; .92× β′; λ ; 10.4× λ

I Resulting validity range quite acceptable

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%
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Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%

 10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160

Experiment
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Mean Error (|ε|)
Max Error (|εmax |)

Maybe the error is not SimGrid’s

I Big error because GTNetS multi-phased

I Seen the same in NS3, emulation, ...

I Phase Effect: Periodic and deterministic
traffic may resonate [Floyd&Jacobson 91]

I Impossible in Internet (thx random noise)
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; We’re adding random jitter to continue SIMGRID validation
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Validation experiments on random platforms

I 160 Platforms (generator: BRITE)

I β ∈ [10,128] MB/s; λ ∈ [0; 5] ms

I Flow size: S=10MB

I #flows: 150; #nodes ∈ [50; 200]

I |ε| < 0.2 (i.e., ≈ 22%);
|εmax | still challenging up to 461%
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Simulation scalability assessment (how big?)

Master/Workers on amd64 with 4Gb
#tasks Context #Workers

mecanism 100 500 1,000 5,000 10,000 25,000
1,000 ucontext 0.16 0.19 0.21 0.42 0.74 1.66

pthread 0.15 0.18 0.19 0.35 0.55 ?
java 0.41 0.59 0.94 7.6 27. ?

10,000 ucontext 0.48 0.52 0.54 0.83 1.1 1.97
pthread 0.51 0.56 0.57 0.78 0.95 ?

java 1.6 1.9 2.38 13. 40. ?
100,000 ucontext 3.7 3.8 4.0 4.4 4.5 5.5

pthread 4.7 4.4 4.6 5.0 5.23 ?
java 14. 13. 15. 29. 77. ?

1,000,000 ucontext 36. 37. 38. 41. 40. 41.
pthread 42. 44. 46. 48. 47. ?

java 121. 130. 134. 163. 200. ?

?: #semaphores reached system limit
(2 semaphores per user process,

System limit = 32k semaphores)

I These results are old already

I v3.3.3 is 30% faster

I v3.3.4 ; lazy evaluation

Extensibility with UNIX contextes
#tasks Stack #Workers

size 25,000 50,000 100,000 200,000
1,000 128Kb 1.6 † † †

12Kb 0.5 0.9 1.7 3.2
10,000 128Kb 2 † † †

12Kb 0.8 1.2 2 3.5
100,000 128Kb 5.5 † † †

12Kb 3.7 4.1 4.8 6.7
1,000,000 128Kb 41 † † †

12Kb 33 33.6 33.7 35.5
5,000,000 128Kb 206 † † †

12Kb 161 167 161 165

Scalability limit of GridSim

I 1 user process = 3 java threads
(code, input, output)

I System limit = 32k threads

⇒ at most 10,922 user processes

†: out of memory

Martin Quinson Experimenting HPC Systems with Simulation The SimGrid Project 49/72



Simulation scalability assessment (how fast?)

During Summer 2009, 2 interns @CERN evaluated grid simulators

I Attempted to simulate one day on their data grid (1.5 million file transfers)

I Their final requirements:
I Basic processing induce 30M operations daily
I User requests induce ≈2M operations daily
I Evaluations should consider one month of operation

Findings

Experiment to be redone?

I Controlled experimental settings

I With recent versions of the tools

I More metrics

I Better if not done by us (you?)
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SimGrid Workflow

logs

stats

visu

Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
Workload

Parameters

Input

Simulation is only one piece of the workflow
I Needed Input:

I Platform (quantitative and qualitative)
I Application (code and deployment; workload)

I Provided Output: Text logs, Graphical Visualization
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Platform Instantiation

To use a simulator, one must instantiate the models

Key questions

I How can I run my tests on realistic platforms? What is a realistic platform?

I What are platform parameters? What are their values in real platforms?

Sources of platform descriptions

I Manual modeling: define the characteristics with your sysadmins

I Synthetic platform generator: use random generators

I Automatic mapping: automated tomography tool
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What is a Platform Instance Anyway?

Structural description

I Hosts list

I Links and interconnexion topology

Peak Performance
I Bandwidth and Latencies

I Processing capacity

Background Conditions

I Load

I Failures
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Platform description for SimGrid

Example of XML file

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">

<host id="Jacquelin" power="137333000"/>
<host id="Boivin" power="98095000"/>

<prop key="someproperty" value="somevalue"/> <!-- attach arbitrary data to hosts/links -->
</host>

<link id="1" bandwidth="3430125" latency="0.000536941"/>
<route src="Jacquelin" dst="Boivin"><link:ctn id="1"/></route>
<route src="Boivin" dst="Jacquelin"><link:ctn id="1"/></route>

</platform>

I Declare all your hosts, with their computing power

other attributes:

I availability file: trace file to let the power vary
I state file: trace file to specify whether the host is up/down

I Declare all your links, with bandwidth and latency

I bandwidth file, latency file, state file: trace files
I sharing policy ∈ {shared, fatpipe} (fatpipe ; no sharing)

I Declare routes from each host to each host (list of links)

I Arbitrary data can be attached to components using the <prop> tag
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Platform Catalog

Several Existing Platforms Modeled

Grid’5000
9 sites, 25 clusters

1,528 hosts

DAS 3
5 clusters
277 hosts

GridPP
18 clusters
7,948 hosts

LCG
113 clusters
44,184 hosts

Files available from the Platform Description Archive
http://pda.gforge.inria.fr

(+ tool to extract platform subsets)
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Synthetic Topology Generation
Designing a Realistic Platform Generator

I Examine real platforms; Discover principles; Implement a generator

I Subject of studies in Networking for years ⇒ Loads of generation methods

Simulacrum: Generic GUI to generate SimGrid platform files
Selecting from existing Generating + Filtering

Other tools
I Several well known generators for networking community, eg Brite

I Grid-G: All in one framework, Grid specific
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Automatic Network Mapping

Main Issue of synthetic generators: Realism!
I Solution: Actually map a real platform

I Tomography: 2-steps process (end-to-end Measurements; Reconstruct a graph)

Several levels of information (depending on the OSI layer)

I Physical inter-connexion map (wires in the walls)
I Routing infrastructure (path of network packets, from router to switch)
I (focus on effects – bandwidth & latency – not causes)

Our goal: conduct experiments at application level, not administrating tool

The ALNeM project (Application-Level Network Mapper)

I Long-term goal: be a tool providing topology to network-aware applications
I Short-term goal: allow the study of network mapping algorithms
I Project started in 2002, still underway /

Measurement step
I Network level tools (BGP, SNMP, ICMP)

I use restricted for security reason
I hard to get a App-Level view from them

I We rely on simple E2E measurements (latency/bandwidth)
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Evaluation methodology

How to evaluate the reconstruction algorithms’ quality?

Several evaluation metrics
1. Compare end-to-end measurements (communication-level)
2. Compare interference amount:

Interf ((a, b) , (c , d)) = 1 iff
BW (a→ b)

BW (a→ b ‖ c → d)
≈ 2

3. Compare application running times (application-level)

Comm. schema // comm # steps
Token-ring Ring No 1
Broadcast Tree No 1

All2All Clique Yes 1
Parallel Matrix Multiplication 2D Yes

√
procs

(other) Methodological Challenge
I Goal: Quantify similarity between initial and reconstructed platforms
I Impossible to test against real platform Reconstructed platform doesn’t exist

I Testing on simulator: both initial and reconstructed platforms are simulated

Leveraging GRAS framework (of course)
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Evaluation methodology

Apply all evaluations on all reconstructions for several platforms

Algorith
m 1

Right platform

Wrong topology

Wrong values
Algorithm 2

Algorithm 3

DB

S

S

S

S
S

S

S

S

Measurements
I Bandwidth matrix

I Latency matrix

Algorithms

I Clique

I BW/Lat Spanning Tree

I Improved BW/Lat Tree

I Aggregate

Evaluation criteria
I End-to-end meas.

I Interference count

I Application-level
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Experiments on simulator: Renater platform

I Real platform built manually (real measurements + admin feedback)

End to end
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I Clique:
I Very good for end-to-end (of course)
I No contention captured ; missing interference ; bad predictions

I Spanning Trees: missing links ; bad predictions
(over-estimates latency, under-estimates bandwidth, false positive interference)

I Improved Spanning Trees have good predictive power
I Aggregate accuracy discutable
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Experiments on simulator: GridG platforms

I GridG is a synthetic platform generator [Lu, Dinda – SuperComputing03]
Generates realistic platforms

I Experiment: 40 platforms (60 hosts – default GridG parameters)

End to end measurements
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Interpretation

I Naive algorithms lead to poor results
I Improved trees yield good reconstructions

I ImpTreeBW error ≈ 3% for all2all (worst case)
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Adding routers to the picture

I New set of experiments: only leaf nodes run the measurement processes

End to end measurements
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Interpretation

I None of the proposed heuristic is satisfactory
I Future work: improve this! Becomes really tricky. Maybe data-minining issue?
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Outline
Experiments for Large-Scale Distributed Systems Research
Methodological Issues
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Existing evaluation tools for HPC ideas / applications

The SimGrid Project
User Interface(s)

MSG: Comparing Heuristics for Concurrent Sequential Processes
GRAS: Developing and Debugging Real Applications
SimDag: Comparing Scheduling Heuristics for DAGs
SMPI: Running MPI applications on top of SimGrid

Models underlying the SimGrid Framework
SimGrid Evaluation

How accurate?
How big?
How fast?

Associated Tools
Platform Instantiation: Catalog, Synthetic Generation, Network Mapping
Visualization

Conclusions
Tutorial Recap
Going Further: Experiment planning and Open Science
Take-home Messages
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Visualizing SimGrid Simulations with Trivia

Simulations can produce a lot of logs

I Everyone produces ad-hoc parsing scripts
I Not always easy, graphically visualizing more appealing

Building the right visualization tool
I Easy to build a demoware: fancy but not really useful
I Trivia: separate (established) project; SimGrid only produces adapted traces

I Events, Tasks can be given a application-level semantic category
I Still ongoing effort (integrated in stable releases since spring only)

computational powerServers
Two Project

thickness means
Links

size means more
Hosts

Separation indicates time proportion at which the resource was used by each task categories
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Conclusions on Distributed Systems Research

Research on Large-Scale Distributed Systems

I Reflexion about common methodologies needed (reproductible results needed)
I Purely theoritical works limited (simplistic settings ; NP-complete problems)
I Real-world experiments time and labor consuming; limited representativity
I Simulation appealing, if results remain validated

Simulating Large-Scale Distributed Systems

I Packet-level simulators too slow for large scale studies
I Large amount of ad-hoc simulators, but discutable validity
I Coarse-grain modelization of TCP flows possible (cf. networking community)
I Model instantiation (platform mapping or generation) remains challenging

SimGrid provides interesting models

I Implements non-trivial coarse-grain models for resources and sharing
I Validity results encouraging with regard to packet-level simulators
I Several orders of magnitude faster than packet-level simulators
I Several models availables, ability to plug new ones or use packet-level sim.
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SimGrid provides several user interfaces

SimDag: Comparing Scheduling Heuristics for DAGs of (parallel) tasks
I Declare tasks, their precedences, schedule them on resource, get the makespan

MSG: Comparing Heuristics for Concurrent Sequential Processes
I Declare independent agents running a given function on an host
I Let them exchange and execute tasks
I Easy interface, rapid prototyping; Java, Lua, Ruby bindings
I Also trace-driven simulations (user-defined events and callbacks)

GRAS: Developing and Debugging Real Applications
I Develop once, run in simulation or in situ (debug; test on non-existing platforms)
I Resulting application twice slower than MPICH, faster than omniorb
I Highly portable and easy to deploy

SMPI: Running MPI applications on top of SimGrid (beta quality)
I Runs unmodified MPI code after recompilation (still partial implementation)

Other interfaces possible: OpenMP, BSP-like (any volunteer?)
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SimGrid is an active and exciting project

Future Plans
I Better usability: build around simulator

(statistics tools, campain management)

I Extreme Scalability for P2P

I Model-checking and semantic debugging

I Emulation solution à la MicroGrid

G
R
E
:

G
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A
S

 in
 s

itu

SMURF
SimIX network proxy

SimIX

SURF
virtual platform simulator

XBT

SimDag
SMPI

MSG
GRAS

”POSIX-like” API on a virtual platform

Large community
http://gforge.inria.fr/projects/simgrid/

I 100 subscribers to the user mailling list (40 to -devel)

I 70 scientific publications using the tool for their experiments

I LGPL, 120,000 lines of code (half for examples and regression tests)

I Examples, documentation and tutorials on the web page

Use it in your works!
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Grid Simulation and Open Science

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational

I Incremental knowledge: Read a paper, Reproduce its results, Improve.

I Reproducible results: Compare easily experimental scenarios
Reviewers can reproduce result, Peers can work incrementally (even after long time)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools

I Experimental settings rarely detailed enough in literature

These issues are tackled by the SimGrid community

I Released, open-source, stable simulation framework

I Extensive optimization and validation work

I Separation of simulated application and experimental conditions

I Are we there yet? Not quite
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SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I don’t (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . . )

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it
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Building Open Science Around the Simulator

Going further toward Open Science

I Issues we face in simulation are common to every experimental methodologies
Test planning, Test Campaign Management, Statistic Extraction

I Tool we need to help Open Science arise in simulation would help others

I Why not step back and try to unit efforts?

What would a perfect world look like?

A single simulation using SimGrid

logs

stats
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Availibility

Changes

Platform

Topology

Application

Deployment

Simulation Kernel

Application

Simulator

OutcomesScenario

Applicative
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Parameters
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Factorizing is really appealing, even if huge amount of work remains to do
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Take-home Messages

HPC and Grid applications tuning and assessment

I Challenging to do; Methodological issues often neglected

I Several methodological ways: in vivo, in vitro, in silico; none perfect

The SimGrid Simulation Framework
I Mature Framework: validated models, software quality assurance

I You should use it!

We only scratched the corner of the problem
I A single simulation is just a brick of the scientific workflow

I We need more associated tools for campaign management, etc.

I Open Science is a must! (please don’t say the truth to physicians or biologists)

I Technical issues faced, but even more sociological ones
I Solve it not only for simulation, but for all methodologies at the same time

We still have a large amount in front of us ,
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Question slides

I Implementation of CSPs on top of simulation kernel

I Model-checking GRAS application

I The SimTerpose Project

I Trace Replay: Separate your applicative workload

I XBT from 10,000 feets

I Finding SimGrid’s documentation
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Implementation of CSPs on top of simulation kernel

Idea
I Each process is implemented in a thread

I Blocking actions (execution and communication) reported into kernel

I A maestro thread unlocks the runnable threads (when action done)

Example
I Thread A:

I Send ”toto” to B
I Receive something from B

I Thread B:
I Receive something from A
I Send ”blah” to A

I Maestro schedules threads
Order given by simulation kernel

I Mutually exclusive execution
(don’t fear)

Martin Quinson Experimenting HPC Systems with Simulation Conclusions 74/72



Implementation of CSPs on top of simulation kernel

Idea
I Each process is implemented in a thread

I Blocking actions (execution and communication) reported into kernel

I A maestro thread unlocks the runnable threads (when action done)

Example
I Thread A:

I Send ”toto” to B
I Receive something from B

I Thread B:
I Receive something from A
I Send ”blah” to A

I Maestro schedules threads
Order given by simulation kernel

I Mutually exclusive execution
(don’t fear)

Martin Quinson Experimenting HPC Systems with Simulation Conclusions 74/72



Implementation of CSPs on top of simulation kernel

Idea
I Each process is implemented in a thread

I Blocking actions (execution and communication) reported into kernel

I A maestro thread unlocks the runnable threads (when action done)

Example
I Thread A:

I Send ”toto” to B
I Receive something from B

I Thread B:
I Receive something from A
I Send ”blah” to A

I Maestro schedules threads
Order given by simulation kernel

I Mutually exclusive execution
(don’t fear)

Thread AMaestro Thread B
Simulation

Kernel:
who’s next?

(done)

(done)

Receive from A

Send "blah" to A

Receive from B

Send "toto" to B

Martin Quinson Experimenting HPC Systems with Simulation Conclusions 74/72



Implementation of CSPs on top of simulation kernel

Idea
I Each process is implemented in a thread

I Blocking actions (execution and communication) reported into kernel

I A maestro thread unlocks the runnable threads (when action done)

Example
I Thread A:

I Send ”toto” to B
I Receive something from B

I Thread B:
I Receive something from A
I Send ”blah” to A

I Maestro schedules threads
Order given by simulation kernel

I Mutually exclusive execution
(don’t fear)

Thread AMaestro Thread B
Simulation

Kernel:
who’s next?

(done)

(done)

Receive from A

Send "blah" to A

Receive from B

Send "toto" to B

Martin Quinson Experimenting HPC Systems with Simulation Conclusions 74/72



Model-checking GRAS application (ongoing work)

Executive Summary

Motivation
I GRAS allows to debug an application on simulator and deploy it when it works

I Problem: when to decide that it works?
I Demonstrate a theorem → conversion to C difficult
I Test some cases → may still fail on other cases

Model-checking

I Given an initial situation (”we have three nodes”),
test all possible executions (”A gets first message first”, ”B does”, ”C does”, . . . )

I Combinatorial search in the tree of possibilities

I Fight combinatorial explosion: cycle detection, symmetry, abstraction

Model-checking in GRAS

I First difficulty: Checkpoint simulated processes (to rewind simulation)
Induced difficulty: Devise when to checkpoint processes

I Second difficulty: Fight against combinatorial explosion
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Adding Model-Checking to SimGrid

Difficulties in Distributed System

I Race condition, Deadlock and Starvation, just as in concurrent algorithms
I Lack of global state: only local information available
I Asynchronism: no bound on communication time ; hard to detect failures
⇒ Model-checker for distributed algorithms appealing

But wait a minute...
Wasn’t the simulator meant to test distributed algorithm already?!

I Simulation is better than real deployment because it is deterministic
I But possibly very low code coverage
I Model-Checking improves this, and provides counter-examples

; Simulation to assess performance, Model-checking to assess correctness

Do not merge 2 tools in 1 and KISS instead!

I Avoid manual translation between formalisms to avoid introduction of errors
I Simulator and model-checker both need to:

I Simulate of the environment (processes, network, messages)
I Control over the scheduling of the processes
I Intercept the communication
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SimGrid use limitation

Main limitation of SimGrid today

I You have to write your application using its interfaces

I Impossible to reuse it on real life

Some partial solution exist

I GRAS allows you to reuse the code written in SG on real life
/ you still have to learn a new API

I SMPI allows you to run MPI code in SG
/ not anyone use MPI

It ought to be a better solution

I How could I just launch my application on “virtual platform”?

I This project (just starting) is dubbed simterpose (interposing a simulator)
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Simterpose: presentation (ongoing work)

Goal
I Allowing to use SimGrid on unmodified distributed applications

Why? Motivations

I Test your code in reproducible way

I Dimension your hardware to fit your application

I Benefit of SimGrid associated tools (model-checking? visualization?)

I Process folding (debug in the train – w/o GSM)

How? what’s needed?
I (add some sort of launcher – cf. mpirun)

I Intercept any interaction with the system
send, receive, gettimeofday

I Report them into the simulator

I Reflect simulated reality into real one
slow down the process by the given amount of time, return simulated clock value
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Simterpose: approaches (Ongoing work)

Hard part: interception. How to intercept calls to system and libraries?
I #define send(a,b,c) sg send(a,b,c)

, quite easy to do (SMPI does so)
/ recompilation is mandatory (thus, need source code)
/ C only

I PTRACE (trace processes as gdb does)
, Seamless
/ syscalls only (one may want to follow pthread calls)
/ reputed slow

I Library injection (LD PRELOAD under linux)
I The system linker use your symbols in preference to classical ones
/ Only library calls, not syscalls (but anyone uses libcs’ wrappers)
, Seamless, it could even trick the JVM?

I Valgrind
I Code injection in binary before running it
, Seamless, would trick the JVM
/ Slow (x40 for empty valgrind tools)

I Real virtual machine (qemu, xen, etc)
, Seamless, would trick the JVM
/ Slow, huge memory requirements for process folding
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Trace Replay: Separate your applicative workload

C code

static void action_blah(xbt_dynar_t parameters) { ... }
static void action_blih(xbt_dynar_t parameters) { ... }
static void action_bluh(xbt_dynar_t parameters) { ... }
int main(int argc, char *argv[]) {

MSG_global_init(&argc, argv);
MSG_create_environment(argv[1]);
MSG_launch_application(argv[2]);
/* No need to register functions as usual: actions started anyway */
MSG_action_register("blah", blah);
MSG_action_register("blih", blih);
MSG_action_register("bluh", bluh);

MSG_action_trace_run(argv[3]); // The trace file to run
}

Deployment

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">

<process host="Tremblay" function="toto"/>
<process host="Jupiter" function="tutu"/>
<process host="Fafard" function="tata"/>

</platform>

Trace file
tutu blah toto 1e10
toto blih tutu
tutu bluh 12
toto blah 12
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Trace Replay (2/2)

Separating the trace of each process

I Because it’s sometimes more convinient (for MPI, you’d have to merge them)

I Simply pass NULL to MSG action trace run()

I Pass the trace file to use as argument to each process in deployment

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">

<process host="Tremblay" function="toto">
<argument value="actions_toto.txt"/>

</process>
<process host="Jupiter" function="tutu">

<argument value="actions_tutu.txt"/>
</process>

</platform>

Action Semantic
I This mecanism is completely agnostic: attach the meaning you want to events

I In examples/actions/action.c, we have pre-written event functions for:
I Basics: send, recv, sleep, compute
I MPI-specific: isend, irecv, wait, barrier, reduce, bcast, allReduce
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XBT from 10,000 feets
C is a basic language: we reinvented the wheel for you
Logging support: Log4C

XBT_LOG_NEW_DEFAULT_CATEGORY(test,
"my own little channel");

XBT_LOG_NEW_SUBCATEGORY(details, test,
"Another channel");

INFO1("Value: %d", variable);
CDEBUG3(details,"blah %d %f %d", x,y,z);

Exception support

xbt_ex_t e;
TRY {

block
} CATCH(e) {

block /* DO NOT RETURN FROM THERE */
}

Debugging your code

I Ctrl-C once: see processes’ status
I Press it twice (in 5s): kill simulator

xbt backtrace display current()

Backtrace (displayed in thread 0x90961c0):
---> In master() at masterslave_mailbox.c:35
---> In ?? ([0x4a69ba5])

Advanced data structures
I Hash tables, Dynamic arrays
I FIFOs, Sets, Graphs
I SWAG (but don’t use)

String functions

I bprintf: malloc()ing sprintf
I trim, split, subst, diff
I string buffers

Threading support

I Portable wrappers (Lin, Win, Mac, Sim)

I Synchro (mutex, conds, semaphores)

Other
I Mallocators
I Configuration support
I Unit testing (check src/testall)
I Integration tests (tesh: testing shell)
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Finding SimGrid’s documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway
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