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Introduction

Course Goals
I Introduce existing distributed systems, from a theoretical point of view

I Basic concepts
I Main issues, problems and solutions

Prerequisite

I Notions of Theoretical Distributed Algorithmic (models, some algos)

I Notions of Distributed Programming (BSD sockets, CORBA, java RMI, J2EE)

Motivations
I Distributed Systems more and more mainstream

I Interesting algorithmic issues

I Very active research area
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Administrativae

Contents
I Quick recap of distributed algorithmic and Internet

I Present several innovative distributed systems

I Introduce some current research issues in distributed computing

Evaluation: test on desk (partiel)

I What: quiz about the lectures
I Know the algorithms introduced in lectures
I Be able to recognize principle of classical algorithm designs
I Be able to discuss the validity of an approach to a problem

I When: someday in feb or march (check ADE agenda)

I Allowed material during test: one A4 sheet of paper only
I Hand-written (not typed)
I From you (no photocopy)
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About me

Martin Quinson
I Study: Université de Saint Étienne, France

I PhD: Grids and HPC in 2003 (team Graal of INRIA / ENS-Lyon, France)

I Since 2005:
I Assistant professor at ESIAL (Univ. Henri Poincaré–Nancy I, France)
I Researcher of AlGorille team of LORIA/INRIA

I Research interests:
I Context: Distributed Systems
I Main: Simulation of Distributed Applications (SimGrid project)
I Others: Experimental Methodology, Model-Checking, ...

I More infos:
I http://www.loria.fr/~quinson
I Martin.Quinson@loria.fr
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References: Courses on Internet

I Algorithmique et techniques de base des systèmes répartis (S. Krakowiak)
Foundations of distributed systems (in French).

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2R-SL/SR/

I Distributed Systems (Shenker, Stoica; University of California, Berkley)
A bit of everything, emphasis on Brewer’s conjecture.

http://inst.eecs.berkley.edu/~cs194

I Peer-to-Peer Networks (Jussi Kangasharju)
Peer-to-peer systems.

http://www.cs.helsinki.fi/u/jakangas/Teaching/p2p-08f.html

I Advanced Operating Systems (Neeraj Mittal)
Very good presentation of the theoretical foundations.

http://www.utdallas.edu/~neerajm/cs6378f09

I Grid Computing WS 09/10 (E. Jessen, M. Gerndt)
Grid and Cloud computing.

http://www.lrr.in.tum.de/~gerndt/home/Teaching/WS2009/GridComputing/GridComputing.htm

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 5/223

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2R-SL/SR/
http://inst.eecs.berkley.edu/~cs194
http://www.cs.helsinki.fi/u/jakangas/Teaching/p2p-08f.html
http://www.utdallas.edu/~neerajm/cs6378f09
http://www.lrr.in.tum.de/~gerndt/home/Teaching/WS2009/GridComputing/GridComputing.htm


References: Books

I Coulouris, Jean et Kindberg. Distributed Systems: Concepts and Design.

I Tannenbaum, Steen. Distributed Systems: Principles and Paradigms.

I V. K. Garg. Elements of Distributed Computing.

I Ralf Steinmetz, Klaus Wehrle (Eds): Peer-to-Peer Systems and Applications.
http://www.peer-to-peer.info/
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Chapter 1

Introduction

What is a Distributed System?

Example of Distributed Systems

Limit between Computers and Distributed Systems



What is a distributed system?

Definition
A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.

— A. Tanenbaum.
; Set of elements (CPU, storage) interconnected by the network

CPU CPU

Réseau

I The set is more than the sum of its parts (elements do collaborate)
I Intuitive examples not from CS

I Ant nest
I Driving rules (cars share the road)

Definition (pessimistic)
You know you have one when the crash of a computer you never heard of
stops you from getting any work done. — L. Lamport.

I Interdepending behavior of elements
I That’s not that easy
I Failures do happen and must be dealt with
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What is a distributed system?

Definition (optimistic)
A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.

— A. Tanenbaum.
; Set of elements (CPU, storage) interconnected by the network

CPU CPU

Réseau

I The set is more than the sum of its parts (elements do collaborate)
I Intuitive examples not from CS

I Ant nest
I Driving rules (cars share the road)

Definition (pessimistic)
You know you have one when the crash of a computer you never heard of
stops you from getting any work done. — L. Lamport.

I Interdepending behavior of elements
I That’s not that easy
I Failures do happen and must be dealt with
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Why would you distribute your computer system??

Application needs: you sometimes have to

I Collaborative work (between human beings, between corporate facilities)

I Distributed electronic devices ⇒ Ubiquitous Computing and SensorNets

I Application integration (multi-physics simulation) ⇒ Grid Computing

Technical possibility creates the need
I Cost effectiveness

I A set of PC is less expensive than a big mainframe ⇒ Cluster Computing
I Scale savings of mesocenter (wrt than several clusters) ⇒ Cloud Computing

I Generalized interconnections (TV, Internet, phone are converging)
I Share storage resources ⇒ Peer-to-Peer systems
I Share (otherwise unused) computational resources ⇒ Volunteer Computing
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Example of Distributed Systems (1/2)

The Internet: the network of networks

I Enormous (open ended)

I No single authority
(mapping internet is a research agenda)

I Data, audio, video; Requests, push, streams.

intranet

ISP

desktop computer:

backbone

satellite link

server:

network link:

CoDoKi, Fig. 1.1 

Intranets

I A single authority

I Protected access
(firewall, encrypted channels, total isolation)

I May be worldwide

CoDoKi, Fig. 1.2 
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Example of Distributed Systems (2/2)

Mobile and Ubiquitous Computing

I Portable devices
I laptops, notebook
I handheld, wearable devices
I devices embedded in appliances

I Mobile computing

I Connected to Internet through fixed
infrastructure

( CoDoKi Fig 1.3 ) 

Mobile Ad-hoc Networks (Manets)

I No fix infrastructure
I wireless communication
I multi-hop networking
I long, non deterministic delays

; nodes part of infrastructure

I Nodes come and go
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Limit between Computers and Distributed Systems

Why is this limit blurred?

I Motivation: endless need for power (modeling/game realism, server scalability)

I Past solution: Increase clock speed, more electronic gates
(but reaching physical limits + speed linear vs. energy quadratic)

I Current trend: Multi-many (Multiply cores, processors and machines)

Multi-processors systems

Shared Memory Processor
(SMP)

CPU

Shared
Memory

C

C

CCC

C

C

CC C

Cluster System

M

M

MMM

M

M

M M M

C

C

C C C

C

C

CCCFull System

Network
Local

Distributed Systems

M

M

MMM

M

M

M M M

C

C

C C C

C

C

CCCFull System

Internet

I SMP communicate through shared memory
I Clusters and DS communicate through classical network
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Some SMPs are UMA (Uniform Memory Access)

Classical UMA

CPU CPU

Bus

shared
memory

UMA with cache

Bus

sharedCPU CPU
memorycache cache

Advanced UMA

priv.
mem.

priv.
mem.

Bus

sharedCPU CPU
memorycache cache

I Every processor access the memory at the same speed

I But memory to slow in classical design, thus adding a cache

I Can go further by adding a private memory to each processor
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NUMA: NON-uniform Memory Access

I Biggest challenge: feed CPU with data (memory slower than CPU)
I Idea: Put several CPU per board, and plug boards on mainboard

CPU
cache

CPU
cache

shared
memory

shared
memory

CPU
cache

CPU
cache

shared
memory

CPU
cache

CPU
cache

memory networkdisksMainboard

One card One card One card

Issue
I Memory access is non-uniform (slower when far away)

Need specific programming approach to keep efficient

I Cache consistency can turn into a nightmare
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Multi-core: Parallelism on Chip

I Idea: Reduce distance to elements (thus latency)
I How: Put several computing elements on the same chip

AMD/Intel bicore chips

cache L1

cache L2

cache L1

core
computingcomputing

core

Cell Processor

RAM
RAM

controllers

memory

controllers

I/O

SPE 1

SPE 3

SPE 5

SPE 7

SPE 2

SPE 4

SPE 6

SPE 8

64bits PowerPC
Power Processor Element (PPE)

(c
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Current and Future Trends
I Put more and more cores on chip

(80 cores already prototyped, full Cluster-On-Chip envisioned)

I Increase Architecture Hierarchy (Clusters of NUMA of multi-cores)

I Even put non-symmetric cores: PPE is classical RISC, SPE are SIMD
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Distributed, Parallel or Concurrent??

Distributed Algorithm: computation time
communication time

; 0
I Computation negligible wrt to communications
I Classical metric: amount of messages (as a function of amount of nodes)

I Current research agenda: P2P, consistency (distributed DB)

Parallel Algorithm: computation time
communication time

≈ 1
I Computation and Communication comparable
I Classical metric: makespan (time to completion of last processor)

I Current research agenda: Cluster & Grid & Cloud Computing, interoperability

Concurrent Algorithm: computation time
communication time

;∞
I Communication negligible wrt computation (comm time = 0 ⇒, multi-threading)
I Classical metric: speedup (how faster when using N cpus)

I Current research agenda: Lock-free, wait-free, correctness (model-checking)

Focus of this course: distributed systems (some content applies to others)

I Each domain constitutes a huge research area
I Current trend: intermixing, but strong historical heritage
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What to expect from a distributed system?

Expected characteristics

I Scalability: deal with large amount of work

I Failure tolerance:
I Deal with the failure of elements
I Deal with message loss, or element performance degradation

I Security: Deal with malicious users (Privacy, Integrity, Deny-of-Services)

I Adaptability: deal with environment changes

Expected difficulties

I Absence of Global Clock: there is no common notion of time

I Absence of Shared Memory: no process has up-to-date global knowledge

I Failures (fail-stop or malicious): that will happen

I Delays (asynchronous): harder to detect failures

I Dynamism: global knowledge even harder to get

I Human brain is (somehow) sequential. Thinking distributed is harder.
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Chapter 2

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic



Time and State of a Distributed System

Fundamental Goal: think about a system or an application

What do we need
I Define a state: for example to define predicates

I Define an order: to coordinate the activities

Why is it harder for Distributed Systems? (Inherent Limitations)

I Absence of Global Clock: There is no common notion of time

I Absence of Shared Memory: No process has up-to-date global knowledge

I Asynchronous communications and computations (generally speaking)

I Ie, comm/comp time has no maximum
I Because dynamically changing load and resources not exclusively allocated
I Synchronous systems (real time, phone) more rare because more expansive

Goal now
I Define an order relation (used later for global state)

I At the end, that’s quite simple, but it needed several years of research
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Absence of Global Clock

Different processes may have different notions of time

I invented AIDS cure! I invented AIDS cure!

Earth Mars

I Problem: How do we order events on different processes?
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Absence of Global Clock

Different processes may have different notions of time

Who did it first?

Patent Officer

I invented AIDS cure! I invented AIDS cure!

Earth Mars

I Problem: How do we order events on different processes?
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Absence of Shared Memory

A process does not know current state of other processes

Bob

Alice

doing right now?

What is Alice

I Problem: How do we obtain a coherent view of the system?
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The Reliable Asynchronous Model

That’s the weaker (reliable) model
I Very strong constraints from the system

I No upper bound on communication or computation
I Algorithms working here work also in more friendly models
I Models made more friendly by removing constraints (setup upper bounds)
I (that’s not the worst model: it is reliable)

I This model is often used for Bounding costs or Impossibility results

I Each site has a clock (not synchronized, with relative drifts)

I Processes only communicate by message exchanges

I Possible events:
I Local (process internal state change)
I Emission or Reception of messages
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About messages

Properties of the communication system

1. No loss: Every sent message arrives (no upper bound on transit time)
I How to achieve this: failure detection (with timeout) and resending

2. Messages are not altered
I How to achieve this: Mechanisms for detection and correction of errors

3. FIFO channel between processes
I How: message numbering
I Assumption sometimes removed (⇒ even harder)

Distinguish message reception and delivering

Communication system
Reception
Delivery

Sender Receiver
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Process Execution and Synchronization

Process Execution
I That’s a suite of events (its history, its trace)

Recall: kind of possible events = {local, sending, receiving}
I Suite ordered by the local clock

I For P1: e1
1 , e2

1 , e3
1 , e4

1 , . . . ek
1 , . . .

“Synchronizing processes”?!

; force an order to the events of these processes

I Example: mutual exclusion

either

{
end(C2) precedes begin(C1)
end(C1) precedes begin(C2)

C2

C1
P1

P2
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When is it possible to order two events?

Causality Principle

I The Cause comes before the Effect

Three Cases:
1. Events executed on the same process:

I if e and f are events on the same process and e occurred before f ,
then e happened-before f

2. Communication events of the same message:
I if e is the send event of a message and f is the receive event of the same

message, then e happened-before f

3. Events related by transitivity:
I if event e happened-before event g and event g happened-before event f ,

then e happened-before f
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Happened-Before Relation

Notation
I Happened-before relation is denoted by →

Illustration

P1

P2

P3

a b c

d e f

g h i

I Events on the same process
a→ b, b → c , d → f

I Events of the same message
b → e, f → i

I Transitivity
a→ c , a→ e, a→ i

Concurrent events
I Events not related by the happened-before relation

I Concurrency relation is denoted by ‖
I Examples: a ‖ d , e ‖ h, c ‖ i ,

I Concurrency is not transitive: a ‖ d and d ‖ c but a 6 ‖ c
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Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
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Conclusion on distributed algorithmic



Dating System (for sake of global ordering)

Goal: Dating System compatible with Causality

First Approach: notion of observation

I A “observer” process P0 is informed by message of every event

I The suite of events as observed by P0 is a global observation

I Later: each process is observer, and observations match

e2
2 e3

2

e3
1

o(e3
1 ) o(e6

1 )o(e5
1 )

P1

P2

P0

e4
2

o(e9
1 )o(e4

2 )o(e1
2 ) o(e2

2 ) o(e5
2 ) o(e8

1 )

e7
1

e5
2 e6

2 e7
2

o(e1
1 ) o(e2

1 ) o(e4
1 ) o(e6

2 ) o(e7
2 )
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1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2 ) o(e7

1 )
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Validity of Observations

Definition
I Observation said valid iff (e → f ) ⇒ (o(e)→ o(f ))

Examples

1. (e5
1 → e6

1 ) but o(e6
1 ) precedes o(e5

1 )

(P1 → P0 is not FIFO)

e2
2 e3

2

e3
1

o(e3
1 ) o(e6

1 ) o(e5
1 )

P1

P2

P0

e4
2

o(e9
1 )o(e4

2 )o(e1
2 ) o(e2

2 ) o(e5
2 ) o(e8

1 )

e7
1

e5
2 e6

2 e7
2

o(e1
1 ) o(e2

1 ) o(e4
1 ) o(e6

2 ) o(e7
2 )

e2
1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2 ) o(e7

1 )

2. (e2
2 → e3

1 ) because (e2
2 → e3

2 ) and (e3
2 → e3

1 )

but o(e3
1 ) can not precede o(e2

2 ) even if channels are fifo

e2
2 e3

2

e3
1P1
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Abstract Clocks

Setting up an observer is suboptimal

I Expensive: A huge amount of messages must be sent to the observer

I Not robust: What if the observer fails?

I Not reliable: invalid observations are still possible

Abstract Clocks
I Why: (try to) solve absence of global clock

I How: processes timestamp events locally so that they get globally ordered

Different kind of abstract clocks
I Each offers differing abilities, associated to differing complexities

I Logical clock: used to totally order all events

I Vector Clocks: used to track happened-before relation

I Matrix Clocks: used to track what other processes know about other processes

I Direct Dependency Clocks: used to track direct causal dependencies
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Logical Clocks (or Lamport’s Clock)

General idea
I Implements the notion of virtual time

I Can be used to totally order all events

I Assigns timestamp C (e) to each event e

I Compute C (e) in a way that is consistent with the happened-before relation:

e → f ⇒ C (e) < C (f )

I (Note that this is ⇒, not ⇔)

Time, Clocks and the Ordering of Events in a Distributed System, Leslie Lamport, 1978.
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Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci )
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5
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Conclusion on Logical Clocks

Possible Applications

I Distributed waiting queue (mutual exclusion; replicas update)

I Determine least access (cache coherence, DSM)

Limits of the Logical Clocks

I Cannot be used to determine events concurrency

(e ‖ f ) does not imply (C (e) = C (f ))

I Some missing events may go undetected:
I If C(e) < C(f ), is there any g so that e → g → f ?
I Impossible to answer with logical clocks only

P1

P2

P3

P4

e

f

g

e

f

g

e

f

g

7

P3 desynchronized!P3 synchronizedP3 will synchronize later

8

3 3

8

3

8

I All is because e → f ⇒ C (e) < C (f ) is no ⇔
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Vector Clocks

General idea
I Captures the happened-before relation

I Assigns timestamp to each events such that

e → f ⇔ C (e) < C (f )

I Like the name says, values C (e) are not scalars but vectors (∈ N#processes)
Vi [j ]: What i knows of the clock of j

Comparing two vectors: component-wise

I Equality: V = W iff ∀i , Vi = Wi

I Comparison: V < W iff ∀i , Vi ≤Wi and ∃i , Vi < Wi

I Examples:

 1
2
0

 <

 2
3
1

 and

 2
1
1

 <

 2
3
4

 but

 0
1
0

 6<
 1

0
1


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Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i ] + = 1

Sending message (m) : Ci [i ] + = 1 then send (m, Ci )
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i ] + = 1

Example

P1

P2

P3

I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv
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Conclusion on Vector Clocks

Possible Applications

I Distributed system monitoring (event dating, distributed debugging)

I Computation of global state; Distributed simulation

Limits of Vector Clocks
I Comparing two vectors can require up to N comparison

I Processes don’t know whether the others are up-to-date or lag behind
I Matrix clocks solve that issue
I MCi [j , k]: what i knows of the knowledge of j about k’s clock
I This allows causal delivery
I But matrix clocks are even more expensive (O(n2))
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Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic



Some Distributed Algorithms

Goals of this section

Present some basic algorithms

I Mutual exclusion

I Election

I Consensus

I Group protocols

I Sequential equivalents
I Sorting, Shortest path
I Classical data structures (stack, list, hashing, trees)

Present general approaches

I Ordering events (with abstract clocks)

I Applicative topologies (ring, tree, graph without circuit)

I Sequential equivalents
I Recursion, Divide&Conquer, Greedy algorithms
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Mutual Exclusion

Problem Statement
I Force an order on the execution of critical sections
I Fairness (no infinite starvation of any process); Liveness (no deadlock)

Approaches

I Centralized coordinator: ask lock to coordinator, get lock, release lock
I Use a global order: using abstract clocks

Ask everyones, and concurrent requests are handled “in order”
I Using quorums: Ask only members of specific groups
I Force a topology: virtual ring, virtual tree

Gives an order on nodes, not only on requests

Algorithms

I A whole load of such algorithms in literature
I #messages∈ [O(log(n)); O(n)] (ask everyone, or distributed waiting queue)

What’s coming now: Details of some algorithms

I For culture and to get a grip on distributed algorithms development approach
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Centralized: Coordinator Based Algorithm

Main Idea
I One of the processes acts as coordinator (cf. Leader Election Algorithm)

Coordinator decides the order in which critical section requests are fulfilled

I Processes send requests to coordinator and wait permission
Requests are fulfilled in FIFO order at the coordinator

I Coordinator grants permission to requests one at a time
All other requests are queued in a FIFO queue.
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

Pc : coordinator
Resource idle

Event explanation
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

Pc : coordinator
Resource idle

REQUEST

Event explanation

a. P1 requests the CS to coordinator
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

Pc : coordinator
Resource idle

REQUEST

Event explanation

b. P2 requests the CS to coordinator
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c

Pc : coordinator
Resource idle

REQUEST GRANT

Event explanation

c. coordinator receives the request from P2

I Idle token, so send reply back
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

Pc : coordinator
Resource idle

REQUEST GRANT

Event explanation

d. coordinator receives the request from P1

I Token not there, so enqueue the request
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e

Pc : coordinator
Resource idle Critical section

REQUEST GRANT

Event explanation

e. P2 receives the grant
I Enters the CS
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

f. P2 exits the CS
I Send release to coordinator
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

g. coordinator receives the release
I Someone (P1) is waiting in the queue
I Unqueue P1

I Send grant to P1
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Coordinator Based Algorithm for Mutual Exclusion
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Coordinator Based Algorithm for Mutual Exclusion
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Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

h i

j

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

g. coordinator receives the release
I Nobody in queue, nothing to do
I Let the token idling
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Centralized Mutual Exclusion: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 3

I 1 REQUEST message + 1 GRANT message + 1 RELEASE message

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): 2T
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Lamport’s Algorithm for Mutual Exclusion

Assumptions

I Channels are FIFO

I Processes run a Lamport’s Logical Clock

Main Idea
I Requests are timestamped using logical clocks, and fulfilled in timestamp order

I Processes maintain a priority queue of all requests they know about

I Lots of broadcasts to get the timestamps propagate to peers
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Lamport’s Mutual Exclusion: Steps for process Pi

On generating a critical section request
I Insert the request into the priority queue
I Broadcast the request to all processes

On receiving a critical section request from another process:
I Insert the request into the priority queue.
I Send a REPLY message to the requesting process.

Conditions to enter critical section:
I L1: Pi has received a REPLY message from all processes.

Any request received in future will have larger timestamp than own request
I L2: Pi ’s own request is at the top of its queue.

I have the smallest timestamp among all already received requests

On leaving the critical section
I Remove the request from the queue
I Broadcast a RELEASE message to all processes

On receiving a RELEASE message from another process
I Remove the request of that process from the queue
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

REQUEST REPLY RELEASE
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

4,1

44

REQUEST REPLY RELEASE

a. P1 requests the CS (timestamp=4)

I Broadcast the request

I Enqueue the request locally
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

4,1

44

(6,2)

6

6

REQUEST REPLY RELEASE

b. P2 requests the CS (timestamp=6)

I Broadcast the request

I Enqueue the request locally

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223



Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

4,1

44

(6,2)

6

6

(4,1)

7

REQUEST REPLY RELEASE

c. P3 receives the request from P1

I Answer REPLY with timestamp 7

I Enqueue the request locally
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

REQUEST REPLY RELEASE

d. P2 receives the request from P1

I Answer REPLY with timestamp (max(6,7)+1)+1=9

I Enqueue the request locally (sorting on Lamport’s clock)
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

REQUEST REPLY RELEASE

e. P1 receives the request from P2

I Answer REPLY with timestamp max(4,6)+1=8

I Enqueue the request locally (sorting on Lamport’s clock)
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

f. P3 receives the request from P2

I Answer REPLY with timestamp (max(4,6)+1)+1=9

I Enqueue the request locally
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

g. P2 receives the reply from P1

I (nothing to do, one request still missing)
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

h. P1 receives the reply from P3

I (nothing to do, one request still missing)
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

i. P2 receives the reply from P3

I Every request received, but not first in queue

I Thus nothing to do
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

j. P1 receives the reply from P2

I Every request received, and first in queue

I Thus dequeuing self request and entering CS
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

k. P1 exits CS
I Broadcast RELEASE
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

l. P2 receives RELEASE from P1

I Remove (4,1) from queue

I Every replies received and first of queue

I Thus entering CS (after removing myself from queue)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223



Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

m. P3 receives RELEASE from P1

I Update the queue
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

n. P2 exits its CS
I Broadcast RELEASE
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Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

o&p. P1 and P2 receive RELEASE from P2

I Update queues

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223



Lamport’s Mutual Exclusion: Optimization

Recap Conditions to enter critical section:
I L1: Pi has received a REPLY message from all processes.

Any request received in future will have larger timestamp than own request

I L2: Pi ’s own request is at the top of its queue.
I have the smallest timestamp among all already received requests

L1 is too restrictive wrt the wanted property

I Wait for any messages with higher timestamp from all processes is enough
Any request received in future will still have larger timestamp than own request
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Lamport’s Mutex Optimization: Illustration

Without the optimization

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE
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Lamport’s Mutex Optimization: Illustration

With the optimization

P1

P2

P3

a

b

c

d

e

f

g

h

i

kj

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE
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Lamport’s Mutex Algorithm: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 3(N - 1)

I N − 1 REQUEST messages + N − 1 REPLY messages + N − 1 RELEASE
messages

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 52/223



Ricart and Agrawala’s Algorithm

Inefficiencies in Lamport’s Algorithm
I Scenario 1

I Situation: Pi and Pj concurrently request CS and C(Pi ) < C(Pj)
I Lamport: Pi first send reply and later release.

Pj only acts on release
I Improvement: Pi ’s reply can be ommited

I Scenario 2
I Situation: Pi requests CS and Pj don’t for some time
I Lamport: Pi send release to Pj on exiting CS
I Improvement: That message can be ommited

(if Pj requests CS, it will contact Pi anyway)

Main ideas of Ricart and Agrawala’s Algorithm

I Combine reply and release messages

I On leaving CS, only reply/release to processes with unfulfilled CS requests

I Eliminate priority queue
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Ricart and Agrawala Mutex: Steps for process Pi

On generating a critical section request

I Broadcast the request to all processes

On receiving a critical section request from another process:
I Send a reply if any of these condition is true

I Pi has no unfulfilled request of its own
I Pi unfulfilled request has larger timestamp than that of the received request

I Else, defer sending the reply message

Conditions to enter critical section:
I Pi has received a reply message from all processes

On leaving the critical section
I Send all defered reply messages
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

REQUEST REPLY

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223



Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

44

REQUEST REPLY

a. P1 requests the CS (timestamp=4)

I Broadcast the request
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

44

6

6

REQUEST REPLY

b. P2 requests the CS (timestamp=6)

I Broadcast the request
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

44

6

6

REQUEST REPLY

c. P3 receives the request from P1

I No unfulfilled request itself

; Returns a reply
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

44

6

6

REQUEST REPLY

d. P2 receives the request from P1

I Own unfulfilled request has larger timestamp

; Returns a reply
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

44

6

6

P2

REQUEST REPLY

e. P1 receives the request from P2

I Own unfulfilled request has smaller timestamp

; Defer the sending of reply
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

44

6

6

P2

REQUEST REPLY

f. P3 receives the request from P2

I No unfulfilled request itself

; Returns a reply
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

44

6

6

P2

REQUEST REPLY

g. P1 receives the reply from P3

I Nothing to do, one request still missing
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

44

6

6

P2

REQUEST REPLY

h. P2 receives the reply from P3

I Nothing to do, one request still missing (since it’s delayed)
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

44

6

6

P2

REQUEST REPLY

i. P1 receives the reply from P2

I Every request received

I Thus entering CS
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

44

6

6

P2

REQUEST REPLY

j. P1 exits CS

I Send delayed reply to P2
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

k

44

6

6

P2

REQUEST REPLY

k. P2 receives RELEASE from P1

I Every replies received

I Thus entering CS
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Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

k l

44

6

6

P2

REQUEST REPLY

l. P3 receives RELEASE from P1

I No delayed reply, nothing to do
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Ricart and Agrawala: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 2(N - 1)

I N − 1 REQUEST messages + N − 1 REPLY messages

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): T
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Roucairol and Carvalho’s Algorithm

Inefficiency in Ricart and Agrawala’s Algorithm

I Every process handles every critical section request.

Goal of this new algorithm for conflict resolution

I Change algorithm so that only active processes (requesting CS) interact

I Process not requesting the CS will eventually stop receiving messages

Main idea
I reply from Pj to Pi means: Pj grants permission to Pi to enter CS

I Pi keeps that permission until it send reply to someone else

Modification to Ricart and Agrawala’s Algorithm
I To enter CS, Pi asks for permission from Pj if either:

I (Pi sent reply to Pj) AND (Pi didn’t got reply from Pj since then)
I (It’s Pi ’s first request) AND (i > j)
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

REQUEST REPLY
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

3

REQUEST REPLY

a. P2 requests the CS (timestamp=3)

; Send the request to P1 only (1 < 2)
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

3

REQUEST REPLY

b. P1 receives P2’s request

; returns reply
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c

3

REQUEST REPLY

c. P2 receives reply from P1.

; enters CS
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d

3

REQUEST REPLY

d. P2 exists CS
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

3 8

REQUEST REPLY

e. P2 requests CS again (stamp=8)

; re-enter CS without any new message
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

3 8

5

REQUEST REPLY

f. P1 requests CS (stamp=5)

; send request to P2 only (active known peer)
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

g

3 8

5

P1

REQUEST REPLY

g. P2 receives request from P1

; defers reply because in CS
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

g

h

3 8

5

4 4

P1

REQUEST REPLY

h. P3 requests the CS

; broadcasts request to every processes
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

3 8

5

4 4

P1

REQUEST REPLY

i. P2 exists CS

; send defered reply to P1
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j

3 8

5

4 4

P1

REQUEST REPLY

j. P1 receives request from P3

returns reply since stamp lower than own
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

3 8

5

4 4

P1

REQUEST REPLY

k. P1 thought P3 not active, until j.

; send previous request now
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

3 8

5

4 4

P1

REQUEST REPLY

l. P2 receives request from P3

; returns reply
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m

3 8

5

4 4

P1

REQUEST REPLY

m. P3 receives reply from P1

(one missing)
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

3 8

5

4 4

P1

P1REQUEST REPLY

n. P3 receives request from P1

; queues it because own timestamp lower
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

3 8

5

4 4

P1

P1REQUEST REPLY

o. P1 receives reply from P2

(one missing)
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p

3 8

5

4 4

P1

P1REQUEST REPLY

p. P3 receives reply from P2

everyone answered ; enters CS
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p q

3 8

5

4 4

P1

P1REQUEST REPLY

q. P3 exits CS

; send delayed reply to P1
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Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p q

r

3 8

5

4 4

P1

P1REQUEST REPLY

r. P1 receives reply from P3

everyone answered ; enters CS
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Roucairol and Carvalho’s Mutex: Illustration events
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P1REQUEST REPLY

s. P1 exits CS

(nothing to do)
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Roucairol and Carvalho’s Mutex: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity:

I Best case: 0

I Worst case: 2(N-1): N − 1 REQUEST messages + N − 1 REPLY messages

I Message-size complexity: O(1)

Time complexity
I Response time (under light load):

I Best case: E
I Worst case: 2T+E

I Synchronization delay (under heavy load): T
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Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS.

e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS.

g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS
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Token-Ring Algorithm

Main idea
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I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1
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Illustration
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P2

P3
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b

c

d e

f g

h

i

j

k

l

m

n

o

p

q

r

s

t

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS
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Suzuki and Kasami’s Algorithm

Main ideas
I Token-based (but not as inefficiently)

I The token is not passed automatically, but on request only

Data structures
I Each process has a vector: v[i]=amount of CS request received from Pi

This is a local variable

I The token contains 2 informations:
I A vector: v[i]= amount of CS run for Pi

I A FIFO: processes with unfulfilled requests

This is a “global” variable, spead when possible

I These are not vector clocks
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Suzuki and Kasami’s Algorithm Steps for Pi

On requesting the CS

I If have token, enter CS

I If not, update request vector, then broadcast request to every processes

On receiving a request from Pj

I Update request vector

I if (request is new) AND (have token) AND (token idle), then send token to Pj

On receiving the token

I Enter the CS

On leaving the CS

I Update the token vector

I Add any unfulfilled requests from request vector to the token queue

I If token queue non-empty, then remove first and send the token that process
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Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0


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Suzuki and Kasami’s Algorithm: Illustration events
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

 0
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

 0
0
0



a

 0
1
0



a. P2 requests the CS

; broadcasts the request
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Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
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
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

a

 0
1
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

b 0
0
1



b. P3 requests the CS

; broadcasts the request
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Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0
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 0
1
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

b 0
0
1



c

 0
0
1



 0
0
0

,{}

c. P1 receives request from P3.

; Update request vector and send token
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Suzuki and Kasami’s Algorithm: Illustration events
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d. P1 receives request from P3.

; update request vector
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Suzuki and Kasami’s Algorithm: Illustration events
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e. P3 receives token

; enters CS
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Suzuki and Kasami’s Algorithm: Illustration events
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f. P1 receives request from P2

; update request vector
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Suzuki and Kasami’s Algorithm: Illustration events
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g. P1 requests the CS

; increment own entry, broadcast request to all
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Suzuki and Kasami’s Algorithm: Illustration events
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h. P3 receives request from P1

; update request vector
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Suzuki and Kasami’s Algorithm: Illustration events
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i. P2 receives request from P3

; update request vector
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Suzuki and Kasami’s Algorithm: Illustration events
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j. P3 exits C.
I Update token vector to

 0
0
1

 since it just did a CS

I Compares request and token vectors. {P1, P2}: #req. > #runs ; Enqueue
I Send token to first of queue, P1
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Suzuki and Kasami’s Algorithm: Illustration events
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k. P1 receives token

; enters CS
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Suzuki and Kasami’s Algorithm: Illustration events
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l. P2 receives request from P1

; updates request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223



Suzuki and Kasami’s Algorithm: Illustration events
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m. P1 exits CS

Update token and send it to P2
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Suzuki and Kasami’s Algorithm: Illustration events
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n. P2 receives token

; enters CS
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Suzuki and Kasami’s Algorithm: Illustration events
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o. P2 exits CS

Update token and keep it

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223



Suzuki and Kasami’s Algorithm: Complexity Analysis

Parameters
N Number of processes in the system
T Message transmission time
E Critical section execution time

Message complexity:

I Best case: 0
I Worst case: N= (N − 1) request + 1 token

Message Size Complexity:

I Between 1 (request) and N (token)
I Average: O(1) (averaging over (N − 1) request and 1 token)

Time complexity

I Response time (under light load): Best case: E; Worst case: 2T+E
I Synchronization delay (under heavy load): T
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(pedagical) Interest of this algorithm

Builds a sort of distributed data structure
I Explicit list in token, which travels

I (built lazily by comparing local request vector to token vector)

I Request vectors are updated when receiving a request

This concept is still somehow fuzzy

I List updated only when needed: when exiting the CS (lazy update)

I List updated by comparing local request vector to [global] token vector

I Request vectors are updated when receiving a request

Other algorithm use distributed data structures more explicitely

I Raymond and Naimi-Trehel build a waiting queue, and a tree pointing to the
waiting queue entry point
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Leader Election
Problem Statement

I The processes pick one and only one of them (and agree on which one)

I Use case: error recovery
I Only one site recreates the (lost) token
I Elect a new coordinator on need

I Election started by any process (maybe concurrent elections)

I Which one we pick is not important

I Difficulty: processes may fail during the election

Some approaches
I Bully Algorithm

I Main idea
I The one starting the election broadcasts its process number
I Processes answer (take over) elections with a number smaller than their own
I A process receiving no answer consider that he got elected

I Remarks
I Not very efficient algorithm (O(n2) messages at worst)
I Robust to process failures, but not to asynchronism

I Ring ⇒ Algorithm in O(n log(n)) on average [Chang, Roberts]
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Consensus: First impossibility result

Byzantin generals problem

I A and B want to attack C

I They must absolutely do it at the same time to succeed

I C can intercept messengers
A (1500) B (1500)

C (2000)

A → B: Attack tomorrow
B → A: Got(Attack tomorrow)

A → B: Got(Got(Attack tomorrow))

A cannot be absolutely sure that B got his last message⇒ he does not attack

messages lost without detection ; consensus impossible (in finite amount of steps)

I Proof (reductio ad absurdum): Suppose ∃ such a protocol, consider
p = {. . . ; A→ B : mn−1; B → A : mn} minimal in amout of messages.

I B don’t receive messages anymore ⇒ casted its decision before mn

I Since p works even if messages get lost, A casts its decision without mn

⇒ mn useless, and can be omitted from p. Contradiction with “p is minimal”

I Only solution: detect message loss
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Consensus: An algorithm amongst others

Lamport et al. (1982)
I Goal:

I Generals want to inform each other of the present forces

I Assumptions:
I Messages not corrupted (communication are fail-stop)
I Receiver knows who sent the message
I Communication time bounded (implementation: timestamp + timeouts +

fail-fast)

I Result:
I With m malicious generals, need 2m + 1 generals in total
I Cannot identify malicious generals, only find correct values out

I Principe:

1. Everyone broadcasts its own force to everyone
2. Everyone broadcasts the vector of received values to everyone
3. Everyone uses the vectors getting the majority of the casts
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Ordering of Messages

■ For many applications, messages should be delivered in
certain order to be interpreted meaningfully

■ Example:

m1: Have you seen the movie “Shrek”?

m2: Yes I have and I liked it

Bob

Alice

Tom

◆ m2 cannot be interpreted until m1 has been received
◆ Tom receives m2 before m1: an undesriable behavior
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Useful Notations

■ For a message m:
◆ src(m): source process of m

◆ dst(m): destination process of m

◆ snd(m): send event of m

◆ rcv(m): send event of m

e

m

dst(m)

f

rcv(m)

snd(m)src(m)

Pi

Pj
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Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))
⇒

rcv(w) → rcv(m)
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A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of
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The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m
Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m
deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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Group Protocols

Processes Group

I Definition: set of processes acting together

I Motivation:
I Duplication (redundancy) of services

Ex: servers group, duplicated data, clusters of computers
I Cooperative work, Information sharing

I Problems:
I Membership :

dynamic knowledge of who’s in the group (despite changes)
I Broadcast and Multicast :

communication between more than 2 processes (with specified properties)
I Broadcast: send to every members
I Multicast: send to some members

I Dynamic membership: arrival/departure, failures/restart
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Group Protocols: Main issues

Specification difficulties

I Published specifications are often incomplete, incorrect, or ambiguous

Algorithmic difficulties

I These protocols are difficult when taking failure into account

I Numerous impossible problems in asynchronous settings:
(membership, atomic broadcast, synchronous views)

I Algorithmic instability:
I Tiny specification changes can lead to huge change in implementation difficulty
I Small change to protocol can lead to property violation

I Group protocols remains badly understood

⇒ Numerous researches (both theoretical and practical)

Chockler, et Al, Group Communication Specifications : A Comprehensive Study, 2001.

Meling and Helvik, Performance Consequences of Inconsistent Client-side Membership
Information in the Open Group Model, IPCCC 2004.
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Group Protocols: Possible properties

Properties on receivers

I Reliable diffusion: Message sent to every receivers, or to none

I Atomic diffusion (or totally ordered): Reliable+same order for all

Properties on reception order

I FIFO: Messages from same sender are delivered in sending order

I Causal: Reception order respecting causal order on sending (implies FIFO)
(forces an order of messages coming from differing senders)

Time-related properties

I Timed diffusion: No message is sent after a given delay
(without underlying synchronous communication, you can only tend to this)

Uniformity of a given property

I That property also apply to faulty processes
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Linking between these properties

I The four properties classes on group protocols are orthogonal

I Every combination exist
I reliable without order, reliable FIFO, . . . , atomic causal

I Some combination imply other ones

=
⇒

⇐=

⇐=

⇐=

diffusion

Atomic diffusion

=
⇒

diffusion
Atomic causal

Atomic FIFOReliable FIFO

diffusion

Reliable diffusion
=
⇒

Reliable causal
diffusion
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Conclusion

What we saw
I Notion of distributed system (DS)

I Notion of time and state in a DS

I Main issues of faults in DS

I Expected properties of a DS:
Safety, liveness (no deadlock, finishing), Scalability, Fault tolerance

I Classical problems in DS, and ideas of some algorithms

I Some classical approaches to solve these issues
Order/abstract clocks, applicative topologies, Symmetry breaking (token, leader)

What we didn’t saw (because of lack of time)

I Notion of security in DS

I Every details of every algorithms

I A whole load of other problems, also quite classical:
Wave algorithms; Distributed commits (2PC/3PC); Checkpointing; Ending detection
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What you should remember

The models
I No shared time, no shared memory

I Asynchronism, Failures

The tools
I Abstract clocks, applicative topologies, token-based

The presented algorithms

I Mutex: Centralized, Lamport, Ricart/Agrawala, Roucairol/Carvalho,
Suzuki/Kasami
(you should be able to run them on a provided initial situation)

I The other ones (only the spirit)

I hope you got the spirit of classical DS

I Even if I would need more time to get into real details
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Theoretical Distributed Algorithmic vs. Internet

Genesis
I At the beginning there were the mainframe

I Then came the PC and the local network (LAN)

I Then, people wanted clusters of PC to look alike the mainframe

I They proved theorems, builded file systems and distributed databases

I Then the Internet and the Web came, and blowed everything away

Why DS failed?

I DS approach attracting, promising premises (theoretical and practical)

I Limitations of this approach (solved by the web):
I Systems not autonomous: Domino effect on failures, co-configuration.
I Complexity: In design, configuration and usage (and thus, cost)
I Scalability: Impossible to use more than a few dozen servers, hundreds nodes

The Internet and Web promise:

I Maximal autonomy, and scaling consequently

I Issues in data consistency (but who cares?)
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The Internet and the Web

Inter-net
I This is the network of networks

I Assembled by interconnecting everything

I Started in 1969 with 4 nodes in one network

I Now, billions of elements

The Web
I This is one of the application on the Internet

I Web pages browsing

I History: hypertext at CERN in 1990

I Whole load of applications on Internet:
Mails, Voice-over-IP, Online Games, P2P

Goal now: How does it work?
I What are the big ideas (models)?

I Classical way of solving problems
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Layered Protocol Stack

Complexity of Existing Networks

I Lot of differing element categories (hosts, routers, links, applications)

I Lot of sort of elements in each category (huge amount of router models)

How to deal with this complexity

I Several layers, each solves one given issue (problem separation)

I Each layer defines:
I SAP (Service Access Point): service offered to higher layers
I Protocol between peers (using services of lower layers)
I PDU (Protocol Data Unit): format of exchanged data

Communication
System

Communication
System

bits

Transmission System

bits

ApplicationApplication
Protocol

Applicative

Protocol
Transport

InformationInformation

Signal Transmission

I Advantages: Decomposing, Reusability, Separate interface/implementation

I Issues: Performance loss
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The OSI Model

Organization in seven layers

I Applications: Common functions

I Presentation: Data representation and encryption (XDR)

I Session: Interhost communication (dialog setup)

I Transport: end-to-end connexion, reliability
(fragmentation, multiplexing, streaming)

I Network: Path determination and logical addressing (routing, congestion,

interconnection)

I Liaison: Physical addressing (Transmission between 2 sites, packet delimiting)

I Physical: Signal Transmission (converting between bits and signal)

Problems
I Standardization too slow, not (always) implemented

I Represents more than a 1m-high pile of paper
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The TCP/IP Model

That’s what got implemented

I Applications

I Transport: Transport between processes

I Network: Routing

I Transmission: On local network

copper radiofiber

PPP

TCP UDP

email www games ...

IP

HTTP

asyncCSMA sonet

FTPSMTP

ethernet

Look how it draws a hourglass centered on IP
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Internet Design

Internet History

I 1969 : ARAPANET, Internet’s ancestor
Military System during cold war
“Fault” tolerance ⇒ decentralized

I 1978 : first email

I 1978 : Lamport’s clock

I 1991 : HTTP and WWW

I 1995 : Yahoo and altavista
1
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10000

100000

1000000

10000000

100000000

1000000000

01/70 01/76 01/82 01/88 01/94 01/00 01/06

http://www.isc.org/index.pl?/ops/ds/host-count-history.php

Conception choices of the Internet

I The Distributed Algorithmic developed in parallel

I The designers of the Internet were pragmatics

I Theoretical sacrifices for quick usability
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Dealing with misconfiguration in IP

Problem
I Each administrator configures its own machine

I Misconfigurations may lead to cycles in shortest path (for example)

⇒ “Mad” packets saturate the network

Solution
I Each packet has a given Time To Live (TTL – that’s a logical time)

I Each router decreases the TTL of packets it routes

I A packet which TTL reaches 0 is eliminated

Issue induced by the solution

I The transport layer can lose packets

I Higher layer must deal with it...
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TCP: Adding Reliability

Problem
I Messages streams may arrive out of order

I Each message may get lost, late or duplicated

Solution 1
I Packets are numbered, and delivered in order only

Solution 2

I Expects an ACK for every message
(re-emit after timeout)

I Duplicated are detected from seq number

I Olds (> 120 sec) and dups are eliminated temps

ACK(seq=y1,
ack=x1)

DATA(seq=x2,
ack=y1)

Hôte 1

H=x1
CON(seq=x1)

Hôte 2

H=y1

H=x2

Services offered to higher layers

I FIFO channel without undetected loss

I (but also congestion handling)
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Résolution de noms sur Internet: DNS

Motivation
I Les humains n’aiment pas les IP, les machines n’aiment pas les noms longs

⇒ besoin d’un service d’annuaire

Problème
I Un annuaire unique ne passe pas à l’échelle

(volume données, point faible, distance=latence, maintenance)

Solution
I Base de données distribuée et hiérarchique

I Autorité délégué dans chaque branche

I Caches locaux de données

edu gov org de

racine

loria uhp-nancy

uk

dell

com

microsoft

fr

Gestion de la cohérence entre copies: soft-state

I Les enregistrements ont un âge maximal

I Ensuite, il les rafrâıchir (redemander à une source d’autorité)

⇒ problèmes de cohérence existants, mais limités dans le temps
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Theory or practice?

Bases of the misunderstanding

I Academics like clear abstractions and pure models

I Users like systems which work (the most often)

I Scalability is cost-effective (scale savings, increased market shares)

I Perfect consistency rarely mandatory in real life

Brewer’s Theorem (PODC’00 – proof by Gilbert&Lynch, 2002)

From the three following goals, you can have two at most!

I Consistent (broadly defined)

I Available

I Partitions don’t stop system
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Le choc des cultures
Systèmes distribués classiques: sémantique ACID

I A: Atomicité (tous ou personne)

I C: Consistance

I I: Isolation

I D: Durable

Systèmes utilisés sur Internet: sémantique BASE

I BA: Basically Available (souvent disponible)

I S: Soft-state (ou scalable)

I E: Eventually consistant consistance à terme

ACID
I Consistance avant tout

I Disponibilité moins fondamental

I Pessimiste

I Analyse rigoureuse

I Mécanismes complexes

BASE
I Disponibilité avant tout

I Consistance faible acceptée

I Optimiste

I Best-effort

I Simple et rapide
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Brewer’s Theorem

What can we expect from a distributed system?

I Strong Consistency: every node share the same view, even during updates

I High Availability: every node can find replica, even when some other nodes fail

I Partition Tolerance: properties kept when system partitioned (network failures)

CAP Theorem (Conjectured by Brewer)

I From these three systemic requirements, you can get at most two

I The choice of the forgotten one has strong implications

E. Brewer. Towards robust distributed systems. (Invited Talk) PODC 2000.

Gilbert & Lynch Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services, ACM SIGACT 33:2, 2002
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Possible Design Choices

Consistency and Availability

I If you want transactions, you must get (and keep) your node connected

I Approaches: (classical in distributed algorithmic)

I Two-phase commit; Cache invalidation (cf. coherence corpus)

I Examples: systems for LANs (DB, FS, . . . )

Consistency and Partition-Tolerance

I System freeze allowed ; consistency even if transient partition

I Approaches: (also classical in distributed algorithmic)

I Pessimistic locks; Quorums and Elections (detecting the partitioning)

I Examples: distributed DB, distributed locks

Availability and Partition-Tolerance

I When you forget about consistency, everything becomes easier

I Approaches: (typical on the Internet)

I TTL and soft-state; Optimistic updates with conflict resolution

I Examples: DNS, Cache Web
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Conclusion on historical distributed systems

What we saw
I Algorithmic of distributed systems is complex

I Lots of impossibility results
I Easy problems quite rare
I Hard to quantify the cost of a solution and its matching to the needs

I Some existing systems (Internet) are much more pragmatic
I Exchange strong consistency for good availability and partition-tolerance
I Mandatory for scalability

I These are two distinct origins of the modern research in distributed systems

⇒ Very active domain

Ce que nous ne verrons pas ici

I Systèmes temps réel (industriels, militaire), applications de la théorie

I Solution de programmation distribuée
I Distribution implicite: RPC, Java RMI, CORBA, J2EE, .NET.
I Distribution explicite (pour schizo ;): Sockets BSD, Erlang, mOZart, GRAS.
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Peer-to-Peer: What is it?

Peer definition from Merriam-Webster:

I one that is of equal standing with another;

I one belonging to the same societal group (based on age, grade, or status)

Definition of P2P
1. Significant autonomy from central servers

2. Exploits resources at the edges of the Internet
(storage and content, CPU cycles, human presence)

3. Individual nodes have intermittent connectivity, being added & removed

I Not strict requirements, instead typical characteristics

It’s a broad definition:
I P2P file sharing: Napster, Gnutella, KaZaA, eDonkey, etc

I P2P communication: Instant messaging, Voice-over-IP (Skype)

I P2P computation: seti@home, volunteer computing

I DHTs (& apps): Chord, CAN, Pastry, Tapestry
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Motivations

Promises
I Organic growth (lower deployment and operating costs)

I Independent from the infrastructures

I Scalable, Robust

There is a strong need for such systems

I Cooperative computations

I Robust services

I Ad-hoc networks

I It’s hard to setup a large network otherwise

Technology make these systems possible

I Computer always more powerful: every PC can be a server

I Wireless systems

I New algorithms for scalable systems

I Solutions to build safe systems from unsafe components
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P2P Systems Organization: Overlays

Overlay Networks

overlay edge

network link

Layers

Applications

Support for
decentralized
applications
(overlay)

Network
(TCP, UDP)
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Overlay Graph

Virtual edge

I TCP connection

I or simply a pointer to an IP address

Overlay maintenance

I Periodically ping to make sure neighbor is still alive

I Or verify liveness while messaging

I If neighbor goes down, may want to establish new edge

I New node needs to bootstrap

Kind of overlays

I Unstructured overlays: e.g., new node randomly chooses three existing nodes
as neighbors

I Structured overlays: e.g., edges arranged in restrictive structure

I Network Proximity: Not necessarily taken into account
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1. Overview of P2P

overlay networks
current P2P applications

P2P file sharing & copyright issues
Instant messaging / voice over IP
P2P distributed computing

worldwide computer vision
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P2P file sharing

Alice runs P2P client 
application on her 
notebook computer
Intermittently 
connects to Internet; 
gets new IP address 
for each connection
Registers her content 
in P2P system

Asks for “Hey Jude”
Application displays 
other peers that have 
copy of Hey Jude.
Alice chooses one of 
the peers, Bob.
File is copied from 
Bob’s PC to Alice’s 
notebook: P2P
While Alice downloads, 
other users uploading 
from Alice.
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Millions of content servers

Hey 
Jude

Magic 
Flute

Star
Wars

ERNPR

Blue
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Killer deployments

Napster
disruptive; proof of concept 

Gnutella
open source

KaZaA/FastTrack
Today more KaZaA traffic then Web traffic!

eDonkey / Overnet
Becoming popular in Europe
Appears to use a DHT

Is success due to massive number of servers, 
or simply because content is free?
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P2P file sharing software

Allows Alice to open up 
a directory in her file 
system

Anyone can retrieve a 
file from directory
Like a Web server

Allows Alice to copy 
files from other users’ 
open directories:

Like a Web client

Allows users to search 
nodes for content 
based on keyword 
matches:

Like Google

Seems harmless 
to me !
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Copyright issues (1)

Direct infringement:
end users who 
download or upload 
copyrighted works

Indirect infringement:
Hold an individual 
accountable for 
actions of others
Contributory
Vicarious

direct infringers

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 103/223



18

Copyright issues (2)

Contributory infringer:
knew of underlying 
direct infringement, 
and
caused, induced, or 
materially contributed 
to direct infringement

Vicarious infringer:
able to control the 
direct infringers (e.g., 
terminate user 
accounts), and
derived direct financial 
benefit from direct 
infringement (money, 
more users)

(knowledge not necessary)
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Copyright issues (3)
Betamax VCR defense

Manufacturer not 
liable for contributory 
infringement
“capable of substantial 
non-infringing use”
But in Napster case, 
court found defense 
does not apply to all 
vicarious liability

Guidelines for P2P developers
total control so that 
there’s no direct 
infringement

or
no control over users – no 
remote kill switch, 
automatic updates, actively 
promote non-infringing 
uses of product
Disaggregate functions: 
indexing, search, transfer
No customer support
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Instant Messaging

Alice runs IM client on 
her PC
Intermittently 
connects to Internet; 
gets new IP address 
for each connection
Registers herself with 
“system”
Learns from “system” 
that Bob in her buddy 
list is active

Alice initiates direct 
TCP connection with 
Bob: P2P
Alice and Bob chat.

Can also be voice, 
video and text.

We’ll see that Skype
is a VoIP P2P system
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P2P Distributed Computing

seti@home
Search for ET 
intelligence
Central site collects 
radio telescope data
Data is divided into 
work chunks of 300 
Kbytes
User obtains client, 
which runs in backgrd

Peer sets up TCP 
connection to central 
computer, downloads 
chunk
Peer does FFT on 
chunk, uploads results, 
gets new chunk

Not peer to peer, but exploits
resources at network edge
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1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision
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Worldwide Computer Vision

Alice’s home computer:
Working for biotech, 
matching gene sequences
DSL connection downloading 
telescope data
Contains encrypted 
fragments of thousands of 
non-Alice files
Occasionally a fragment is 
read; it’s part of a movie 
someone is watching in Paris
Her laptop is off, but it’s 
backing up others’ files

Alice’s computer is 
moonlighting
Payments come from 
biotech company, movie 
system and backup service

Your PC is only a component
in the “big” computer
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Worldwide Computer (2)

Anderson & Kubiatowicz:
Internet-scale OS 

Thin software layer running 
on each host & central 
coordinating system 
running on ISOS server 
complex
allocating resources, 
coordinating currency 
transfer
Supports data processing & 
online services

Challenges
heterogeneous hosts
security
payments

Central server complex
needed to ensure privacy 
of sensitive data
ISOS server complex  
maintains databases of 
resource descriptions, 
usage policies, and task 
descriptions
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Historique des systèmes pair-à-pair

Motivations
I Permet d’obtenir de la musique (mp3) gratuitement de l’internet

I Principe: partager stockage et bande passante des participants (individus)

I Modèle: Tout le monde peut télécharger de ce que chacun stocke

I Difficultés principales:
I Échelle: des milliers, des millions de machines
I Dynamicité: les machines viennent et partent à tout moment (churn)

Napster (popularized P2P even if Eternity [Ross Anderson] exists since 96)

I Index centralisé du contenu de toutes les machines

I Après la recherche, échange entre clients (P2P)

I Avantages:
I Simple à implémenter
I Possibilité de recherche avancée

I Défauts:
I Extensibilité (?)
I Point central (single point of failure)

m1

m4

m2

m3

A B

BE
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I Possibilité de recherche avancée
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Napster
program for sharing files over the Internet
a “disruptive” application/technology?
history:

5/99: Shawn Fanning (freshman, Northeasten U.) 
founds Napster Online music service
12/99: first lawsuit
3/00: 25%  UWisc traffic Napster
2/01: US Circuit Court of 

Appeals: Napster knew users 
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K,                   

Morpheus (KaZaA): 300K
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Napster

judge orders Napster 
to pull plug in July ‘01 
other file sharing apps 
take over!

gnutella
napster
fastrack (KaZaA)

8M

6M

4M

2M

0.0
bi

ts
 p

er
 s

ec
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Distributed Search/Flooding
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Distributed Search/Flooding

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 117/223



37

Gnutella

focus: decentralized method of searching 
for files

central directory server no longer the 
bottleneck
more difficult to “pull plug”

each application instance serves to:
store selected files
route queries from and to its neighboring peers
respond to queries if file stored locally
serve files
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Gnutella

Gnutella history:
3/14/00: release by AOL, almost immediately 
withdrawn
became open source
many iterations to fix poor initial design (poor 
design turned many people off)

issues:
how much traffic does one query generate?
how many hosts can it support at once?
what is the latency associated with querying?
is there a bottleneck?
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Gnutella: limited scope query
Searching by flooding:

if you don’t have the file you want, query 7 
of your neighbors.
if they don’t have it, they contact 7 of 
their neighbors, for a maximum hop count 
of 10.
reverse path forwarding for responses (not 
files)

Note: Play gnutella animation at: 
http://www.limewire.com/index.jsp/p2p

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 120/223



40

Gnutella overlay management

New node uses bootstrap node to get IP 
addresses of existing Gnutella nodes
New node establishes neighboring relations 
by sending join messages

join
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Gnutella in practice

Gnutella traffic << KaZaA traffic
16-year-old daughter said “it stinks”

Couldn’t find anything
Downloads wouldn’t complete

Fixes: do things KaZaA is doing: hierarchy, 
queue management, parallel download,…
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KaZaA: The service

more than 3 million up peers sharing over 
3,000 terabytes of content
more popular than Napster ever was
more than 50% of Internet traffic ?
MP3s & entire albums, videos, games
optional parallel downloading of files
automatically switches to new download 
server when current server becomes 
unavailable
provides estimated download times
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KaZaA: The service (2)

User can configure max number of simultaneous 
uploads and max number of simultaneous 
downloads
queue management at server and client

Frequent uploaders can get priority in server queue
Keyword search

User can configure “up to x” responses to keywords
Responses to keyword queries come in waves; 
stops when x responses are found
From user’s perspective, service resembles Google, 
but provides links to MP3s and videos rather than 
Web pages

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 125/223



46

KaZaA: Technology

Software
Proprietary
control data encrypted
Everything in HTTP request and response 
messages

Architecture
hierarchical
cross between Napster and Gnutella
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KaZaA: Architecture

Each peer is either a 
supernode or is 
assigned to a 
supernode

56 min avg connect
Each SN has about 
100-150 children
Roughly 30,000 SNs

Each supernode has 
TCP connections with 
30-50 supernodes

0.1% connectivity
23 min avg connect

supernodes

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 127/223



50

KaZaA: Architecture (2)

Nodes that have more connection 
bandwidth and are more available are 
designated as supernodes
Each supernode acts as a mini-Napster hub, 
tracking the content and IP addresses of 
its descendants
Does a KaZaA SN track only the content of 
its children, or does it also track the 
content under its neighboring SNs?

Testing indicates only children.
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KaZaA metadata

When ON connects to SN, it uploads its metadata.
For each file:

File name
File size
Content Hash
File descriptors: used for keyword matches during query

Content Hash:
When peer A selects file at peer B, peer A sends 
ContentHash in HTTP request
If download for a specific file fails (partially completes), 
ContentHash is used to search for new copy of file.
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KaZaA: Overlay maintenance

List of potential supernodes included within 
software download
New peer goes through list until it finds 
operational supernode

Connects, obtains more up-to-date list, with 
200 entries
Nodes in list are “close” to ON.
Node then pings 5 nodes on list and connects 
with the one

If supernode goes down, node obtains 
updated list and chooses new supernode
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KaZaA Queries

Node first sends query to supernode
Supernode responds with matches
If x matches found, done.

Otherwise, supernode forwards query to 
subset of supernodes

If total of x matches found, done.
Otherwise, query further forwarded

Probably by original supernode rather than 
recursively
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Parallel Downloading; Recovery

If file is found in multiple nodes, user can 
select parallel downloading

Identical copies identified by ContentHash
HTTP byte-range header used to request 
different portions of the file from 
different nodes
Automatic recovery when server peer 
stops sending file

ContentHash
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KaZaA Corporate Structure

Software developed  by 
Estonians
FastTrack originally 
incorporated in Amsterdam
FastTrack also deploys 
KaZaA service
FastTrack licenses 
software to Music City 
(Morpheus) and Grokster
Later, FastTrack
terminates license, leaves 
only KaZaA with killer 
service

Summer 2001, Sharman 
networks, founded in 
Vanuatu (small island in 
Pacific), acquires 
FastTrack

Board of directors, 
investors: secret

Employees spread 
around, hard to locate
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Lessons learned from KaZaA

Exploit heterogeneity
Provide automatic 
recovery for 
interrupted downloads
Powerful, intuitive 
user interface

Copyright infringement
International cat-and-
mouse game
With distributed, 
serverless
architecture, can the 
plug be pulled?
Prosecute users?
Launch DoS attack on 
supernodes?
Pollute?

KaZaA provides powerful 
file search and transfer 
service without server 
infrastructure
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Measurement studies by Gribble et 
al

2002 U. Wash campus 
study
P2P: 43%; Web: 14%
Kazaa objects fetched 
at most once per client
Popularity distribution 
deviates substantially 
from Zipf distribution

Flat for 100 most 
popular objects

Popularity of objects 
is short.

KaZaA users are patient
Small objects (<10MB): 
30% take more than 
hour to download
Large objects (>100MB): 
50% more than 1 day
Kazaa is a batch-mode 
system, downloads done 
in background
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Pollution in P2P

Record labels hire “polluting companies” to 
put bogus versions of popular songs in file 
sharing systems
Polluting company maintains hundreds of 
nodes with high bandwidth connections
User A downloads polluted file
User B may download polluted file before A 
removes it
How extensive is pollution today?
Anti-pollution mechanisms?
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Challenge: Locating Content

Simplest strategy: expanding ring search 

If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

Need many cached copies to keep search overhead small

I’m looking for 
NGC’02 Tutorial 

Notes

Here you go!
Here you go!
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Directed Searches

Idea: 
assign particular nodes to hold particular content (or 
pointers to it, like an information booth)
when a node wants that content, go to the node that is 
supposed to have or know about it

Challenges:
Distributed: want to distribute responsibilities among 
existing nodes in the overlay
Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute responsibility knowledge from leaving 

nodes
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DHT Step 1: The Hash
Introduce a hash function to map the object being searched 
for to a unique identifier:

e.g., h(“NGC’02 Tutorial Notes”) → 8045
Distribute the range of the hash function among all nodes in 
the network

Each node must “know about” at least one copy of each 
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045
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“Knowing about objects”

Two alternatives
Node can cache each (existing) object that 
hashes within its range
Pointer-based: level of indirection - node 
caches pointer to location(s) of object

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500
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DHT Step 2: Routing

For each object, node(s) whose range(s) cover that object 
must be reachable via a “short” path
by the querier node (assumed can be chosen arbitrarily)
by nodes that have copies of the object (when pointer-based 
approach is used)

The different approaches (CAN,Chord,Pastry,Tapestry) 
differ fundamentally only in the routing approach

any “good” random hash function will suffice
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DHT Routing: Other Challenges

# neighbors for each node should scale with growth in 
overlay participation (e.g., should not be O(N))
DHT mechanism should be fully distributed (no centralized 
point that bottlenecks throughput or can act as single point 
of failure)
DHT mechanism should gracefully handle nodes 
joining/leaving the overlay

need to repartition the range space over existing nodes
need to reorganize neighbor set
need bootstrap mechanism to connect new nodes into the 
existing DHT infrastructure
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DHT API

each data item (e.g., file or metadata 
containing pointers) has a key in some ID 
space
In each node, DHT software provides API:

Application gives API key k
API returns IP address of node that is 
responsible for k

API is implemented with an underlying DHT 
overlay and distributed algorithms 
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DHT API

application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
a t

io
n

D
H

T  
s u

bs
tra

te
A

PI

app licat ion

D
H

T su bstrat e
A

P I

overlay
network

key
responsible
node

each data item (e.g., file or metadata 
pointing to file copies) has a key 
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DHT Layered Architecture

TCP/IP

DHT

Network 
storage

Event 
notification

Internet

P2P substrate 
(self-organizing
overlay network)

P2P application layer?
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CARP

DHT for cache clusters
Each proxy has unique 
name

key = URL = u
calc h(proxyn, u) for all 
proxies
assign u to proxy with 
highest h(proxyn, u) 

institutional
network

proxies

clients

Internet

if proxy added or 
removed, u is likely 
still in correct proxy
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CARP (2)

circa 1997
Internet draft: 
Valloppillil and Ross

Implemented in 
Microsoft & Netscape 
products
Browsers obtain script 
for hashing from 
proxy automatic 
configuration file 
(loads automatically)

Not good for P2P:
Each node needs to 
know name of all other 
up nodes
i.e., need to know O(N) 
neighbors
But only O(1) hops in 
lookup
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Consistent hashing (1)

Overlay network is a circle
Each node has randomly chosen id

Keys in same id space
Node’s successor in circle is node with next 
largest id

Each node knows IP address of its successor
Key is stored in closest successor
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Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110 
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors
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Consistent hashing (3)

Node departures
Each node must track 
s ≥ 2 successors
If your successor 
leaves, take next one
Ask your new 
successor for list of 
its successors; update 
your s successors

Node joins
You’re new, node id k
ask any node n to find 
the node n’ that is the 
successor for id k
Get successor list 
from n’
Tell your predecessors 
to update their 
successor lists
Thus, each node must 
track its predecessor  
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Consistent hashing (4)

Overlay is actually a circle with small 
chords for tracking predecessor and k 
successors
# of neighbors = s+1: O(1)

The ids of your neighbors along with their IP 
addresses is your “routing table”

average # of messages to find key is O(N)

Can we do better?
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Chord, MIT

Principe de base

I Espace d’adressage circulaire; données sur noeud suivant; voisins: n + 2i ,∀i

I Recherche en O(log(n))

+16

+8
+4

+2

+32

+1 N8 + 1   N14

N8 + 4   N14

N8 + 8   N21

N8 +32  N42

N8 +16  N32

N8 + 2   N14

Finger table

K24K30

K54

K38

K10

N42

N14

N21

N32
N38

N48

N51

N56

N1

N8

Stoica et Al, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM
SIGCOMM 2001.
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Chord, MIT

Principe de base

I Espace d’adressage circulaire; données sur noeud suivant; voisins: n + 2i ,∀i

I Recherche en O(log(n))

lookup(54)

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Stoica et Al, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM
SIGCOMM 2001.
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Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 1

I Service maintenu durant insertion

I Insertions concurrentes possibles
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Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48
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N1

N8
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N26

K24K30

K54
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Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 4

I Service maintenu durant insertion

I Insertions concurrentes possibles
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Autres propriétés de Chord

Retrait d’un nœud Chord
I Table = liste de O(log(N)) successeurs
⇒ Probablement correct même si hécatombe de nœuds (proba mort = 1/2 )

+16

+8

+4

+2

+32

+1

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

X

X

X

Autres propriétés (démontrées)

I Résistance probable aux morts simultanées

I Possibilité d’ajouts simultanés

I Résistance à la mort de noeud lors de l’ajout
d’autres

I Équilibrage de charge entre les noeuds

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 155/223



Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

5

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223
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5

7 4

3

2

6 1

Raffinements
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; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)
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CAN node removal
Underlying cube structure should 
remain intact

i.e., if the spaces covered by s & t were 
not formed by splitting a cube, then 
they should not be merged together

Sometimes, can simply collapse 
removed node’s portion to form bigger 
rectangle

e.g., if 6 leaves, its portion goes back to 
1

Other times, requires juxtaposition of 
nodes’ areas of coverage

e.g., if 3 leaves, should merge back into 
square formed by 2,4,5
cannot simply collapse 3’s space into 4 
and/or 5
one solution: 5’s old space collapses into 
2’s space, 5 takes over 3’s space

1 6

5
4

3

2

1 6

5
4

3

2
4 2

5
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CAN (recovery from) removal process

View partitioning as a binary tree of
leaves represent regions covered by overlay nodes (labeled by 
node that covers the region)
intermediate nodes represent “split” regions that could be 
“reformed”, i.e., a leaf can appear at that position
siblings are regions that can be merged together (forming the 
region that is covered by their parent)

1 6

5
4

3

2
7

8 9

10

11
12

13 14

109

8

7

2

4

5

3

13

12

14

11

61
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CAN (recovery from) removal process

Repair algorithm when leaf s is removed
Find a leaf node t that is either

• s’s sibling 
• descendant of s’s sibling where t’s sibling is also a leaf node 

t takes over s’s region (moves to s’s position on the tree)
t’s sibling takes over t’s previous region

Distributed process in CAN to find appropriate t w/ sibling:
current (inappropriate) t sends msg into area that would be covered by 
a sibling
if sibling (same size region) is there, then done.  Else receiving node 
becomes t & repeat

109

8

7

2

4

5

3

13

12

14

11

61

X

1 6

5
4

3

2
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Algorithme de Plaxton

Structure de données distribuée servant de table de routage.

Idée de base
I Chaque noeud a une clé d’identification unique (répartition uniforme)

I Routage de proche en proche dans l’espace des clés par suffixe commun
Exemple : (3745→3BA8) = (???8→??A8→?BA8→3BA8)

I Table: Ligne i ; préfix commun taille i ; Colonne j : caractère ’j ’ ensuite.

L4

L3

L3

3745

A5A8
4238AA32

532
5

45

3BA8

BA8
8

A8

L2

L2

L1

L1

– 1201 3202 2123
3200 – 3220 2130
3010 3110 2210 –
0310 1310 – 3310

Table du nœud 2310 en base 4.

, Petite table (b(logb(N))), peu de saut (dlogb (N)e)
/ Pas d’algo pour construire la table

Plaxton et Al, Accessing nearby copies of replicated objects in a distributed environment, spaa’97.
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Systèmes P2P basés sur Plaxton

Tapestry et Pastry

I En 2001, deux algos sont proposés pour créer les tables et les tenir à jour

I Tapestry: Thésard de U. Berkley; Pastry: U. Rice et Microsoft Research

I Idée de base: mélange de Chord et Plaxton

I Différence:
I Optimisations diverses et variées, principalement
I L’histoire retiendra surtout Pastry

323310
323211

322021

313221

203231

lookup(m,323310)

2033*2032*2031*2030*

203*202*201*200*

23*22*21*20*

3*2*1*0*

Table de 203231
Leaf set de 203231
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Pastry: Experimental results

Prototype
implemented in Java

deployed testbed (currently ~25 sites 
worldwide)

Simulations for large networks
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Pastry: Average # of hops

L=16, 100k random queries
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Pastry: # of hops (100k nodes)

L=16, 100k random queries
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Pastry: # routing hops 
(failures)

L=16, 100k random queries, 5k nodes, 500 failures
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Pastry, Tapestry et les autres

Ajout de nœuds

I Nouveau venu choisi un ID aléatoirement

I Envoi d’un message à cet ID

I Le nœud le plus proche de cet ID répond, avec ses tables de routage

Départ de nœuds

I Messages fréquents pour vérifier la validité de la table

I Échanges d’éléments de tables entre voisins vivants

Autres overlay P2P proposés dans la littérature

I Kademlia: Un peu plaxton, mais routage par XOR binaire au lieu de préfixe

I Bamboo: accent mis sur la tolérance au churn

I SkipNet: accent mis sur la localité réseau

I Kelips: accent mis sur efficacité des recherches

I Accordeon: balance entre temps de recherche et maintenance des tables

I openDHT: tentative d’unification
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Comparaisons entre systèmes pair-à-pair

Comparaison entre P2P non-structurés et DHT

I DHT préférables pour: recherche exacte d’éléments rares

I Non-structurés préférables pour: recherche approchée, churn extrême

Castro, Costa, Rowstron, Debunking some myths about structured and unstructured overlays,
NSDI’05.

Comparaison entre DHT
CAN Chord Pastry Tapestry

Dim d base b base b
Taille table O(d) log2(N) b logb(N) + O(b) b logb(N)

# saut O(d × N1/d) log2(N) logb(N) logb(N)

# msg ajout O(d × N1/d) O(log2
2(N)) O(logb(N)) O(logb(N)2)

Retrait ?? O
(
log2 N

)
?? ??

Localité non non oui oui
(mobilité) non oui
Sécurité non non à l’étude non
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File sharing using DHT

Advantages
Always find file 
Quickly find file
Potentially better 
management of 
resources

Challenges
File replication for 
availability
File replication for 
load balancing
Keyword searches

There is at least one file sharing system 
using DHTs: Overnet, using Kademlia
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File sharing: what’s under key?

Data item is file itself
Replicas needed for availability
How to load balance?

Data item under key is list of pointers to file
Must replicate pointer file
Must maintain pointer files: consistency
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File sharing: keywords

Recall that unstructured file sharing 
provides keyword search

Each stored file has associated metadata, 
matched with queries

DHT: Suppose key = h(artist, song)
If you know artist/song exactly, DHT can find 
node responsible for key
Have to get spelling/syntax right!

Suppose you only know song title, or only 
artist name?
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Keywords: how might it be done?

Each file has XML descriptor

<song>
<artist>David 

Bowie</artist>
<title>Changes</title>
<album>Hunky Dory</album>
<size>3156354</size>
</song>

Key is hash of descriptor: k = 
h(d)

Store file at node responsible 
for k

Plausible queries
q1 = /song[artist/David 

Bowie][title/Changes] 
[album/Hunky Dory] 
[size/3156354]

q2 = /song[artist/David 
Bowie][title/Changes]

q3 = /song/artist/David 
Bowie

q4 = /song/title/Changes

Create keys for each plausible 
query: kn = h(qn)

For each query key kn, store 
descriptors d at node 
responsible for kn
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Keywords: continued

Suppose you input q4 = /song/title/Changes
Locally obtain key for q4, submit key to 
DHT
DHT returns node n responsible for q4
Obtain from n the descriptors of all songs 
called Changes
You choose your song with descriptor d, 
locally obtain key for d, submit key to DHT
DHT returns node n’ responsible for 
desired song
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Blocks

HeyJude MP3

HeyJude1 HeyJude8

Each block is assigned to a different node
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Blocks (2)

Benefits
Parallel downloading 

Without wasting global 
storage

Load balancing
Transfer load for 
popular files 
distributed over 
multiple nodes

Drawbacks
Must locate all blocks
Must reassemble 
blocks
More TCP connections
If one block is 
unavailable, file is 
unavailable
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Erasures (1)

HeyJude

• Reconstruct file with any m of r pieces

• Increases storage overhead by factor r/m
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Erasures (2)

Benefits
Parallel downloading

Can stop when you get 
the first m pieces

Load balancing
More efficient copies 
of blocks

Improved availability 
for same amount of 
global storage

Drawbacks
Must reassemble 
blocks
More TCP connections
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Persistent file storage

PAST layered on Pastry
CFS layered on Chord

P2P Filesystems
Oceanstore
FarSite
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191

PAST: persistence file storage

Goals
Strong persistence
High availability
Scalability 

nodes, files, 
queries, users

Efficient use of pooled 
resources

Benefits
Provides powerful 
backup and archiving 
service
Obviates need for 
explicit mirroring 
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Mobility management

Alice wants to contact bob smith
Instant messaging
IP telephony

But what is bob’s current IP address?
DHCP
Switching devices
Moving to new domains
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Mobility Management (2)

Bob has a unique identifier:
bob.smith@foo.com
k =h(bob.smith@foo.com)

Closest DHT nodes are responsible for k
Bob periodically updates those nodes with 
his current IP address
When Alice wants Bob’s IP address, she 
sends query with k =h(bob.smith@foo.com)
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Mobility management (3)

Obviates need for SIP servers/registrars
Can apply the same idea to DNS
Can apply the same idea to any directory 
service

e.g., P2P search engines
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Quelques applications P2P

Rendez-vous (système d’annuaire)

I Motivation: Utilisateurs mobiles (changements d’IP)

I Application: Chat, Téléphonie, (voire DNS)

I Principe: Insertion régulière IP dans le système

Stockage de fichier

I (fonction originelle avec Napster)

I Avantages: grande capacité disque, gros lien, réplication, . . .

I Exemple: Usenet
I Le système, lancé en 1981, a une croissance exponentielle
I Seuls 50 sites ont tout car stockage + bande passante = 30000$
⇒ bon candidat aux DHT
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Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223
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Applications
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Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Diffusion

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau
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BitTorrent url tracker

1. GET file.torrent

file.torrent info:
• length
• name
• hash
• url of tracker

2. GET 3. list of 
peers

4.
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BitTorrent: Pieces

File is broken into pieces
Typically piece is 256 KBytes
Upload pieces while downloading pieces

Piece selection
Select rarest piece
Except at beginning, select random pieces

Tit-for-tat
Bit-torrent uploads to at most four peers
Among the uploaders, upload to the four that 
are downloading to you at the highest rates
A little randomness too, for probing
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NATs

nemesis for P2P
Peer behind NAT can’t be a TCP server
Partial solution: reverse call

Suppose A wants to download from B, B behind NAT
Suppose A and B have each maintain TCP connection to 
server C (not behind NAT)
A can then ask B, through C, to set up a TCP connection 
from B to A. 
A can then send query over this TCP connection, and B 
can return the file

What if both A and B are behind NATs?
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Confiance entre participants
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Anonymous Activities

Suppose clients want to perform anonymous communication

I Requestor wishes to keep its identity secret

I Deliverer wishes to also keep identity secret

Whitehat Motivations
I Protect privacy

I Fight censorship

Blackhat Motivations
I Avoid the detection of criminal activity

I Hide crucial infrastructure: “mothership” servers, monitoring and control
servers, etc
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Example systems

● BotNets
– networks of compromised PCs

– initially IRC-based; now increasingly P2P

– main servers and operator wants to stay anonym

● Anonym networks
– Dedicated (closed or open) networks

– some variation of “mixing” communication so that 
participants cannot be traced back

– remailer networks, low latency networks, friends-
networks

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 192/223
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Storm Botnet

● appeared in 2007 January
● primarily for sending spam
● advanced P2P technology
● size estimated between 500,000 and 50 million
● aggressive measures for protection

– regular download of updates to prevent reverse 
engineering

– DDoS attack against external hosts that attempt to 
probe its operations
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Storm Botnet Technology

● uses overnet protocol, based on the kademlia 
DHT
– key space is 128 bit binary (usual DHT design)

– routing is based on XOR distance
● eg d(001,110)=001110=111

– for 0<=i<=128 there is a “bucket” of k(=20) 
addresses that are at distance from [2i,2i+1)

– these buckets are kept fresh from observing traffic 
(preferring oldest, but live nodes), and proactive 
lookup if needed

– lookup uses the 3 closest nodes in parallel
Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 194/223
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Storm Botnet Technology

● Storm bots periodically search for a given key
– key is generated using the current date and a 

random number from [0,31]

– value of that key contains an encrypted URL

– which in turn contains new binary updates and 
other files to download

● for some reason
– if this lookup fails, bots rejoin the network with new 

ID and repeat the search

● file sharing networks such as eDonkey can be 
used to store these keys! (same protocol)
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Measurements

● Crawler: kademlia client that
– performs queries for random keys

– records node ID, IP and port that is returned

● seed list
– 400 hard-wired IP-s in the Storm bot binary

– storm bot run in a honeypot for 5 hours: 4000 peers

● full crawls (entire 128 bit space)
● zone crawl (space with a fixed prefix)
● estimated size: around 500,000

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 196/223
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Uneven distribution of storm bot IDs
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Explanation of uneven distribution:
war against the Storm?

● Around 1% of returned IP addresses bogous
● But 45% of unique Ids have one of these 

addresses
● These IDs are responsible for the non-

uniformity of the ID distribution as well
● possible explanation

– index poisoning

– we are witnessing efforts to fight the Storm Botnet
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Whitehats vs Blackhats

May 2009: Torpig hijack

I Classical BotNet, specialized in data stealing (through pishing)
I Researchers managed to get the control of the Torpig botnet for 10 days
I The botnet get commands from C&C servers, changing domain name regularly
I Researchers registered future names before criminals
I New binary uploaded after 10 days; 70Gb of personal data retrieved;

Measurements: ≈180k nodes

27 december 2009: Mega-D shut down

I Botnet responsible for about 10% of whole spam for months
I Got the ISP hosting them to shut 11 of 13 C&C servers
I Hijacked DNS registery of the other ones
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Tor

● Can provide anonymity for both clients and 
servers (the latter using the “.onion” domain)

● So called “onion” routing
● Originally funded by US Naval Research Lab

– To provide protection for negotiators, agents, etc

– but if only the Navy uses it, everyone knows it's the 
Navy: so it went public...

● Later taken over by Electronic Frontier 
Foundation (EFF)

● Currently a few thousand nodes
Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 200/223
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Onion Routing

A Node N that wishes to send a message to a node 
M selects a path (N, V1, V2, …, Vk, M)

Each node forwards message received from previous 
node
N can encrypt both the message and the next hop 
information recursively using public keys: a node only 
knows who sent it the message and who it should send to

N’s identity as originator is not revealed

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 201/223
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Anonymnity on both sides
A requestor of an object receives the object from the 
deliverer without these two entities exhanging identities
Utilizes a proxy

Using onion routing, deliverer reports to proxy (via onion 
routing) the info it can deliver, but does not reveal its identity
Nodes along this onion-routed path, A,  memorize their previous 
hop
Requestor places request to proxy via onion-routing, each node 
on this path, B,  memorize previous hop
Proxy→Deliverer follows “memorized” path A
Deliverer sends article back to proxy via onion routing
Proxy→Requestor via “memorized” path B

Proxy
Requestor Deliverer

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 202/223



20

● the client never uses its public key
● onion: layers of AES encryption (a symmetric 

key encryption) based on secret key negotiated 
with Diffie Hellman during the circuit building
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Problems: last step

● link between Tor exit and service is 
unencrypted
– people hosting Tor exits can see all traffic (but not 

the origin)

● Dan Egerstad: collected high value corporate 
and government email addresses
– arrested in October 2007!

– Egerstad says
● traffic to these email accounts probably originated 

from spies and not original owners
● web traffic is mostly porn...
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Other problems

● DNS leak
– resolving DNS requests is still direct

– latest version includes DNS resolver (understands 
.onion domain as well)

● traffic analysis
– techniques exist that capture correlated traffic 

without global knowledge

● misuse
– bittorrent clients often support Tor: huge traffic

– criminals wanting to avoid detection
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Les systèmes P2P aujourd’hui

Infrastructure choisie
I Décentralisée, tirant profit des clients puissants

Interface choisie
I Put(key, data)/Get(key): hachage classique

I lookup(key): recherche responsable de clé

La recherche en P2P
I Améliorations des infrastructures P2P

I Exploration de nouvelles fonctions (cf. plus haut)
I Conditions extrêmes (taille, churn)

I Standardisation de l’interface (⇒ openDHT)

I Prototypage et développement d’applications

Recherches sur

les infrastructures

Interface

applications

(prototypes)

Sablier P2P
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Défi: efficacité du routage vis-à-vis du réseau

20x

80x

81x

89x

Défi:
I Adéquation overlay et réseau physique

I Réduire nombre sauts et latence

Solution: Proximity Neighbor Selection

I Pour chaque case de la table, il y a
plusieurs candidats

I Choisir le noœud possible le plus proche
selon une métrique réseau (RTT)

Résultat:
I Les routes dans l’overlay convergent

physiquement

I Surcoût latence par rapport à IP:
rapport constant (< 3)

Castro, Druschel, Hu, Rowstron Proximity neighbor selection in tree-based structured
peer-to-peer overlays, Technical Report MSR-TR-2003-52, Microsoft Research, 2003.
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Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space

0.8

0.9

1

1.1

1.2

1.3

1.4

1000 10000 100000
Number of nodes

R
el

at
iv

e 
D

is
ta

nc
e

Pastry

Complete routing table

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 208/223



135

Pastry delay vs IP delay
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Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223
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networks, ODSI’02.
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Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap
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Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223
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Défi: churn
Churn dans systèmes réels
Article Système Durée mesurée
SGG02 Gnutella, Napster 50% < 60min
CLL02 Gnutella, Napster 31% < 10min
SW02 FastTrack 50% < 1min
BSV03 Overnet 50% < 60min
GDS03 Kazaa 50% < 2.4min

MTTF ≈ 1 heure ; c’est énorme

Ce problème reste
entier

(même si bamboo l’aborde)

Comportement de DHT existants face au churn
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Quelques problématiques actuelles en P2P

I Recherche sous churn extrême, mobilité IP (meilleurs algorithmes de routage)

I Gestion des données sous churn extrême (création et recherches de réplicas)

I Tirer profit de la localité réseau (sans en dépendre)

I Outils analytiques adaptés (formalisation de systèmes en changement continu)

I Pannes byzantines (fonctionnement malgré participants malveillants)

I Intégrité des données (cryptographie, consistance)

I Généralisation (recherche approchée)

I Répartition de la charge et hétérogénéité

I Gestion des pare-feux, NAT et intranets

I Anonymicité, mesures anti-censure

I Certains de ces problèmes sont résolus dans certains travaux

I Jamais tous en même temps

I Bibliographie du domaine très fournie, difficile d’avoir un point de vue général

Risson, Moors, Survey of Research towards Robust Peer-to-Peer Networks: Search Methods,
Computer Networks, 50(17):3485-521, 2006
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Chapter 5

Réseaux de capteurs sans fil



Réseaux de capteurs sans fil (Wireless Sensor Networks)

Principe: composants répartis pour faire des mesures

I Taille: une pièce → une boite d’allumettes

I Processeur: 8-bit → x86

I Mémoire: ko → Mo

I Radio: 20Kbps → 100 Kbps

I Sur batterie

Applications:

I Étude sismologique des bâtiments

I Transport des polluants: Même cause, même effet

I Écosystème des micro-organismes marins

I À chaque fois, maillage des mesures trop grossier

I ⇒ pas de modèle convenable

I Objectif: très nombreux petits senseurs pour affiner le maillage

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 214/223



Défis des SensorNets

Énergie

I Les composants sont sur batterie

I La durée de vie de l’ensemble devient une métrique de qualité

Difficultés de communications
I Puissance (électrique) du réseau: varie avec

1
distance4

I 10m ; 5000 ops/bit transmit ; 100m ; 50 000 000 ops/bit transmit

⇒ Système fortement décentralisé

⇒ Éviter les communications longue distance autant que possible

Pas de configuration

I Dissémination des capteurs ”aléatoire”

⇒ Besoin d’auto-organisation

Généralité contre spécificité

I Internet: une seule infrastructure pour toutes les applications

I Sensornet: chaque application a ses propres capteurs, sa propre infrastructure
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Comment obtenir les données

Motivation et problème

I Clairement un objectif fondamental de ces infrastructures

I Impossible pour chaque composant de joindre un point central
(énergie et bande passante limitée)

⇒ Diffusion

Principe

I On ne sait pas quel nœud a quelle donnée

⇒ on demande une donnée, et la requête est propagée

I Les nœuds ayant l’information répondent
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Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

1.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .
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I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223



Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

3.

client

source

Extension: mise place d’un arbre de diffusion
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Les SensorNet aujourd’hui

Physique
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Ce n’est pas franchement un sablier...

I Composants développés séparément (+ suppositions différentes sur l’ensemble)

I Certains offrent une intégration verticale, mais rien en horizontal

I L’objectif semble être de se ramener à un sablier comme IP

I Oui, mais lequel?
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Vers une infrastructure SensorNet unifiée
L’infrastructure de l’internet

I Objectif 1: connectivité universelle
I Problème: diversité des technologies; Solution: protocole IP universel

I Objectif 2: flexibilité des applications
I Problème: réseau adapté aux applications ; peu flexible (car réseau statique)
I Solution (end-to-end): services pas dans réseau, mais dans hôtes (modifiables)

I Résultat:
I Protège applications de diversité matérielle, et réseau de diversité applicative
I Accélère le développement et déploiement de chaque partie

Les SensorNets
I Applications data-centric ; abstraction end-to-end inapplicable

Traitement au sein du réseau souvent plus efficace

I Objectif: portabilité et reutilisabilité du code (dans la mesure du possible)

I Pas connectivité universelle, ni flexibilité d’application pour réseaux statiques

I Internet: couches opaques ⇒ abstraction simplifiée, mais efficacité décrue

I SensorNet: contraintes (énergétiques, etc) interdisent une telle perte

⇒ couches translucides (masquent les détails matériels, autorisent contrôle)
; Échange légère perte d’efficacité contre réutilisabilité bien meilleure
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Possible sablier pour les SensorNets

Où est le goulot du sablier?

I Dans l’internet: routage end-to-end en best-effort (IP)

I Sensornets: saut unique par broadcast best-effort (SP – single-hop)?

I Abstraction assez expressive pour optimisations applicatives

I Abstraction assez pauvre pour capturer réalités matérielles sous-jacentes

Vision d’ensemble possible

Rich Common Link Interface (SP)
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Conclusion sur les SensorNets

Pourquoi étudier ces systèmes

I Comme pour TCP/IP à l’époque, le besoin précède la théorie

I Ces systèmes sont déployés, on ne sait pas (vraiment) les utiliser

I C’est donc un thème porteur

Intérêts théoriques de ces systèmes

I La brique de base est le broadcast, ça change tout
on va pouvoir revisiter tous les algorithmes de base ;)

I C’est comme un réseau ad-hoc, mais sans mobilité
c’est plus simple pour commencer
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Sixième chapitre

Conclusion



Conclusion

Ce que nous avons vu
I Le domaine des P2P, et des DHT à très large échelle

I La consistance moins importante que l’échelle?
I Maturation rapide, le champ scientifique se structure

I Le domaine des SensorNets
I Encore une fois, les applications ont précédé la théorie
I Tout est à refaire (broadcast vs IP)
I Champ restant à défricher (d’un point de vue algorithmique, au moins)

Ce que nous ne verrons pas (manque de temps)

I Des systèmes plus ”classiques”
I Systèmes de fichiers distribués
I Bases de données distribuées
I PKI
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