
Distributed Systems and Peer-to-Peer Systems
SDR 3.6

Martin Quinson <martin.quinson@loria.fr>

LORIA – M2R

2009-2010
(compiled on: January 19, 2010)

Introduction

Course Goals
I Introduce existing distributed systems, from a theoretical point of view

I Basic concepts
I Main issues, problems and solutions

Prerequisite

I Notions of Theoretical Distributed Algorithmic (models, some algos)

I Notions of Distributed Programming (BSD sockets, CORBA, java RMI, J2EE)

Motivations
I Distributed Systems more and more mainstream

I Interesting algorithmic issues

I Very active research area

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 2/223

Administrativae

Contents
I Quick recap of distributed algorithmic and Internet

I Present several innovative distributed systems

I Introduce some current research issues in distributed computing

Evaluation: test on desk (partiel)

I What: quiz about the lectures
I Know the algorithms introduced in lectures
I Be able to recognize principle of classical algorithm designs
I Be able to discuss the validity of an approach to a problem

I When: someday in feb or march (check ADE agenda)

I Allowed material during test: one A4 sheet of paper only
I Hand-written (not typed)
I From you (no photocopy)

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 3/223

About me

Martin Quinson
I Study: Université de Saint Étienne, France

I PhD: Grids and HPC in 2003 (team Graal of INRIA / ENS-Lyon, France)

I Since 2005:
I Assistant professor at ESIAL (Univ. Henri Poincaré–Nancy I, France)
I Researcher of AlGorille team of LORIA/INRIA

I Research interests:
I Context: Distributed Systems
I Main: Simulation of Distributed Applications (SimGrid project)
I Others: Experimental Methodology, Model-Checking, ...

I More infos:
I http://www.loria.fr/~quinson
I Martin.Quinson@loria.fr

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 4/223

http://www.loria.fr/~quinson
Martin.Quinson@loria.fr

References: Courses on Internet

I Algorithmique et techniques de base des systèmes répartis (S. Krakowiak)
Foundations of distributed systems (in French).

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2R-SL/SR/

I Distributed Systems (Shenker, Stoica; University of California, Berkley)
A bit of everything, emphasis on Brewer’s conjecture.

http://inst.eecs.berkley.edu/~cs194

I Peer-to-Peer Networks (Jussi Kangasharju)
Peer-to-peer systems.

http://www.cs.helsinki.fi/u/jakangas/Teaching/p2p-08f.html

I Advanced Operating Systems (Neeraj Mittal)
Very good presentation of the theoretical foundations.

http://www.utdallas.edu/~neerajm/cs6378f09

I Grid Computing WS 09/10 (E. Jessen, M. Gerndt)
Grid and Cloud computing.

http://www.lrr.in.tum.de/~gerndt/home/Teaching/WS2009/GridComputing/GridComputing.htm

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 5/223

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2R-SL/SR/
http://inst.eecs.berkley.edu/~cs194
http://www.cs.helsinki.fi/u/jakangas/Teaching/p2p-08f.html
http://www.utdallas.edu/~neerajm/cs6378f09
http://www.lrr.in.tum.de/~gerndt/home/Teaching/WS2009/GridComputing/GridComputing.htm

References: Books

I Coulouris, Jean et Kindberg. Distributed Systems: Concepts and Design.

I Tannenbaum, Steen. Distributed Systems: Principles and Paradigms.

I V. K. Garg. Elements of Distributed Computing.

I Ralf Steinmetz, Klaus Wehrle (Eds): Peer-to-Peer Systems and Applications.
http://www.peer-to-peer.info/

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 6/223

http://www.peer-to-peer.info/

Table of Contents

Part I: History of Distributed Systems
1 Introduction to Distributed Systems

I What is it? Research Agendas and Communities; Examples.

2 Distributed Algorithmic
I Time and state; Ordering events; Abstract Clocks; Classical Algorithms.

3 Internet
I OSI and TCP/IP; Design of Internet; Some Mecanisms; Brewer revisited.

Part II: Innovative Distributed Systems
1 Peer-to-Peer Systems

I Introduction; Unstructured Overlays; DHTs; Applications; Hot Research Topics.

2 SensorNets
I Presentation; State of the field.

Martin Quinson Distributed Systems & P2P (2009-2010) Introduction 7/223

Chapter 1

Introduction

What is a Distributed System?

Example of Distributed Systems

Limit between Computers and Distributed Systems

What is a distributed system?

Definition
A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.

— A. Tanenbaum.
; Set of elements (CPU, storage) interconnected by the network

CPU CPU

Réseau

I The set is more than the sum of its parts (elements do collaborate)
I Intuitive examples not from CS

I Ant nest
I Driving rules (cars share the road)

Definition (pessimistic)
You know you have one when the crash of a computer you never heard of
stops you from getting any work done. — L. Lamport.

I Interdepending behavior of elements
I That’s not that easy
I Failures do happen and must be dealt with

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 9/223

What is a distributed system?

Definition (optimistic)
A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.

— A. Tanenbaum.
; Set of elements (CPU, storage) interconnected by the network

CPU CPU

Réseau

I The set is more than the sum of its parts (elements do collaborate)
I Intuitive examples not from CS

I Ant nest
I Driving rules (cars share the road)

Definition (pessimistic)
You know you have one when the crash of a computer you never heard of
stops you from getting any work done. — L. Lamport.

I Interdepending behavior of elements
I That’s not that easy
I Failures do happen and must be dealt with

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 9/223

Why would you distribute your computer system??

Application needs: you sometimes have to

I Collaborative work (between human beings, between corporate facilities)

I Distributed electronic devices ⇒ Ubiquitous Computing and SensorNets

I Application integration (multi-physics simulation) ⇒ Grid Computing

Technical possibility creates the need
I Cost effectiveness

I A set of PC is less expensive than a big mainframe ⇒ Cluster Computing
I Scale savings of mesocenter (wrt than several clusters) ⇒ Cloud Computing

I Generalized interconnections (TV, Internet, phone are converging)
I Share storage resources ⇒ Peer-to-Peer systems
I Share (otherwise unused) computational resources ⇒ Volunteer Computing

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 10/223

Example of Distributed Systems (1/2)

The Internet: the network of networks

I Enormous (open ended)

I No single authority
(mapping internet is a research agenda)

I Data, audio, video; Requests, push, streams.

intranet

ISP

desktop computer:

backbone

satellite link

server:

network link:

CoDoKi, Fig. 1.1

Intranets

I A single authority

I Protected access
(firewall, encrypted channels, total isolation)

I May be worldwide

CoDoKi, Fig. 1.2

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 11/223

Example of Distributed Systems (2/2)

Mobile and Ubiquitous Computing

I Portable devices
I laptops, notebook
I handheld, wearable devices
I devices embedded in appliances

I Mobile computing

I Connected to Internet through fixed
infrastructure

(CoDoKi Fig 1.3)

Mobile Ad-hoc Networks (Manets)

I No fix infrastructure
I wireless communication
I multi-hop networking
I long, non deterministic delays

; nodes part of infrastructure

I Nodes come and go

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 12/223

Limit between Computers and Distributed Systems

Why is this limit blurred?

I Motivation: endless need for power (modeling/game realism, server scalability)

I Past solution: Increase clock speed, more electronic gates
(but reaching physical limits + speed linear vs. energy quadratic)

I Current trend: Multi-many (Multiply cores, processors and machines)

Multi-processors systems

Shared Memory Processor
(SMP)

CPU

Shared
Memory

C

C

CCC

C

C

CC C

Cluster System

M

M

MMM

M

M

M M M

C

C

C C C

C

C

CCCFull System

Network
Local

Distributed Systems

M

M

MMM

M

M

M M M

C

C

C C C

C

C

CCCFull System

Internet

I SMP communicate through shared memory
I Clusters and DS communicate through classical network

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 13/223

Some SMPs are UMA (Uniform Memory Access)

Classical UMA

CPU CPU

Bus

shared
memory

UMA with cache

Bus

sharedCPU CPU
memorycache cache

Advanced UMA

priv.
mem.

priv.
mem.

Bus

sharedCPU CPU
memorycache cache

I Every processor access the memory at the same speed

I But memory to slow in classical design, thus adding a cache

I Can go further by adding a private memory to each processor

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 14/223

NUMA: NON-uniform Memory Access

I Biggest challenge: feed CPU with data (memory slower than CPU)
I Idea: Put several CPU per board, and plug boards on mainboard

CPU
cache

CPU
cache

shared
memory

shared
memory

CPU
cache

CPU
cache

shared
memory

CPU
cache

CPU
cache

memory networkdisksMainboard

One card One card One card

Issue
I Memory access is non-uniform (slower when far away)

Need specific programming approach to keep efficient

I Cache consistency can turn into a nightmare

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 15/223

Multi-core: Parallelism on Chip

I Idea: Reduce distance to elements (thus latency)
I How: Put several computing elements on the same chip

AMD/Intel bicore chips

cache L1

cache L2

cache L1

core
computingcomputing

core

Cell Processor

RAM
RAM

controllers

memory

controllers

I/O

SPE 1

SPE 3

SPE 5

SPE 7

SPE 2

SPE 4

SPE 6

SPE 8

64bits PowerPC
Power Processor Element (PPE)

(c
)

N
ic

o
la

s
B

la
c
h
fo

rd
2
0
0
5

E
IB

(E
le

m
e
n
t

In
te

rc
o
n
n
e
c
t

B
u
s)

Current and Future Trends
I Put more and more cores on chip

(80 cores already prototyped, full Cluster-On-Chip envisioned)

I Increase Architecture Hierarchy (Clusters of NUMA of multi-cores)

I Even put non-symmetric cores: PPE is classical RISC, SPE are SIMD

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 16/223

Multi-core: Parallelism on Chip

I Idea: Reduce distance to elements (thus latency)
I How: Put several computing elements on the same chip

AMD/Intel bicore chips

cache L1

cache L2

cache L1

core
computingcomputing

core

Cell Processor

RAM
RAM

controllers

memory

controllers

I/O

SPE 1

SPE 3

SPE 5

SPE 7

SPE 2

SPE 4

SPE 6

SPE 8

64bits PowerPC
Power Processor Element (PPE)

(c
)

N
ic

o
la

s
B

la
c
h
fo

rd
2
0
0
5

E
IB

(E
le

m
e
n
t

In
te

rc
o
n
n
e
c
t

B
u
s)

Current and Future Trends
I Put more and more cores on chip

(80 cores already prototyped, full Cluster-On-Chip envisioned)

I Increase Architecture Hierarchy (Clusters of NUMA of multi-cores)

I Even put non-symmetric cores: PPE is classical RISC, SPE are SIMD

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 16/223

Distributed, Parallel or Concurrent??

Distributed Algorithm: computation time
communication time

; 0
I Computation negligible wrt to communications
I Classical metric: amount of messages (as a function of amount of nodes)

I Current research agenda: P2P, consistency (distributed DB)

Parallel Algorithm: computation time
communication time

≈ 1
I Computation and Communication comparable
I Classical metric: makespan (time to completion of last processor)

I Current research agenda: Cluster & Grid & Cloud Computing, interoperability

Concurrent Algorithm: computation time
communication time

;∞
I Communication negligible wrt computation (comm time = 0 ⇒, multi-threading)
I Classical metric: speedup (how faster when using N cpus)

I Current research agenda: Lock-free, wait-free, correctness (model-checking)

Focus of this course: distributed systems (some content applies to others)

I Each domain constitutes a huge research area
I Current trend: intermixing, but strong historical heritage

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 17/223

Distributed, Parallel or Concurrent??

Distributed Algorithm: computation time
communication time

; 0
I Computation negligible wrt to communications
I Classical metric: amount of messages (as a function of amount of nodes)

I Current research agenda: P2P, consistency (distributed DB)

Parallel Algorithm: computation time
communication time

≈ 1
I Computation and Communication comparable
I Classical metric: makespan (time to completion of last processor)

I Current research agenda: Cluster & Grid & Cloud Computing, interoperability

Concurrent Algorithm: computation time
communication time

;∞
I Communication negligible wrt computation (comm time = 0 ⇒, multi-threading)
I Classical metric: speedup (how faster when using N cpus)

I Current research agenda: Lock-free, wait-free, correctness (model-checking)

Focus of this course: distributed systems (some content applies to others)

I Each domain constitutes a huge research area
I Current trend: intermixing, but strong historical heritage

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 17/223

Distributed, Parallel or Concurrent??

Distributed Algorithm: computation time
communication time

; 0
I Computation negligible wrt to communications
I Classical metric: amount of messages (as a function of amount of nodes)
I Current research agenda: P2P, consistency (distributed DB)

Parallel Algorithm: computation time
communication time

≈ 1
I Computation and Communication comparable
I Classical metric: makespan (time to completion of last processor)
I Current research agenda: Cluster & Grid & Cloud Computing, interoperability

Concurrent Algorithm: computation time
communication time

;∞
I Communication negligible wrt computation (comm time = 0 ⇒, multi-threading)
I Classical metric: speedup (how faster when using N cpus)
I Current research agenda: Lock-free, wait-free, correctness (model-checking)

Focus of this course: distributed systems (some content applies to others)

I Each domain constitutes a huge research area
I Current trend: intermixing, but strong historical heritage

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 17/223

What to expect from a distributed system?

Expected characteristics

I Scalability: deal with large amount of work

I Failure tolerance:
I Deal with the failure of elements
I Deal with message loss, or element performance degradation

I Security: Deal with malicious users (Privacy, Integrity, Deny-of-Services)

I Adaptability: deal with environment changes

Expected difficulties

I Absence of Global Clock: there is no common notion of time

I Absence of Shared Memory: no process has up-to-date global knowledge

I Failures (fail-stop or malicious): that will happen

I Delays (asynchronous): harder to detect failures

I Dynamism: global knowledge even harder to get

I Human brain is (somehow) sequential. Thinking distributed is harder.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap I : Introduction 18/223

Chapter 2

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic

Time and State of a Distributed System

Fundamental Goal: think about a system or an application

What do we need
I Define a state: for example to define predicates

I Define an order: to coordinate the activities

Why is it harder for Distributed Systems? (Inherent Limitations)

I Absence of Global Clock: There is no common notion of time

I Absence of Shared Memory: No process has up-to-date global knowledge

I Asynchronous communications and computations (generally speaking)

I Ie, comm/comp time has no maximum
I Because dynamically changing load and resources not exclusively allocated
I Synchronous systems (real time, phone) more rare because more expansive

Goal now
I Define an order relation (used later for global state)

I At the end, that’s quite simple, but it needed several years of research

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 20/223

Absence of Global Clock

Different processes may have different notions of time

I invented AIDS cure! I invented AIDS cure!

Earth Mars

I Problem: How do we order events on different processes?

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 21/223

Absence of Global Clock

Different processes may have different notions of time

Who did it first?

Patent Officer

I invented AIDS cure! I invented AIDS cure!

Earth Mars

I Problem: How do we order events on different processes?

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 21/223

Absence of Shared Memory

A process does not know current state of other processes

Bob

Alice

doing right now?

What is Alice

I Problem: How do we obtain a coherent view of the system?

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 22/223

The Reliable Asynchronous Model

That’s the weaker (reliable) model
I Very strong constraints from the system

I No upper bound on communication or computation
I Algorithms working here work also in more friendly models
I Models made more friendly by removing constraints (setup upper bounds)
I (that’s not the worst model: it is reliable)

I This model is often used for Bounding costs or Impossibility results

I Each site has a clock (not synchronized, with relative drifts)

I Processes only communicate by message exchanges

I Possible events:
I Local (process internal state change)
I Emission or Reception of messages

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 23/223

About messages

Properties of the communication system

1. No loss: Every sent message arrives (no upper bound on transit time)
I How to achieve this: failure detection (with timeout) and resending

2. Messages are not altered
I How to achieve this: Mechanisms for detection and correction of errors

3. FIFO channel between processes
I How: message numbering
I Assumption sometimes removed (⇒ even harder)

Distinguish message reception and delivering

Communication system
Reception
Delivery

Sender Receiver

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 24/223

Process Execution and Synchronization

Process Execution
I That’s a suite of events (its history, its trace)

Recall: kind of possible events = {local, sending, receiving}
I Suite ordered by the local clock

I For P1: e1
1 , e2

1 , e3
1 , e4

1 , . . . ek
1 , . . .

“Synchronizing processes”?!

; force an order to the events of these processes

I Example: mutual exclusion

either

{
end(C2) precedes begin(C1)
end(C1) precedes begin(C2)

C2

C1
P1

P2

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 25/223

When is it possible to order two events?

Causality Principle

I The Cause comes before the Effect

Three Cases:
1. Events executed on the same process:

I if e and f are events on the same process and e occurred before f ,
then e happened-before f

2. Communication events of the same message:
I if e is the send event of a message and f is the receive event of the same

message, then e happened-before f

3. Events related by transitivity:
I if event e happened-before event g and event g happened-before event f ,

then e happened-before f

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 26/223

Happened-Before Relation

Notation
I Happened-before relation is denoted by →

Illustration

P1

P2

P3

a b c

d e f

g h i

I Events on the same process
a→ b, b → c , d → f

I Events of the same message
b → e, f → i

I Transitivity
a→ c , a→ e, a→ i

Concurrent events
I Events not related by the happened-before relation

I Concurrency relation is denoted by ‖
I Examples: a ‖ d , e ‖ h, c ‖ i ,

I Concurrency is not transitive: a ‖ d and d ‖ c but a 6 ‖ c

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 27/223

Happened-Before Relation

Notation
I Happened-before relation is denoted by →

Illustration

P1

P2

P3

a b c

d e f

g h i

I Events on the same process
a→ b, b → c , d → f

I Events of the same message
b → e, f → i

I Transitivity
a→ c , a→ e, a→ i

Concurrent events
I Events not related by the happened-before relation

I Concurrency relation is denoted by ‖
I Examples: a ‖ d , e ‖ h, c ‖ i ,

I Concurrency is not transitive: a ‖ d and d ‖ c but a 6 ‖ c

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 27/223

Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic

Dating System (for sake of global ordering)

Goal: Dating System compatible with Causality

First Approach: notion of observation

I A “observer” process P0 is informed by message of every event

I The suite of events as observed by P0 is a global observation

I Later: each process is observer, and observations match

e2
2 e3

2

e3
1

o(e3
1) o(e6

1)o(e5
1)

P1

P2

P0

e4
2

o(e9
1)o(e4

2)o(e1
2) o(e2

2) o(e5
2) o(e8

1)

e7
1

e5
2 e6

2 e7
2

o(e1
1) o(e2

1) o(e4
1) o(e6

2) o(e7
2)

e2
1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2) o(e7

1)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 29/223

Validity of Observations

Definition
I Observation said valid iff (e → f) ⇒ (o(e)→ o(f))

Examples

1. (e5
1 → e6

1) but o(e6
1) precedes o(e5

1)

(P1 → P0 is not FIFO)

e2
2 e3

2

e3
1

o(e3
1) o(e6

1) o(e5
1)

P1

P2

P0

e4
2

o(e9
1)o(e4

2)o(e1
2) o(e2

2) o(e5
2) o(e8

1)

e7
1

e5
2 e6

2 e7
2

o(e1
1) o(e2

1) o(e4
1) o(e6

2) o(e7
2)

e2
1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2) o(e7

1)

2. (e2
2 → e3

1) because (e2
2 → e3

2) and (e3
2 → e3

1)

but o(e3
1) can not precede o(e2

2) even if channels are fifo

e2
2 e3

2

e3
1P1

P2

P0

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 30/223

Validity of Observations

Definition
I Observation said valid iff (e → f) ⇒ (o(e)→ o(f))

Examples

1. (e5
1 → e6

1) but o(e6
1) precedes o(e5

1) (P1 → P0 is not FIFO)

e2
2 e3

2

e3
1

o(e3
1) o(e6

1) o(e5
1)

P1

P2

P0

e4
2

o(e9
1)o(e4

2)o(e1
2) o(e2

2) o(e5
2) o(e8

1)

e7
1

e5
2 e6

2 e7
2

o(e1
1) o(e2

1) o(e4
1) o(e6

2) o(e7
2)

e2
1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2) o(e7

1)

2. (e2
2 → e3

1) because (e2
2 → e3

2) and (e3
2 → e3

1)

but o(e3
1) can not precede o(e2

2) even if channels are fifo

e2
2 e3

2

e3
1P1

P2

P0

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 30/223

Validity of Observations

Definition
I Observation said valid iff (e → f) ⇒ (o(e)→ o(f))

Examples

1. (e5
1 → e6

1) but o(e6
1) precedes o(e5

1) (P1 → P0 is not FIFO)

e2
2 e3

2

e3
1

o(e3
1) o(e6

1) o(e5
1)

P1

P2

P0

e4
2

o(e9
1)o(e4

2)o(e1
2) o(e2

2) o(e5
2) o(e8

1)

e7
1

e5
2 e6

2 e7
2

o(e1
1) o(e2

1) o(e4
1) o(e6

2) o(e7
2)

e2
1e1

1 e9
1e8

1e5
1 e6

1

e1
2

e4
1

o(e3
2) o(e7

1)

2. (e2
2 → e3

1) because (e2
2 → e3

2) and (e3
2 → e3

1)
but o(e3

1) can not precede o(e2
2) even if channels are fifo

e2
2 e3

2

e3
1P1

P2

P0

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 30/223

Abstract Clocks

Setting up an observer is suboptimal

I Expensive: A huge amount of messages must be sent to the observer

I Not robust: What if the observer fails?

I Not reliable: invalid observations are still possible

Abstract Clocks
I Why: (try to) solve absence of global clock

I How: processes timestamp events locally so that they get globally ordered

Different kind of abstract clocks
I Each offers differing abilities, associated to differing complexities

I Logical clock: used to totally order all events

I Vector Clocks: used to track happened-before relation

I Matrix Clocks: used to track what other processes know about other processes

I Direct Dependency Clocks: used to track direct causal dependencies

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 31/223

Logical Clocks (or Lamport’s Clock)

General idea
I Implements the notion of virtual time

I Can be used to totally order all events

I Assigns timestamp C (e) to each event e

I Compute C (e) in a way that is consistent with the happened-before relation:

e → f ⇒ C (e) < C (f)

I (Note that this is ⇒, not ⇔)

Time, Clocks and the Ordering of Events in a Distributed System, Leslie Lamport, 1978.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 32/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1

d

1

g

1

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1
b

2

d

1

2

g

1

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1
b

2

d

1

e

3

2

g

1

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1
b

2

c

3

d

1

e

3
f

4

2

g

1
h

2

4

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Implementing Logical Clocks

I Each process i has a local scalar counter Ci (∈ N)

I Each even e local to i is dated by the current value of Ci

I Each message m sent from i is also annoted with Ci (sending time)

Computation rules on process i
Initialization : Ci ← 0
Local event : Ci + = 1

Sending message (m) : Ci + = 1 then send (m, Ci)
Receiving message (m, Em): Ci ← max(Ci , Em) + 1

Example

P1

P2

P3

a

1
b

2

c

3

d

1

e

3
f

4

2

g

1
h

2
i

5

4

I a first event of P1 ; C (a) = 1

I b: send ; C1 := C1 + 1; send 2

I e:recv C (e) = max(1, 2) + 1 = 3

I c , h: local events; f : send

I i:recv; C (i) = max(4, 2) + 1 = 5

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 33/223

Conclusion on Logical Clocks

Possible Applications

I Distributed waiting queue (mutual exclusion; replicas update)

I Determine least access (cache coherence, DSM)

Limits of the Logical Clocks

I Cannot be used to determine events concurrency

(e ‖ f) does not imply (C (e) = C (f))

I Some missing events may go undetected:
I If C(e) < C(f), is there any g so that e → g → f ?
I Impossible to answer with logical clocks only

P1

P2

P3

P4

e

f

g

e

f

g

e

f

g

7

P3 desynchronized!P3 synchronizedP3 will synchronize later

8

3 3

8

3

8

I All is because e → f ⇒ C (e) < C (f) is no ⇔

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 34/223

Conclusion on Logical Clocks

Possible Applications

I Distributed waiting queue (mutual exclusion; replicas update)

I Determine least access (cache coherence, DSM)

Limits of the Logical Clocks

I Cannot be used to determine events concurrency

(e ‖ f) does not imply (C (e) = C (f))

I Some missing events may go undetected:
I If C(e) < C(f), is there any g so that e → g → f ?
I Impossible to answer with logical clocks only

P1

P2

P3

P4

e

f

g

e

f

g

e

f

g

7

P3 desynchronized!P3 synchronizedP3 will synchronize later

8

3 3

8

3

8

I All is because e → f ⇒ C (e) < C (f) is no ⇔

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 34/223

Conclusion on Logical Clocks

Possible Applications

I Distributed waiting queue (mutual exclusion; replicas update)

I Determine least access (cache coherence, DSM)

Limits of the Logical Clocks

I Cannot be used to determine events concurrency

(e ‖ f) does not imply (C (e) = C (f))

I Some missing events may go undetected:
I If C(e) < C(f), is there any g so that e → g → f ?
I Impossible to answer with logical clocks only

P1

P2

P3

P4

e

f

g

e

f

g

e

f

g

7

P3 desynchronized!P3 synchronizedP3 will synchronize later

8

3 3

8

3

8

I All is because e → f ⇒ C (e) < C (f) is no ⇔

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 34/223

Vector Clocks

General idea
I Captures the happened-before relation

I Assigns timestamp to each events such that

e → f ⇔ C (e) < C (f)

I Like the name says, values C (e) are not scalars but vectors (∈ N#processes)
Vi [j]: What i knows of the clock of j

Comparing two vectors: component-wise

I Equality: V = W iff ∀i , Vi = Wi

I Comparison: V < W iff ∀i , Vi ≤Wi and ∃i , Vi < Wi

I Examples:

 1
2
0

 <

 2
3
1

 and

 2
1
1

 <

 2
3
4

 but

 0
1
0

 6<
 1

0
1



Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 35/223

Vector Clocks

General idea
I Captures the happened-before relation

I Assigns timestamp to each events such that

e → f ⇔ C (e) < C (f)

I Like the name says, values C (e) are not scalars but vectors (∈ N#processes)
Vi [j]: What i knows of the clock of j

Comparing two vectors: component-wise

I Equality: V = W iff ∀i , Vi = Wi

I Comparison: V < W iff ∀i , Vi ≤Wi and ∃i , Vi < Wi

I Examples:

 1
2
0

 <

 2
3
1

 and

 2
1
1

 <

 2
3
4

 but

 0
1
0

 6<
 1

0
1



Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 35/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


I a first event of P1 ; C (a) =

 1
0
0



I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


d 0
1
0


g 0
0
1



I a first event of P1 ; C (a) =
 1

0
0



I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


b 2
0
0


d 0
1
0



 2
0
0



g 0
0
1



I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


b 2
0
0


d 0
1
0


e 2
2
0



 2
0
0



g 0
0
1



I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


b 2
0
0


c 3
0
0


d 0
1
0


e 2
2
0


f 2
3
0



 2
0
0



g 0
0
1


h 0
0
2



 2
3
0



I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Implementing Vector Clocks

I Each process i has a local scalar vector Ci (∈ N#processes)

Computation rules on process i
Initialization : Ci ← {0, ..., 0}
Local event : Ci [i] + = 1

Sending message (m) : Ci [i] + = 1 then send (m, Ci)
Receiving message (m, Em): ∀k , Ci [k]← max(Ci [k], Em[k])

Ci [i] + = 1

Example

P1

P2

P3

a 1
0
0


b 2
0
0


c 3
0
0


d 0
1
0


e 2
2
0


f 2
3
0



 2
0
0



g 0
0
1


h 0
0
2


i 2
3
3



 2
3
0



I a first event of P1 ; C (a) =
 1

0
0


I b: send ; C1[1]+ = 1; send C1

I e: recv

I c , h: local events; f : send

I i: recv

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 36/223

Conclusion on Vector Clocks

Possible Applications

I Distributed system monitoring (event dating, distributed debugging)

I Computation of global state; Distributed simulation

Limits of Vector Clocks
I Comparing two vectors can require up to N comparison

I Processes don’t know whether the others are up-to-date or lag behind
I Matrix clocks solve that issue
I MCi [j , k]: what i knows of the knowledge of j about k’s clock
I This allows causal delivery
I But matrix clocks are even more expensive (O(n2))

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 37/223

Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic

Some Distributed Algorithms

Goals of this section

Present some basic algorithms

I Mutual exclusion

I Election

I Consensus

I Group protocols

I Sequential equivalents
I Sorting, Shortest path
I Classical data structures (stack, list, hashing, trees)

Present general approaches

I Ordering events (with abstract clocks)

I Applicative topologies (ring, tree, graph without circuit)

I Sequential equivalents
I Recursion, Divide&Conquer, Greedy algorithms

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 39/223

Some Distributed Algorithms

Goals of this section

Present some basic algorithms

I Mutual exclusion

I Election

I Consensus

I Group protocols

I Sequential equivalents
I Sorting, Shortest path
I Classical data structures (stack, list, hashing, trees)

Present general approaches

I Ordering events (with abstract clocks)

I Applicative topologies (ring, tree, graph without circuit)

I Sequential equivalents
I Recursion, Divide&Conquer, Greedy algorithms

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 39/223

Mutual Exclusion

Problem Statement
I Force an order on the execution of critical sections
I Fairness (no infinite starvation of any process); Liveness (no deadlock)

Approaches

I Centralized coordinator: ask lock to coordinator, get lock, release lock
I Use a global order: using abstract clocks

Ask everyones, and concurrent requests are handled “in order”
I Using quorums: Ask only members of specific groups
I Force a topology: virtual ring, virtual tree

Gives an order on nodes, not only on requests

Algorithms

I A whole load of such algorithms in literature
I #messages∈ [O(log(n)); O(n)] (ask everyone, or distributed waiting queue)

What’s coming now: Details of some algorithms

I For culture and to get a grip on distributed algorithms development approach

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 40/223

Centralized: Coordinator Based Algorithm

Main Idea
I One of the processes acts as coordinator (cf. Leader Election Algorithm)

Coordinator decides the order in which critical section requests are fulfilled

I Processes send requests to coordinator and wait permission
Requests are fulfilled in FIFO order at the coordinator

I Coordinator grants permission to requests one at a time
All other requests are queued in a FIFO queue.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 41/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

Pc : coordinator
Resource idle

Event explanation

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

Pc : coordinator
Resource idle

REQUEST

Event explanation

a. P1 requests the CS to coordinator

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

Pc : coordinator
Resource idle

REQUEST

Event explanation

b. P2 requests the CS to coordinator

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c

Pc : coordinator
Resource idle

REQUEST GRANT

Event explanation

c. coordinator receives the request from P2

I Idle token, so send reply back

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

Pc : coordinator
Resource idle

REQUEST GRANT

Event explanation

d. coordinator receives the request from P1

I Token not there, so enqueue the request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e

Pc : coordinator
Resource idle Critical section

REQUEST GRANT

Event explanation

e. P2 receives the grant
I Enters the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

f. P2 exits the CS
I Send release to coordinator

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

g. coordinator receives the release
I Someone (P1) is waiting in the queue
I Unqueue P1

I Send grant to P1
Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

h

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

h. P1 receives the grant
I Enters the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

h i

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

f. P1 exits the CS
I Send release to coordinator

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Coordinator Based Algorithm for Mutual Exclusion

Pc

P1

P2

a

b

c d

1

e f

g

h i

j

Pc : coordinator
Resource idle Critical section

REQUEST GRANT RELEASE

Event explanation

g. coordinator receives the release
I Nobody in queue, nothing to do
I Let the token idling

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 42/223

Centralized Mutual Exclusion: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 3

I 1 REQUEST message + 1 GRANT message + 1 RELEASE message

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): 2T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 44/223

Lamport’s Algorithm for Mutual Exclusion

Assumptions

I Channels are FIFO

I Processes run a Lamport’s Logical Clock

Main Idea
I Requests are timestamped using logical clocks, and fulfilled in timestamp order

I Processes maintain a priority queue of all requests they know about

I Lots of broadcasts to get the timestamps propagate to peers

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 45/223

Lamport’s Mutual Exclusion: Steps for process Pi

On generating a critical section request
I Insert the request into the priority queue
I Broadcast the request to all processes

On receiving a critical section request from another process:
I Insert the request into the priority queue.
I Send a REPLY message to the requesting process.

Conditions to enter critical section:
I L1: Pi has received a REPLY message from all processes.

Any request received in future will have larger timestamp than own request
I L2: Pi ’s own request is at the top of its queue.

I have the smallest timestamp among all already received requests

On leaving the critical section
I Remove the request from the queue
I Broadcast a RELEASE message to all processes

On receiving a RELEASE message from another process
I Remove the request of that process from the queue

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 46/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

REQUEST REPLY RELEASE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

4,1

44

REQUEST REPLY RELEASE

a. P1 requests the CS (timestamp=4)

I Broadcast the request

I Enqueue the request locally

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

4,1

44

(6,2)

6

6

REQUEST REPLY RELEASE

b. P2 requests the CS (timestamp=6)

I Broadcast the request

I Enqueue the request locally

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

4,1

44

(6,2)

6

6

(4,1)

7

REQUEST REPLY RELEASE

c. P3 receives the request from P1

I Answer REPLY with timestamp 7

I Enqueue the request locally

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

REQUEST REPLY RELEASE

d. P2 receives the request from P1

I Answer REPLY with timestamp (max(6,7)+1)+1=9

I Enqueue the request locally (sorting on Lamport’s clock)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

REQUEST REPLY RELEASE

e. P1 receives the request from P2

I Answer REPLY with timestamp max(4,6)+1=8

I Enqueue the request locally (sorting on Lamport’s clock)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

f. P3 receives the request from P2

I Answer REPLY with timestamp (max(4,6)+1)+1=9

I Enqueue the request locally

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

g. P2 receives the reply from P1

I (nothing to do, one request still missing)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

h. P1 receives the reply from P3

I (nothing to do, one request still missing)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

i. P2 receives the reply from P3

I Every request received, but not first in queue

I Thus nothing to do

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

j. P1 receives the reply from P2

I Every request received, and first in queue

I Thus dequeuing self request and entering CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

k. P1 exits CS
I Broadcast RELEASE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

REQUEST REPLY RELEASE

l. P2 receives RELEASE from P1

I Remove (4,1) from queue

I Every replies received and first of queue

I Thus entering CS (after removing myself from queue)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

m. P3 receives RELEASE from P1

I Update the queue

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

n. P2 exits its CS
I Broadcast RELEASE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

o&p. P1 and P2 receive RELEASE from P2

I Update queues

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 47/223

Lamport’s Mutual Exclusion: Optimization

Recap Conditions to enter critical section:
I L1: Pi has received a REPLY message from all processes.

Any request received in future will have larger timestamp than own request

I L2: Pi ’s own request is at the top of its queue.
I have the smallest timestamp among all already received requests

L1 is too restrictive wrt the wanted property

I Wait for any messages with higher timestamp from all processes is enough
Any request received in future will still have larger timestamp than own request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 50/223

Lamport’s Mutex Optimization: Illustration

Without the optimization

P1

P2

P3

a

b

c

d

e

f

g

h

i

j k

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 51/223

Lamport’s Mutex Optimization: Illustration

With the optimization

P1

P2

P3

a

b

c

d

e

f

g

h

i

kj

l

m

n

o

p
4,1

44

(6,2)

6

6

(4,1)

7

(4,1),(6,2)

9

(6,2)(4,1),(6,2)

8

(4,1),(6,2)

9

(6,2)

REQUEST REPLY RELEASE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 51/223

Lamport’s Mutex Algorithm: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 3(N - 1)

I N − 1 REQUEST messages + N − 1 REPLY messages + N − 1 RELEASE
messages

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 52/223

Ricart and Agrawala’s Algorithm

Inefficiencies in Lamport’s Algorithm
I Scenario 1

I Situation: Pi and Pj concurrently request CS and C(Pi) < C(Pj)
I Lamport: Pi first send reply and later release.

Pj only acts on release
I Improvement: Pi ’s reply can be ommited

I Scenario 2
I Situation: Pi requests CS and Pj don’t for some time
I Lamport: Pi send release to Pj on exiting CS
I Improvement: That message can be ommited

(if Pj requests CS, it will contact Pi anyway)

Main ideas of Ricart and Agrawala’s Algorithm

I Combine reply and release messages

I On leaving CS, only reply/release to processes with unfulfilled CS requests

I Eliminate priority queue

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 53/223

Ricart and Agrawala Mutex: Steps for process Pi

On generating a critical section request

I Broadcast the request to all processes

On receiving a critical section request from another process:
I Send a reply if any of these condition is true

I Pi has no unfulfilled request of its own
I Pi unfulfilled request has larger timestamp than that of the received request

I Else, defer sending the reply message

Conditions to enter critical section:
I Pi has received a reply message from all processes

On leaving the critical section
I Send all defered reply messages

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 54/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

REQUEST REPLY

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

44

REQUEST REPLY

a. P1 requests the CS (timestamp=4)

I Broadcast the request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

44

6

6

REQUEST REPLY

b. P2 requests the CS (timestamp=6)

I Broadcast the request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

44

6

6

REQUEST REPLY

c. P3 receives the request from P1

I No unfulfilled request itself

; Returns a reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

44

6

6

REQUEST REPLY

d. P2 receives the request from P1

I Own unfulfilled request has larger timestamp

; Returns a reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

44

6

6

P2

REQUEST REPLY

e. P1 receives the request from P2

I Own unfulfilled request has smaller timestamp

; Defer the sending of reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

44

6

6

P2

REQUEST REPLY

f. P3 receives the request from P2

I No unfulfilled request itself

; Returns a reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

44

6

6

P2

REQUEST REPLY

g. P1 receives the reply from P3

I Nothing to do, one request still missing

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

44

6

6

P2

REQUEST REPLY

h. P2 receives the reply from P3

I Nothing to do, one request still missing (since it’s delayed)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i

44

6

6

P2

REQUEST REPLY

i. P1 receives the reply from P2

I Every request received

I Thus entering CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

44

6

6

P2

REQUEST REPLY

j. P1 exits CS

I Send delayed reply to P2

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

k

44

6

6

P2

REQUEST REPLY

k. P2 receives RELEASE from P1

I Every replies received

I Thus entering CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala Mutex: Illustration

P1

P2

P3

a

b

c

d

e

f

g

h

i j

k l

44

6

6

P2

REQUEST REPLY

l. P3 receives RELEASE from P1

I No delayed reply, nothing to do

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 55/223

Ricart and Agrawala: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity: 2(N - 1)

I N − 1 REQUEST messages + N − 1 REPLY messages

I Message-size complexity: O(1)

Time complexity

I Response time (under light load): 2T + E

I Synchronization delay (under heavy load): T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 57/223

Roucairol and Carvalho’s Algorithm

Inefficiency in Ricart and Agrawala’s Algorithm

I Every process handles every critical section request.

Goal of this new algorithm for conflict resolution

I Change algorithm so that only active processes (requesting CS) interact

I Process not requesting the CS will eventually stop receiving messages

Main idea
I reply from Pj to Pi means: Pj grants permission to Pi to enter CS

I Pi keeps that permission until it send reply to someone else

Modification to Ricart and Agrawala’s Algorithm
I To enter CS, Pi asks for permission from Pj if either:

I (Pi sent reply to Pj) AND (Pi didn’t got reply from Pj since then)
I (It’s Pi ’s first request) AND (i > j)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 58/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

REQUEST REPLY

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

3

REQUEST REPLY

a. P2 requests the CS (timestamp=3)

; Send the request to P1 only (1 < 2)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

3

REQUEST REPLY

b. P1 receives P2’s request

; returns reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c

3

REQUEST REPLY

c. P2 receives reply from P1.

; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d

3

REQUEST REPLY

d. P2 exists CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

3 8

REQUEST REPLY

e. P2 requests CS again (stamp=8)

; re-enter CS without any new message

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

3 8

5

REQUEST REPLY

f. P1 requests CS (stamp=5)

; send request to P2 only (active known peer)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

g

3 8

5

P1

REQUEST REPLY

g. P2 receives request from P1

; defers reply because in CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e

f

g

h

3 8

5

4 4

P1

REQUEST REPLY

h. P3 requests the CS

; broadcasts request to every processes

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

3 8

5

4 4

P1

REQUEST REPLY

i. P2 exists CS

; send defered reply to P1

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j

3 8

5

4 4

P1

REQUEST REPLY

j. P1 receives request from P3

returns reply since stamp lower than own

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

3 8

5

4 4

P1

REQUEST REPLY

k. P1 thought P3 not active, until j.

; send previous request now

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

3 8

5

4 4

P1

REQUEST REPLY

l. P2 receives request from P3

; returns reply

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m

3 8

5

4 4

P1

REQUEST REPLY

m. P3 receives reply from P1

(one missing)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

3 8

5

4 4

P1

P1REQUEST REPLY

n. P3 receives request from P1

; queues it because own timestamp lower

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

3 8

5

4 4

P1

P1REQUEST REPLY

o. P1 receives reply from P2

(one missing)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p

3 8

5

4 4

P1

P1REQUEST REPLY

p. P3 receives reply from P2

everyone answered ; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p q

3 8

5

4 4

P1

P1REQUEST REPLY

q. P3 exits CS

; send delayed reply to P1

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p q

r

3 8

5

4 4

P1

P1REQUEST REPLY

r. P1 receives reply from P3

everyone answered ; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Illustration events

P1

P2

P3

a

b

c d e i

f

g

h

j k

l

m n

o

p q

r s

3 8

5

4 4

P1

P1REQUEST REPLY

s. P1 exits CS

(nothing to do)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 59/223

Roucairol and Carvalho’s Mutex: Complexity Analysis

Parameters
N Number of processes in the system

T Message transmission time

E Critical section execution time

Message complexity:

I Best case: 0

I Worst case: 2(N-1): N − 1 REQUEST messages + N − 1 REPLY messages

I Message-size complexity: O(1)

Time complexity
I Response time (under light load):

I Best case: E
I Worst case: 2T+E

I Synchronization delay (under heavy load): T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 60/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS.

e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS.

g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS.

e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS.

g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS.

g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS.

g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

h

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

h

i

j

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

h

i

j

k

l

m

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

h

i

j

k

l

m

n

o

p

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Token-Ring Algorithm

Main idea
I Processes are (logically) organized along a ring

I Permission to enter the CS is represented by a token

I When unused, token sent to the next process in ring P1

P2

P3

Illustration
P1

P2

P3

a

b

c

d e

f g

h

i

j

k

l

m

n

o

p

q

r

s

t

Events
I Initially, P1 has the token, and P2 and P3 want the CS. P1 sends the token

d. P2 gets the token ; enters CS. e. P2 exits CS and send token to P3

f. P3 gets the token ; enters CS. g. P3 exits CS and send token to P1

I Seems interesting, but incredibly inefficient when nobody request the CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 61/223

Suzuki and Kasami’s Algorithm

Main ideas
I Token-based (but not as inefficiently)

I The token is not passed automatically, but on request only

Data structures
I Each process has a vector: v[i]=amount of CS request received from Pi

This is a local variable

I The token contains 2 informations:
I A vector: v[i]= amount of CS run for Pi

I A FIFO: processes with unfulfilled requests

This is a “global” variable, spead when possible

I These are not vector clocks

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 62/223

Suzuki and Kasami’s Algorithm Steps for Pi

On requesting the CS

I If have token, enter CS

I If not, update request vector, then broadcast request to every processes

On receiving a request from Pj

I Update request vector

I if (request is new) AND (have token) AND (token idle), then send token to Pj

On receiving the token

I Enter the CS

On leaving the CS

I Update the token vector

I Add any unfulfilled requests from request vector to the token queue

I If token queue non-empty, then remove first and send the token that process

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 63/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



a. P2 requests the CS

; broadcasts the request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



b. P3 requests the CS

; broadcasts the request

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



 0
0
0

,{}

c. P1 receives request from P3.

; Update request vector and send token

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1



 0
0
0

,{}

d. P1 receives request from P3.

; update request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

 0
0
0

,{}

e. P3 receives token

; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1



 0
0
0

,{}

f. P1 receives request from P2

; update request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



 0
0
0

,{}

g. P1 requests the CS

; increment own entry, broadcast request to all

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



h 1
1
1



 0
0
0

,{}

h. P3 receives request from P1

; update request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



h 1
1
1



 0
0
0

,{}

i. P2 receives request from P3

; update request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



 0
0
0

,{}

 0
0
1

,{P2}

j. P3 exits C.
I Update token vector to

 0
0
1

 since it just did a CS

I Compares request and token vectors. {P1, P2}: #req. > #runs ; Enqueue
I Send token to first of queue, P1

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



k

 0
0
0

,{}

 0
0
1

,{P2}

k. P1 receives token

; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



k

l

 1
1
1


 0

0
0

,{}

 0
0
1

,{P2}

l. P2 receives request from P1

; updates request vector

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



k

l

 1
1
1



m

 0
0
0

,{}

 0
0
1

,{P2}

 1
0
1

,{}

m. P1 exits CS

Update token and send it to P2

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



k

l

 1
1
1



m

n

 0
0
0

,{}

 0
0
1

,{P2}

 1
0
1

,{}

n. P2 receives token

; enters CS

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Illustration events

P1

P2

P3

 0
0
0



 0
0
0



 0
0
0



a

 0
1
0



b 0
0
1



c

 0
0
1



d 0
1
1


e

f

 0
1
1


g

 1
1
1



i

 0
1
1



jh 1
1
1



k

l

 1
1
1



m

n o

 0
0
0

,{}

 0
0
1

,{P2}

 1
0
1

,{}
 1

1
1

,{}

o. P2 exits CS

Update token and keep it

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 64/223

Suzuki and Kasami’s Algorithm: Complexity Analysis

Parameters
N Number of processes in the system
T Message transmission time
E Critical section execution time

Message complexity:

I Best case: 0
I Worst case: N= (N − 1) request + 1 token

Message Size Complexity:

I Between 1 (request) and N (token)
I Average: O(1) (averaging over (N − 1) request and 1 token)

Time complexity

I Response time (under light load): Best case: E; Worst case: 2T+E
I Synchronization delay (under heavy load): T

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 65/223

(pedagical) Interest of this algorithm

Builds a sort of distributed data structure
I Explicit list in token, which travels

I (built lazily by comparing local request vector to token vector)

I Request vectors are updated when receiving a request

This concept is still somehow fuzzy

I List updated only when needed: when exiting the CS (lazy update)

I List updated by comparing local request vector to [global] token vector

I Request vectors are updated when receiving a request

Other algorithm use distributed data structures more explicitely

I Raymond and Naimi-Trehel build a waiting queue, and a tree pointing to the
waiting queue entry point

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 66/223

Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic

Leader Election
Problem Statement

I The processes pick one and only one of them (and agree on which one)

I Use case: error recovery
I Only one site recreates the (lost) token
I Elect a new coordinator on need

I Election started by any process (maybe concurrent elections)

I Which one we pick is not important

I Difficulty: processes may fail during the election

Some approaches
I Bully Algorithm

I Main idea
I The one starting the election broadcasts its process number
I Processes answer (take over) elections with a number smaller than their own
I A process receiving no answer consider that he got elected

I Remarks
I Not very efficient algorithm (O(n2) messages at worst)
I Robust to process failures, but not to asynchronism

I Ring ⇒ Algorithm in O(n log(n)) on average [Chang, Roberts]
Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 68/223

Consensus: First impossibility result

Byzantin generals problem

I A and B want to attack C

I They must absolutely do it at the same time to succeed

I C can intercept messengers
A (1500) B (1500)

C (2000)

A → B: Attack tomorrow
B → A: Got(Attack tomorrow)

A → B: Got(Got(Attack tomorrow))

A cannot be absolutely sure that B got his last message⇒ he does not attack

messages lost without detection ; consensus impossible (in finite amount of steps)

I Proof (reductio ad absurdum): Suppose ∃ such a protocol, consider
p = {. . . ; A→ B : mn−1; B → A : mn} minimal in amout of messages.

I B don’t receive messages anymore ⇒ casted its decision before mn

I Since p works even if messages get lost, A casts its decision without mn

⇒ mn useless, and can be omitted from p. Contradiction with “p is minimal”

I Only solution: detect message loss

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 69/223

Consensus: An algorithm amongst others

Lamport et al. (1982)
I Goal:

I Generals want to inform each other of the present forces

I Assumptions:
I Messages not corrupted (communication are fail-stop)
I Receiver knows who sent the message
I Communication time bounded (implementation: timestamp + timeouts +

fail-fast)

I Result:
I With m malicious generals, need 2m + 1 generals in total
I Cannot identify malicious generals, only find correct values out

I Principe:

1. Everyone broadcasts its own force to everyone
2. Everyone broadcasts the vector of received values to everyone
3. Everyone uses the vectors getting the majority of the casts

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 70/223

Deuxième chapitre

Theoretical foundations
Time and State of a Distributed System
Ordering of events
Abstract Clocks
Global Observer
Logical Clocks
Vector Clocks

Some Distributed Algorithms
Mutual Exclusion

Coordinator-based Algorithm
Lamport’s Algorithm
Ricart and Agrawala’s Algorithm
Roucairol and Carvalho’s Algorithm
Token-Ring algorithm
Suzuki and Kasami’s Algorithm

Leader Election
Consensus
Ordering Messages
Group Protocols

Conclusion on distributed algorithmic

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 18/44

Ordering of Messages

■ For many applications, messages should be delivered in
certain order to be interpreted meaningfully

■ Example:

m1: Have you seen the movie “Shrek”?

m2: Yes I have and I liked it

Bob

Alice

Tom

◆ m2 cannot be interpreted until m1 has been received
◆ Tom receives m2 before m1: an undesriable behavior

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 19/44

Useful Notations

■ For a message m:
◆ src(m): source process of m

◆ dst(m): destination process of m

◆ snd(m): send event of m

◆ rcv(m): send event of m

e

m

dst(m)

f

rcv(m)

snd(m)src(m)

Pi

Pj

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 20/44

Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))
⇒

rcv(w) → rcv(m)

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 21/44

A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 22/44

The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m
Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m
deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0
0
0

]

a e

[

0
0
0

]

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0
0
0

] [

1
0
0

]

[

0
0
0

]

a

[

0
0
0

]

e

[

0
0
0

]

b

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0
0
0

] [

1
0
0

]

[

0
0
0

]

a

[

0
0
0

]

e

[

0
0
0

]
[

1
0
0

]

b

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0
0
0

] [

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

a

d

[

0
0
0

]

e

cb

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

a e

d

[

0
0
0

]

cb

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

d f

cb

[

0
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

d f

cb

[

0
0
0

] [

1
0
0

]

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0
0
0

]
[

1
1
0

]

P2

P3

P1
[

1
0
0

]

[

0
0
0

]
[

1
1
0

]
[

1
0
0

]

[

1
0
0

]

[

0
0
0

]

[

0
0
0

]

a e

gf

[

1
0
0

]

cb

[

0
0
0

] [

1
0
0

] [

1
1
0

]

Group Protocols

Processes Group

I Definition: set of processes acting together

I Motivation:
I Duplication (redundancy) of services

Ex: servers group, duplicated data, clusters of computers
I Cooperative work, Information sharing

I Problems:
I Membership :

dynamic knowledge of who’s in the group (despite changes)
I Broadcast and Multicast :

communication between more than 2 processes (with specified properties)
I Broadcast: send to every members
I Multicast: send to some members

I Dynamic membership: arrival/departure, failures/restart

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 72/223

Group Protocols: Main issues

Specification difficulties

I Published specifications are often incomplete, incorrect, or ambiguous

Algorithmic difficulties

I These protocols are difficult when taking failure into account

I Numerous impossible problems in asynchronous settings:
(membership, atomic broadcast, synchronous views)

I Algorithmic instability:
I Tiny specification changes can lead to huge change in implementation difficulty
I Small change to protocol can lead to property violation

I Group protocols remains badly understood

⇒ Numerous researches (both theoretical and practical)

Chockler, et Al, Group Communication Specifications : A Comprehensive Study, 2001.

Meling and Helvik, Performance Consequences of Inconsistent Client-side Membership
Information in the Open Group Model, IPCCC 2004.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 73/223

Group Protocols: Possible properties

Properties on receivers

I Reliable diffusion: Message sent to every receivers, or to none

I Atomic diffusion (or totally ordered): Reliable+same order for all

Properties on reception order

I FIFO: Messages from same sender are delivered in sending order

I Causal: Reception order respecting causal order on sending (implies FIFO)
(forces an order of messages coming from differing senders)

Time-related properties

I Timed diffusion: No message is sent after a given delay
(without underlying synchronous communication, you can only tend to this)

Uniformity of a given property

I That property also apply to faulty processes

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 74/223

Linking between these properties

I The four properties classes on group protocols are orthogonal

I Every combination exist
I reliable without order, reliable FIFO, . . . , atomic causal

I Some combination imply other ones

=
⇒

⇐=

⇐=

⇐=

diffusion

Atomic diffusion

=
⇒

diffusion
Atomic causal

Atomic FIFOReliable FIFO

diffusion

Reliable diffusion
=
⇒

Reliable causal
diffusion

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 75/223

Conclusion

What we saw
I Notion of distributed system (DS)

I Notion of time and state in a DS

I Main issues of faults in DS

I Expected properties of a DS:
Safety, liveness (no deadlock, finishing), Scalability, Fault tolerance

I Classical problems in DS, and ideas of some algorithms

I Some classical approaches to solve these issues
Order/abstract clocks, applicative topologies, Symmetry breaking (token, leader)

What we didn’t saw (because of lack of time)

I Notion of security in DS

I Every details of every algorithms

I A whole load of other problems, also quite classical:
Wave algorithms; Distributed commits (2PC/3PC); Checkpointing; Ending detection

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 76/223

What you should remember

The models
I No shared time, no shared memory

I Asynchronism, Failures

The tools
I Abstract clocks, applicative topologies, token-based

The presented algorithms

I Mutex: Centralized, Lamport, Ricart/Agrawala, Roucairol/Carvalho,
Suzuki/Kasami
(you should be able to run them on a provided initial situation)

I The other ones (only the spirit)

I hope you got the spirit of classical DS

I Even if I would need more time to get into real details

Martin Quinson Distributed Systems & P2P (2009-2010) Chap II : Theoretical foundations 77/223

Chapter 3

Internet

Theory vs. Practice

The Models of Internet

Internet Design
Brewer’s Theorem

Conclusion

Theoretical Distributed Algorithmic vs. Internet

Genesis
I At the beginning there were the mainframe

I Then came the PC and the local network (LAN)

I Then, people wanted clusters of PC to look alike the mainframe

I They proved theorems, builded file systems and distributed databases

I Then the Internet and the Web came, and blowed everything away

Why DS failed?

I DS approach attracting, promising premises (theoretical and practical)

I Limitations of this approach (solved by the web):
I Systems not autonomous: Domino effect on failures, co-configuration.
I Complexity: In design, configuration and usage (and thus, cost)
I Scalability: Impossible to use more than a few dozen servers, hundreds nodes

The Internet and Web promise:

I Maximal autonomy, and scaling consequently

I Issues in data consistency (but who cares?)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 79/223

The Internet and the Web

Inter-net
I This is the network of networks

I Assembled by interconnecting everything

I Started in 1969 with 4 nodes in one network

I Now, billions of elements

The Web
I This is one of the application on the Internet

I Web pages browsing

I History: hypertext at CERN in 1990

I Whole load of applications on Internet:
Mails, Voice-over-IP, Online Games, P2P

Goal now: How does it work?
I What are the big ideas (models)?

I Classical way of solving problems

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 80/223

Layered Protocol Stack

Complexity of Existing Networks

I Lot of differing element categories (hosts, routers, links, applications)

I Lot of sort of elements in each category (huge amount of router models)

How to deal with this complexity

I Several layers, each solves one given issue (problem separation)

I Each layer defines:
I SAP (Service Access Point): service offered to higher layers
I Protocol between peers (using services of lower layers)
I PDU (Protocol Data Unit): format of exchanged data

Communication
System

Communication
System

bits

Transmission System

bits

ApplicationApplication
Protocol

Applicative

Protocol
Transport

InformationInformation

Signal Transmission

I Advantages: Decomposing, Reusability, Separate interface/implementation

I Issues: Performance loss
Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 81/223

The OSI Model

Organization in seven layers

I Applications: Common functions

I Presentation: Data representation and encryption (XDR)

I Session: Interhost communication (dialog setup)

I Transport: end-to-end connexion, reliability
(fragmentation, multiplexing, streaming)

I Network: Path determination and logical addressing (routing, congestion,

interconnection)

I Liaison: Physical addressing (Transmission between 2 sites, packet delimiting)

I Physical: Signal Transmission (converting between bits and signal)

Problems
I Standardization too slow, not (always) implemented

I Represents more than a 1m-high pile of paper

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 82/223

The TCP/IP Model

That’s what got implemented

I Applications

I Transport: Transport between processes

I Network: Routing

I Transmission: On local network

copper radiofiber

PPP

TCP UDP

email www games ...

IP

HTTP

asyncCSMA sonet

FTPSMTP

ethernet

Look how it draws a hourglass centered on IP

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 83/223

Internet Design

Internet History

I 1969 : ARAPANET, Internet’s ancestor
Military System during cold war
“Fault” tolerance ⇒ decentralized

I 1978 : first email

I 1978 : Lamport’s clock

I 1991 : HTTP and WWW

I 1995 : Yahoo and altavista
1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

01/70 01/76 01/82 01/88 01/94 01/00 01/06

http://www.isc.org/index.pl?/ops/ds/host-count-history.php

Conception choices of the Internet

I The Distributed Algorithmic developed in parallel

I The designers of the Internet were pragmatics

I Theoretical sacrifices for quick usability

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 84/223

http://www.isc.org/index.pl?/ops/ds/host-count-history.php

Dealing with misconfiguration in IP

Problem
I Each administrator configures its own machine

I Misconfigurations may lead to cycles in shortest path (for example)

⇒ “Mad” packets saturate the network

Solution
I Each packet has a given Time To Live (TTL – that’s a logical time)

I Each router decreases the TTL of packets it routes

I A packet which TTL reaches 0 is eliminated

Issue induced by the solution

I The transport layer can lose packets

I Higher layer must deal with it...

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 85/223

TCP: Adding Reliability

Problem
I Messages streams may arrive out of order

I Each message may get lost, late or duplicated

Solution 1
I Packets are numbered, and delivered in order only

Solution 2

I Expects an ACK for every message
(re-emit after timeout)

I Duplicated are detected from seq number

I Olds (> 120 sec) and dups are eliminated temps

ACK(seq=y1,
ack=x1)

DATA(seq=x2,
ack=y1)

Hôte 1

H=x1
CON(seq=x1)

Hôte 2

H=y1

H=x2

Services offered to higher layers

I FIFO channel without undetected loss

I (but also congestion handling)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 86/223

Résolution de noms sur Internet: DNS

Motivation
I Les humains n’aiment pas les IP, les machines n’aiment pas les noms longs

⇒ besoin d’un service d’annuaire

Problème
I Un annuaire unique ne passe pas à l’échelle

(volume données, point faible, distance=latence, maintenance)

Solution
I Base de données distribuée et hiérarchique

I Autorité délégué dans chaque branche

I Caches locaux de données

edu gov org de

racine

loria uhp-nancy

uk

dell

com

microsoft

fr

Gestion de la cohérence entre copies: soft-state

I Les enregistrements ont un âge maximal

I Ensuite, il les rafrâıchir (redemander à une source d’autorité)

⇒ problèmes de cohérence existants, mais limités dans le temps

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 87/223

Theory or practice?

Bases of the misunderstanding

I Academics like clear abstractions and pure models

I Users like systems which work (the most often)

I Scalability is cost-effective (scale savings, increased market shares)

I Perfect consistency rarely mandatory in real life

Brewer’s Theorem (PODC’00 – proof by Gilbert&Lynch, 2002)

From the three following goals, you can have two at most!

I Consistent (broadly defined)

I Available

I Partitions don’t stop system

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 88/223

Le choc des cultures
Systèmes distribués classiques: sémantique ACID

I A: Atomicité (tous ou personne)

I C: Consistance

I I: Isolation

I D: Durable

Systèmes utilisés sur Internet: sémantique BASE

I BA: Basically Available (souvent disponible)

I S: Soft-state (ou scalable)

I E: Eventually consistant consistance à terme

ACID
I Consistance avant tout

I Disponibilité moins fondamental

I Pessimiste

I Analyse rigoureuse

I Mécanismes complexes

BASE
I Disponibilité avant tout

I Consistance faible acceptée

I Optimiste

I Best-effort

I Simple et rapide
Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 89/223

Brewer’s Theorem

What can we expect from a distributed system?

I Strong Consistency: every node share the same view, even during updates

I High Availability: every node can find replica, even when some other nodes fail

I Partition Tolerance: properties kept when system partitioned (network failures)

CAP Theorem (Conjectured by Brewer)

I From these three systemic requirements, you can get at most two

I The choice of the forgotten one has strong implications

E. Brewer. Towards robust distributed systems. (Invited Talk) PODC 2000.

Gilbert & Lynch Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services, ACM SIGACT 33:2, 2002

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 90/223

Possible Design Choices

Consistency and Availability

I If you want transactions, you must get (and keep) your node connected

I Approaches: (classical in distributed algorithmic)

I Two-phase commit; Cache invalidation (cf. coherence corpus)

I Examples: systems for LANs (DB, FS, . . .)

Consistency and Partition-Tolerance

I System freeze allowed ; consistency even if transient partition

I Approaches: (also classical in distributed algorithmic)

I Pessimistic locks; Quorums and Elections (detecting the partitioning)

I Examples: distributed DB, distributed locks

Availability and Partition-Tolerance

I When you forget about consistency, everything becomes easier

I Approaches: (typical on the Internet)

I TTL and soft-state; Optimistic updates with conflict resolution

I Examples: DNS, Cache Web

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 91/223

Conclusion on historical distributed systems

What we saw
I Algorithmic of distributed systems is complex

I Lots of impossibility results
I Easy problems quite rare
I Hard to quantify the cost of a solution and its matching to the needs

I Some existing systems (Internet) are much more pragmatic
I Exchange strong consistency for good availability and partition-tolerance
I Mandatory for scalability

I These are two distinct origins of the modern research in distributed systems

⇒ Very active domain

Ce que nous ne verrons pas ici

I Systèmes temps réel (industriels, militaire), applications de la théorie

I Solution de programmation distribuée
I Distribution implicite: RPC, Java RMI, CORBA, J2EE, .NET.
I Distribution explicite (pour schizo ;): Sockets BSD, Erlang, mOZart, GRAS.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap III : Internet 92/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

Peer-to-Peer: What is it?

Peer definition from Merriam-Webster:

I one that is of equal standing with another;

I one belonging to the same societal group (based on age, grade, or status)

Definition of P2P
1. Significant autonomy from central servers

2. Exploits resources at the edges of the Internet
(storage and content, CPU cycles, human presence)

3. Individual nodes have intermittent connectivity, being added & removed

I Not strict requirements, instead typical characteristics

It’s a broad definition:
I P2P file sharing: Napster, Gnutella, KaZaA, eDonkey, etc

I P2P communication: Instant messaging, Voice-over-IP (Skype)

I P2P computation: seti@home, volunteer computing

I DHTs (& apps): Chord, CAN, Pastry, Tapestry
Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 94/223

Motivations

Promises
I Organic growth (lower deployment and operating costs)

I Independent from the infrastructures

I Scalable, Robust

There is a strong need for such systems

I Cooperative computations

I Robust services

I Ad-hoc networks

I It’s hard to setup a large network otherwise

Technology make these systems possible

I Computer always more powerful: every PC can be a server

I Wireless systems

I New algorithms for scalable systems

I Solutions to build safe systems from unsafe components

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 95/223

P2P Systems Organization: Overlays

Overlay Networks

overlay edge

network link

Layers

Applications

Support for
decentralized
applications
(overlay)

Network
(TCP, UDP)

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 96/223

Overlay Graph

Virtual edge

I TCP connection

I or simply a pointer to an IP address

Overlay maintenance

I Periodically ping to make sure neighbor is still alive

I Or verify liveness while messaging

I If neighbor goes down, may want to establish new edge

I New node needs to bootstrap

Kind of overlays

I Unstructured overlays: e.g., new node randomly chooses three existing nodes
as neighbors

I Structured overlays: e.g., edges arranged in restrictive structure

I Network Proximity: Not necessarily taken into account

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 97/223

12

1. Overview of P2P

overlay networks
current P2P applications

P2P file sharing & copyright issues
Instant messaging / voice over IP
P2P distributed computing

worldwide computer vision

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 98/223

13

P2P file sharing

Alice runs P2P client
application on her
notebook computer
Intermittently
connects to Internet;
gets new IP address
for each connection
Registers her content
in P2P system

Asks for “Hey Jude”
Application displays
other peers that have
copy of Hey Jude.
Alice chooses one of
the peers, Bob.
File is copied from
Bob’s PC to Alice’s
notebook: P2P
While Alice downloads,
other users uploading
from Alice.

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 99/223

14

Millions of content servers

Hey
Jude

Magic
Flute

Star
Wars

ERNPR

Blue

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 100/223

15

Killer deployments

Napster
disruptive; proof of concept

Gnutella
open source

KaZaA/FastTrack
Today more KaZaA traffic then Web traffic!

eDonkey / Overnet
Becoming popular in Europe
Appears to use a DHT

Is success due to massive number of servers,
or simply because content is free?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 101/223

16

P2P file sharing software

Allows Alice to open up
a directory in her file
system

Anyone can retrieve a
file from directory
Like a Web server

Allows Alice to copy
files from other users’
open directories:

Like a Web client

Allows users to search
nodes for content
based on keyword
matches:

Like Google

Seems harmless
to me !

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 102/223

17

Copyright issues (1)

Direct infringement:
end users who
download or upload
copyrighted works

Indirect infringement:
Hold an individual
accountable for
actions of others
Contributory
Vicarious

direct infringers

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 103/223

18

Copyright issues (2)

Contributory infringer:
knew of underlying
direct infringement,
and
caused, induced, or
materially contributed
to direct infringement

Vicarious infringer:
able to control the
direct infringers (e.g.,
terminate user
accounts), and
derived direct financial
benefit from direct
infringement (money,
more users)

(knowledge not necessary)

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 104/223

19

Copyright issues (3)
Betamax VCR defense

Manufacturer not
liable for contributory
infringement
“capable of substantial
non-infringing use”
But in Napster case,
court found defense
does not apply to all
vicarious liability

Guidelines for P2P developers
total control so that
there’s no direct
infringement

or
no control over users – no
remote kill switch,
automatic updates, actively
promote non-infringing
uses of product
Disaggregate functions:
indexing, search, transfer
No customer support

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 105/223

20

Instant Messaging

Alice runs IM client on
her PC
Intermittently
connects to Internet;
gets new IP address
for each connection
Registers herself with
“system”
Learns from “system”
that Bob in her buddy
list is active

Alice initiates direct
TCP connection with
Bob: P2P
Alice and Bob chat.

Can also be voice,
video and text.

We’ll see that Skype
is a VoIP P2P system

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 106/223

21

P2P Distributed Computing

seti@home
Search for ET
intelligence
Central site collects
radio telescope data
Data is divided into
work chunks of 300
Kbytes
User obtains client,
which runs in backgrd

Peer sets up TCP
connection to central
computer, downloads
chunk
Peer does FFT on
chunk, uploads results,
gets new chunk

Not peer to peer, but exploits
resources at network edge

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 107/223

22

1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 108/223

23

Worldwide Computer Vision

Alice’s home computer:
Working for biotech,
matching gene sequences
DSL connection downloading
telescope data
Contains encrypted
fragments of thousands of
non-Alice files
Occasionally a fragment is
read; it’s part of a movie
someone is watching in Paris
Her laptop is off, but it’s
backing up others’ files

Alice’s computer is
moonlighting
Payments come from
biotech company, movie
system and backup service

Your PC is only a component
in the “big” computer

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 109/223

24

Worldwide Computer (2)

Anderson & Kubiatowicz:
Internet-scale OS

Thin software layer running
on each host & central
coordinating system
running on ISOS server
complex
allocating resources,
coordinating currency
transfer
Supports data processing &
online services

Challenges
heterogeneous hosts
security
payments

Central server complex
needed to ensure privacy
of sensitive data
ISOS server complex
maintains databases of
resource descriptions,
usage policies, and task
descriptions

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 110/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

Historique des systèmes pair-à-pair

Motivations
I Permet d’obtenir de la musique (mp3) gratuitement de l’internet

I Principe: partager stockage et bande passante des participants (individus)

I Modèle: Tout le monde peut télécharger de ce que chacun stocke

I Difficultés principales:
I Échelle: des milliers, des millions de machines
I Dynamicité: les machines viennent et partent à tout moment (churn)

Napster (popularized P2P even if Eternity [Ross Anderson] exists since 96)

I Index centralisé du contenu de toutes les machines

I Après la recherche, échange entre clients (P2P)

I Avantages:
I Simple à implémenter
I Possibilité de recherche avancée

I Défauts:
I Extensibilité (?)
I Point central (single point of failure)

m1

m4

m2

m3

A B

BE

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 112/223

Historique des systèmes pair-à-pair

Motivations
I Permet d’obtenir de la musique (mp3) gratuitement de l’internet

I Principe: partager stockage et bande passante des participants (individus)

I Modèle: Tout le monde peut télécharger de ce que chacun stocke

I Difficultés principales:
I Échelle: des milliers, des millions de machines
I Dynamicité: les machines viennent et partent à tout moment (churn)

Napster (popularized P2P even if Eternity [Ross Anderson] exists since 96)

I Index centralisé du contenu de toutes les machines

I Après la recherche, échange entre clients (P2P)

I Avantages:
I Simple à implémenter
I Possibilité de recherche avancée

I Défauts:
I Extensibilité (?)
I Point central (single point of failure)

m1

m4

m2

m3

A B

BE

m1 E

m2 B

m3 A

m4 B

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 112/223

Historique des systèmes pair-à-pair

Motivations
I Permet d’obtenir de la musique (mp3) gratuitement de l’internet

I Principe: partager stockage et bande passante des participants (individus)

I Modèle: Tout le monde peut télécharger de ce que chacun stocke

I Difficultés principales:
I Échelle: des milliers, des millions de machines
I Dynamicité: les machines viennent et partent à tout moment (churn)

Napster (popularized P2P even if Eternity [Ross Anderson] exists since 96)

I Index centralisé du contenu de toutes les machines

I Après la recherche, échange entre clients (P2P)

I Avantages:
I Simple à implémenter
I Possibilité de recherche avancée

I Défauts:
I Extensibilité (?)
I Point central (single point of failure)

m1

m4

m2

m3

A B

BE

m1

E?

m1 E

m2 B

m3 A

m4 B

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 112/223

Historique des systèmes pair-à-pair

Motivations
I Permet d’obtenir de la musique (mp3) gratuitement de l’internet

I Principe: partager stockage et bande passante des participants (individus)

I Modèle: Tout le monde peut télécharger de ce que chacun stocke

I Difficultés principales:
I Échelle: des milliers, des millions de machines
I Dynamicité: les machines viennent et partent à tout moment (churn)

Napster (popularized P2P even if Eternity [Ross Anderson] exists since 96)

I Index centralisé du contenu de toutes les machines

I Après la recherche, échange entre clients (P2P)

I Avantages:
I Simple à implémenter
I Possibilité de recherche avancée

I Défauts:
I Extensibilité (?)
I Point central (single point of failure)

m1

m4

m2

m3

A B

BE

m1

E?

m1 E

m2 B

m3 A

m4 B

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 112/223

27

Napster
program for sharing files over the Internet
a “disruptive” application/technology?
history:

5/99: Shawn Fanning (freshman, Northeasten U.)
founds Napster Online music service
12/99: first lawsuit
3/00: 25% UWisc traffic Napster
2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K,

Morpheus (KaZaA): 300K

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 113/223

28

Napster

judge orders Napster
to pull plug in July ‘01
other file sharing apps
take over!

gnutella
napster
fastrack (KaZaA)

8M

6M

4M

2M

0.0
bi

ts
 p

er
 s

ec

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 114/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

35

Distributed Search/Flooding

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 116/223

36

Distributed Search/Flooding

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 117/223

37

Gnutella

focus: decentralized method of searching
for files

central directory server no longer the
bottleneck
more difficult to “pull plug”

each application instance serves to:
store selected files
route queries from and to its neighboring peers
respond to queries if file stored locally
serve files

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 118/223

38

Gnutella

Gnutella history:
3/14/00: release by AOL, almost immediately
withdrawn
became open source
many iterations to fix poor initial design (poor
design turned many people off)

issues:
how much traffic does one query generate?
how many hosts can it support at once?
what is the latency associated with querying?
is there a bottleneck?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 119/223

39

Gnutella: limited scope query
Searching by flooding:

if you don’t have the file you want, query 7
of your neighbors.
if they don’t have it, they contact 7 of
their neighbors, for a maximum hop count
of 10.
reverse path forwarding for responses (not
files)

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 120/223

40

Gnutella overlay management

New node uses bootstrap node to get IP
addresses of existing Gnutella nodes
New node establishes neighboring relations
by sending join messages

join

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 121/223

41

Gnutella in practice

Gnutella traffic << KaZaA traffic
16-year-old daughter said “it stinks”

Couldn’t find anything
Downloads wouldn’t complete

Fixes: do things KaZaA is doing: hierarchy,
queue management, parallel download,…

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 122/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

44

KaZaA: The service

more than 3 million up peers sharing over
3,000 terabytes of content
more popular than Napster ever was
more than 50% of Internet traffic ?
MP3s & entire albums, videos, games
optional parallel downloading of files
automatically switches to new download
server when current server becomes
unavailable
provides estimated download times

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 124/223

45

KaZaA: The service (2)

User can configure max number of simultaneous
uploads and max number of simultaneous
downloads
queue management at server and client

Frequent uploaders can get priority in server queue
Keyword search

User can configure “up to x” responses to keywords
Responses to keyword queries come in waves;
stops when x responses are found
From user’s perspective, service resembles Google,
but provides links to MP3s and videos rather than
Web pages

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 125/223

46

KaZaA: Technology

Software
Proprietary
control data encrypted
Everything in HTTP request and response
messages

Architecture
hierarchical
cross between Napster and Gnutella

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 126/223

47

KaZaA: Architecture

Each peer is either a
supernode or is
assigned to a
supernode

56 min avg connect
Each SN has about
100-150 children
Roughly 30,000 SNs

Each supernode has
TCP connections with
30-50 supernodes

0.1% connectivity
23 min avg connect

supernodes

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 127/223

50

KaZaA: Architecture (2)

Nodes that have more connection
bandwidth and are more available are
designated as supernodes
Each supernode acts as a mini-Napster hub,
tracking the content and IP addresses of
its descendants
Does a KaZaA SN track only the content of
its children, or does it also track the
content under its neighboring SNs?

Testing indicates only children.

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 128/223

51

KaZaA metadata

When ON connects to SN, it uploads its metadata.
For each file:

File name
File size
Content Hash
File descriptors: used for keyword matches during query

Content Hash:
When peer A selects file at peer B, peer A sends
ContentHash in HTTP request
If download for a specific file fails (partially completes),
ContentHash is used to search for new copy of file.

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 129/223

52

KaZaA: Overlay maintenance

List of potential supernodes included within
software download
New peer goes through list until it finds
operational supernode

Connects, obtains more up-to-date list, with
200 entries
Nodes in list are “close” to ON.
Node then pings 5 nodes on list and connects
with the one

If supernode goes down, node obtains
updated list and chooses new supernode

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 130/223

53

KaZaA Queries

Node first sends query to supernode
Supernode responds with matches
If x matches found, done.

Otherwise, supernode forwards query to
subset of supernodes

If total of x matches found, done.
Otherwise, query further forwarded

Probably by original supernode rather than
recursively

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 131/223

55

Parallel Downloading; Recovery

If file is found in multiple nodes, user can
select parallel downloading

Identical copies identified by ContentHash
HTTP byte-range header used to request
different portions of the file from
different nodes
Automatic recovery when server peer
stops sending file

ContentHash

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 132/223

56

KaZaA Corporate Structure

Software developed by
Estonians
FastTrack originally
incorporated in Amsterdam
FastTrack also deploys
KaZaA service
FastTrack licenses
software to Music City
(Morpheus) and Grokster
Later, FastTrack
terminates license, leaves
only KaZaA with killer
service

Summer 2001, Sharman
networks, founded in
Vanuatu (small island in
Pacific), acquires
FastTrack

Board of directors,
investors: secret

Employees spread
around, hard to locate

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 133/223

57

Lessons learned from KaZaA

Exploit heterogeneity
Provide automatic
recovery for
interrupted downloads
Powerful, intuitive
user interface

Copyright infringement
International cat-and-
mouse game
With distributed,
serverless
architecture, can the
plug be pulled?
Prosecute users?
Launch DoS attack on
supernodes?
Pollute?

KaZaA provides powerful
file search and transfer
service without server
infrastructure

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 134/223

58

Measurement studies by Gribble et
al

2002 U. Wash campus
study
P2P: 43%; Web: 14%
Kazaa objects fetched
at most once per client
Popularity distribution
deviates substantially
from Zipf distribution

Flat for 100 most
popular objects

Popularity of objects
is short.

KaZaA users are patient
Small objects (<10MB):
30% take more than
hour to download
Large objects (>100MB):
50% more than 1 day
Kazaa is a batch-mode
system, downloads done
in background

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 135/223

59

Pollution in P2P

Record labels hire “polluting companies” to
put bogus versions of popular songs in file
sharing systems
Polluting company maintains hundreds of
nodes with high bandwidth connections
User A downloads polluted file
User B may download polluted file before A
removes it
How extensive is pollution today?
Anti-pollution mechanisms?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 136/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

86

Challenge: Locating Content

Simplest strategy: expanding ring search

If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

Need many cached copies to keep search overhead small

I’m looking for
NGC’02 Tutorial

Notes

Here you go!
Here you go!

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 138/223

87

Directed Searches

Idea:
assign particular nodes to hold particular content (or
pointers to it, like an information booth)
when a node wants that content, go to the node that is
supposed to have or know about it

Challenges:
Distributed: want to distribute responsibilities among
existing nodes in the overlay
Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute responsibility knowledge from leaving

nodes

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 139/223

88

DHT Step 1: The Hash
Introduce a hash function to map the object being searched
for to a unique identifier:

e.g., h(“NGC’02 Tutorial Notes”) → 8045
Distribute the range of the hash function among all nodes in
the network

Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 140/223

89

“Knowing about objects”

Two alternatives
Node can cache each (existing) object that
hashes within its range
Pointer-based: level of indirection - node
caches pointer to location(s) of object

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 141/223

90

DHT Step 2: Routing

For each object, node(s) whose range(s) cover that object
must be reachable via a “short” path
by the querier node (assumed can be chosen arbitrarily)
by nodes that have copies of the object (when pointer-based
approach is used)

The different approaches (CAN,Chord,Pastry,Tapestry)
differ fundamentally only in the routing approach

any “good” random hash function will suffice

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 142/223

91

DHT Routing: Other Challenges

neighbors for each node should scale with growth in
overlay participation (e.g., should not be O(N))
DHT mechanism should be fully distributed (no centralized
point that bottlenecks throughput or can act as single point
of failure)
DHT mechanism should gracefully handle nodes
joining/leaving the overlay

need to repartition the range space over existing nodes
need to reorganize neighbor set
need bootstrap mechanism to connect new nodes into the
existing DHT infrastructure

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 143/223

92

DHT API

each data item (e.g., file or metadata
containing pointers) has a key in some ID
space
In each node, DHT software provides API:

Application gives API key k
API returns IP address of node that is
responsible for k

API is implemented with an underlying DHT
overlay and distributed algorithms

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 144/223

93

DHT API

application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
a t

io
n

D
H

T
s u

bs
tra

te
A

PI

app licat ion

D
H

T su bstrat e
A

P I

overlay
network

key
responsible
node

each data item (e.g., file or metadata
pointing to file copies) has a key

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 145/223

94

DHT Layered Architecture

TCP/IP

DHT

Network
storage

Event
notification

Internet

P2P substrate
(self-organizing
overlay network)

P2P application layer?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 146/223

96

CARP

DHT for cache clusters
Each proxy has unique
name

key = URL = u
calc h(proxyn, u) for all
proxies
assign u to proxy with
highest h(proxyn, u)

institutional
network

proxies

clients

Internet

if proxy added or
removed, u is likely
still in correct proxy

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 147/223

97

CARP (2)

circa 1997
Internet draft:
Valloppillil and Ross

Implemented in
Microsoft & Netscape
products
Browsers obtain script
for hashing from
proxy automatic
configuration file
(loads automatically)

Not good for P2P:
Each node needs to
know name of all other
up nodes
i.e., need to know O(N)
neighbors
But only O(1) hops in
lookup

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 148/223

99

Consistent hashing (1)

Overlay network is a circle
Each node has randomly chosen id

Keys in same id space
Node’s successor in circle is node with next
largest id

Each node knows IP address of its successor
Key is stored in closest successor

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 149/223

100

Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 150/223

101

Consistent hashing (3)

Node departures
Each node must track
s ≥ 2 successors
If your successor
leaves, take next one
Ask your new
successor for list of
its successors; update
your s successors

Node joins
You’re new, node id k
ask any node n to find
the node n’ that is the
successor for id k
Get successor list
from n’
Tell your predecessors
to update their
successor lists
Thus, each node must
track its predecessor

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 151/223

102

Consistent hashing (4)

Overlay is actually a circle with small
chords for tracking predecessor and k
successors
of neighbors = s+1: O(1)

The ids of your neighbors along with their IP
addresses is your “routing table”

average # of messages to find key is O(N)

Can we do better?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 152/223

Chord, MIT

Principe de base

I Espace d’adressage circulaire; données sur noeud suivant; voisins: n + 2i ,∀i

I Recherche en O(log(n))

+16

+8
+4

+2

+32

+1 N8 + 1 N14

N8 + 4 N14

N8 + 8 N21

N8 +32 N42

N8 +16 N32

N8 + 2 N14

Finger table

K24K30

K54

K38

K10

N42

N14

N21

N32
N38

N48

N51

N56

N1

N8

Stoica et Al, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM
SIGCOMM 2001.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 153/223

Chord, MIT

Principe de base

I Espace d’adressage circulaire; données sur noeud suivant; voisins: n + 2i ,∀i

I Recherche en O(log(n))

lookup(54)

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Stoica et Al, Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM
SIGCOMM 2001.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 153/223

Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 1

I Service maintenu durant insertion

I Insertions concurrentes possibles

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 154/223

Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 2

I Service maintenu durant insertion

I Insertions concurrentes possibles

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 154/223

Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 3

I Service maintenu durant insertion

I Insertions concurrentes possibles

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 154/223

Insertion d’un nœud dans Chord

N26

K24K30

K54

K38

K10

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

Étape 4

I Service maintenu durant insertion

I Insertions concurrentes possibles

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 154/223

Autres propriétés de Chord

Retrait d’un nœud Chord
I Table = liste de O(log(N)) successeurs
⇒ Probablement correct même si hécatombe de nœuds (proba mort = 1/2)

+16

+8

+4

+2

+32

+1

N42

N14

N21

N32

N38

N48

N51

N56

N1

N8

X

X

X

Autres propriétés (démontrées)

I Résistance probable aux morts simultanées

I Possibilité d’ajouts simultanés

I Résistance à la mort de noeud lors de l’ajout
d’autres

I Équilibrage de charge entre les noeuds

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 155/223

Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

5

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223

Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

5

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223

Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

85

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223

Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

85

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223

Content-Addressable Network (CAN), Berkley

Principe de base

I Idée: Chaque nœud a un morceau de l’espace d’adressage
(d dimensions, torique)

I Routage: proche en proche (⇒ 0(dn1/d) sauts; |table|=O(d))

I Ajout d’un nœud: il s’approprie un morceau

I Mort d’un nœud: un voisin récupère sa zone

85

7 4

3

2

6 1

Raffinements
I Réalités: Plusieurs espaces d’adressage

; meilleure résistance (réplication) ; latence moins bonne

I Meilleur routage: Choix de voisin selon distance réseau (pour diagonales)

I Zones recouvrantes:
; moins de sauts, latence par saut moindre; meilleur résistance

I Place dans espace d’addressage en fonction localisation physique:
; meilleure localité, distribution moins bonne

RFHKS, A scalable content-addressable network, ATAPCC’01

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 156/223

115

CAN node removal
Underlying cube structure should
remain intact

i.e., if the spaces covered by s & t were
not formed by splitting a cube, then
they should not be merged together

Sometimes, can simply collapse
removed node’s portion to form bigger
rectangle

e.g., if 6 leaves, its portion goes back to
1

Other times, requires juxtaposition of
nodes’ areas of coverage

e.g., if 3 leaves, should merge back into
square formed by 2,4,5
cannot simply collapse 3’s space into 4
and/or 5
one solution: 5’s old space collapses into
2’s space, 5 takes over 3’s space

1 6

5
4

3

2

1 6

5
4

3

2
4 2

5

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 157/223

116

CAN (recovery from) removal process

View partitioning as a binary tree of
leaves represent regions covered by overlay nodes (labeled by
node that covers the region)
intermediate nodes represent “split” regions that could be
“reformed”, i.e., a leaf can appear at that position
siblings are regions that can be merged together (forming the
region that is covered by their parent)

1 6

5
4

3

2
7

8 9

10

11
12

13 14

109

8

7

2

4

5

3

13

12

14

11

61

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 158/223

117

CAN (recovery from) removal process

Repair algorithm when leaf s is removed
Find a leaf node t that is either

• s’s sibling
• descendant of s’s sibling where t’s sibling is also a leaf node

t takes over s’s region (moves to s’s position on the tree)
t’s sibling takes over t’s previous region

Distributed process in CAN to find appropriate t w/ sibling:
current (inappropriate) t sends msg into area that would be covered by
a sibling
if sibling (same size region) is there, then done. Else receiving node
becomes t & repeat

109

8

7

2

4

5

3

13

12

14

11

61

X

1 6

5
4

3

2

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 159/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

Algorithme de Plaxton

Structure de données distribuée servant de table de routage.

Idée de base
I Chaque noeud a une clé d’identification unique (répartition uniforme)

I Routage de proche en proche dans l’espace des clés par suffixe commun
Exemple : (3745→3BA8) = (???8→??A8→?BA8→3BA8)

I Table: Ligne i ; préfix commun taille i ; Colonne j : caractère ’j ’ ensuite.

L4

L3

L3

3745

A5A8
4238AA32

532
5

45

3BA8

BA8
8

A8

L2

L2

L1

L1

– 1201 3202 2123
3200 – 3220 2130
3010 3110 2210 –
0310 1310 – 3310

Table du nœud 2310 en base 4.

, Petite table (b(logb(N))), peu de saut (dlogb (N)e)
/ Pas d’algo pour construire la table

Plaxton et Al, Accessing nearby copies of replicated objects in a distributed environment, spaa’97.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 161/223

Systèmes P2P basés sur Plaxton

Tapestry et Pastry

I En 2001, deux algos sont proposés pour créer les tables et les tenir à jour

I Tapestry: Thésard de U. Berkley; Pastry: U. Rice et Microsoft Research

I Idée de base: mélange de Chord et Plaxton

I Différence:
I Optimisations diverses et variées, principalement
I L’histoire retiendra surtout Pastry

323310
323211

322021

313221

203231

lookup(m,323310)

2033*2032*2031*2030*

203*202*201*200*

23*22*21*20*

3*2*1*0*

Table de 203231
Leaf set de 203231

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 162/223

127

Pastry: Experimental results

Prototype
implemented in Java

deployed testbed (currently ~25 sites
worldwide)

Simulations for large networks

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 163/223

128

Pastry: Average # of hops

L=16, 100k random queries

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000

Number of nodes

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Pastry
Log(N)

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 164/223

129

Pastry: # of hops (100k nodes)

L=16, 100k random queries

0.0000 0.0006 0.0156

0.1643

0.6449

0.1745

0.0000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

Number of hops

Pr
ob

ab
ili

ty

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 165/223

130

Pastry: # routing hops
(failures)

L=16, 100k random queries, 5k nodes, 500 failures

2.73

2.96

2.74

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

No Failure Failure After routing table repair

A
ve

ra
ge

 h
op

s
pe

r
lo
ok

up

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 166/223

Pastry, Tapestry et les autres

Ajout de nœuds

I Nouveau venu choisi un ID aléatoirement

I Envoi d’un message à cet ID

I Le nœud le plus proche de cet ID répond, avec ses tables de routage

Départ de nœuds

I Messages fréquents pour vérifier la validité de la table

I Échanges d’éléments de tables entre voisins vivants

Autres overlay P2P proposés dans la littérature

I Kademlia: Un peu plaxton, mais routage par XOR binaire au lieu de préfixe

I Bamboo: accent mis sur la tolérance au churn

I SkipNet: accent mis sur la localité réseau

I Kelips: accent mis sur efficacité des recherches

I Accordeon: balance entre temps de recherche et maintenance des tables

I openDHT: tentative d’unification

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 167/223

Comparaisons entre systèmes pair-à-pair

Comparaison entre P2P non-structurés et DHT

I DHT préférables pour: recherche exacte d’éléments rares

I Non-structurés préférables pour: recherche approchée, churn extrême

Castro, Costa, Rowstron, Debunking some myths about structured and unstructured overlays,
NSDI’05.

Comparaison entre DHT
CAN Chord Pastry Tapestry

Dim d base b base b
Taille table O(d) log2(N) b logb(N) + O(b) b logb(N)

saut O(d × N1/d) log2(N) logb(N) logb(N)

msg ajout O(d × N1/d) O(log2
2(N)) O(logb(N)) O(logb(N)2)

Retrait ?? O
(
log2 N

)
?? ??

Localité non non oui oui
(mobilité) non oui
Sécurité non non à l’étude non

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 168/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

154

File sharing using DHT

Advantages
Always find file
Quickly find file
Potentially better
management of
resources

Challenges
File replication for
availability
File replication for
load balancing
Keyword searches

There is at least one file sharing system
using DHTs: Overnet, using Kademlia

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 170/223

155

File sharing: what’s under key?

Data item is file itself
Replicas needed for availability
How to load balance?

Data item under key is list of pointers to file
Must replicate pointer file
Must maintain pointer files: consistency

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 171/223

156

File sharing: keywords

Recall that unstructured file sharing
provides keyword search

Each stored file has associated metadata,
matched with queries

DHT: Suppose key = h(artist, song)
If you know artist/song exactly, DHT can find
node responsible for key
Have to get spelling/syntax right!

Suppose you only know song title, or only
artist name?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 172/223

157

Keywords: how might it be done?

Each file has XML descriptor

<song>
<artist>David

Bowie</artist>
<title>Changes</title>
<album>Hunky Dory</album>
<size>3156354</size>
</song>

Key is hash of descriptor: k =
h(d)

Store file at node responsible
for k

Plausible queries
q1 = /song[artist/David

Bowie][title/Changes]
[album/Hunky Dory]
[size/3156354]

q2 = /song[artist/David
Bowie][title/Changes]

q3 = /song/artist/David
Bowie

q4 = /song/title/Changes

Create keys for each plausible
query: kn = h(qn)

For each query key kn, store
descriptors d at node
responsible for kn

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 173/223

158

Keywords: continued

Suppose you input q4 = /song/title/Changes
Locally obtain key for q4, submit key to
DHT
DHT returns node n responsible for q4
Obtain from n the descriptors of all songs
called Changes
You choose your song with descriptor d,
locally obtain key for d, submit key to DHT
DHT returns node n’ responsible for
desired song

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 174/223

159

Blocks

HeyJude MP3

HeyJude1 HeyJude8

Each block is assigned to a different node

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 175/223

160

Blocks (2)

Benefits
Parallel downloading

Without wasting global
storage

Load balancing
Transfer load for
popular files
distributed over
multiple nodes

Drawbacks
Must locate all blocks
Must reassemble
blocks
More TCP connections
If one block is
unavailable, file is
unavailable

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 176/223

161

Erasures (1)

HeyJude

• Reconstruct file with any m of r pieces

• Increases storage overhead by factor r/m

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 177/223

162

Erasures (2)

Benefits
Parallel downloading

Can stop when you get
the first m pieces

Load balancing
More efficient copies
of blocks

Improved availability
for same amount of
global storage

Drawbacks
Must reassemble
blocks
More TCP connections

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 178/223

190

Persistent file storage

PAST layered on Pastry
CFS layered on Chord

P2P Filesystems
Oceanstore
FarSite

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 179/223

191

PAST: persistence file storage

Goals
Strong persistence
High availability
Scalability

nodes, files,
queries, users

Efficient use of pooled
resources

Benefits
Provides powerful
backup and archiving
service
Obviates need for
explicit mirroring

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 180/223

199

Mobility management

Alice wants to contact bob smith
Instant messaging
IP telephony

But what is bob’s current IP address?
DHCP
Switching devices
Moving to new domains

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 181/223

200

Mobility Management (2)

Bob has a unique identifier:
bob.smith@foo.com
k =h(bob.smith@foo.com)

Closest DHT nodes are responsible for k
Bob periodically updates those nodes with
his current IP address
When Alice wants Bob’s IP address, she
sends query with k =h(bob.smith@foo.com)

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 182/223

201

Mobility management (3)

Obviates need for SIP servers/registrars
Can apply the same idea to DNS
Can apply the same idea to any directory
service

e.g., P2P search engines

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 183/223

Quelques applications P2P

Rendez-vous (système d’annuaire)

I Motivation: Utilisateurs mobiles (changements d’IP)

I Application: Chat, Téléphonie, (voire DNS)

I Principe: Insertion régulière IP dans le système

Stockage de fichier

I (fonction originelle avec Napster)

I Avantages: grande capacité disque, gros lien, réplication, . . .

I Exemple: Usenet
I Le système, lancé en 1981, a une croissance exponentielle
I Seuls 50 sites ont tout car stockage + bande passante = 30000$
⇒ bon candidat aux DHT

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 184/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

JoinDéfis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Join

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

JoinDéfis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Join

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Content Distribution Networks

Applications

I Multicast (multimédia)

I Systèmes de notification d’événements

Principe: Construction de l’arbre de diffusion d’après l’overlay

Diffusion

Défis du routage P2P

I Dynamisme de l’arbre

I Répartition de charge

I Proximité réseau

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 185/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

61

BitTorrent url tracker

1. GET file.torrent

file.torrent info:
• length
• name
• hash
• url of tracker

2. GET 3. list of
peers

4.

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 187/223

62

BitTorrent: Pieces

File is broken into pieces
Typically piece is 256 KBytes
Upload pieces while downloading pieces

Piece selection
Select rarest piece
Except at beginning, select random pieces

Tit-for-tat
Bit-torrent uploads to at most four peers
Among the uploaders, upload to the four that
are downloading to you at the highest rates
A little randomness too, for probing

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 188/223

63

NATs

nemesis for P2P
Peer behind NAT can’t be a TCP server
Partial solution: reverse call

Suppose A wants to download from B, B behind NAT
Suppose A and B have each maintain TCP connection to
server C (not behind NAT)
A can then ask B, through C, to set up a TCP connection
from B to A.
A can then send query over this TCP connection, and B
can return the file

What if both A and B are behind NATs?

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 189/223

Quatrième chapitre

Peer-to-Peer Systems

Introduction
Overlays
Current P2P Applications
Worldwide Computer Vision

Unstructured P2P File Sharing
Napster
Gnutella
KaZaA

Structured P2P: DHT Approaches
DHT service, issues and seminal
ideas
Chord
CAN
Pastry

Applications
File sharing using DHT
Persistent file storage
Mobility Management
Content Distribution Networks
BitTorrent
Anonymous Activities

Storm Botnet
Tor System

Quelques défis supplémentaires
Proximité réseau
Confiance entre participants
Dynamicité du système

Conclusion

Anonymous Activities

Suppose clients want to perform anonymous communication

I Requestor wishes to keep its identity secret

I Deliverer wishes to also keep identity secret

Whitehat Motivations
I Protect privacy

I Fight censorship

Blackhat Motivations
I Avoid the detection of criminal activity

I Hide crucial infrastructure: “mothership” servers, monitoring and control
servers, etc

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 191/223

3

Example systems

● BotNets
– networks of compromised PCs

– initially IRC-based; now increasingly P2P

– main servers and operator wants to stay anonym

● Anonym networks
– Dedicated (closed or open) networks

– some variation of “mixing” communication so that
participants cannot be traced back

– remailer networks, low latency networks, friends-
networks

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 192/223

5

Storm Botnet

● appeared in 2007 January
● primarily for sending spam
● advanced P2P technology
● size estimated between 500,000 and 50 million
● aggressive measures for protection

– regular download of updates to prevent reverse
engineering

– DDoS attack against external hosts that attempt to
probe its operations

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 193/223

6

Storm Botnet Technology

● uses overnet protocol, based on the kademlia
DHT
– key space is 128 bit binary (usual DHT design)

– routing is based on XOR distance
● eg d(001,110)=001110=111

– for 0<=i<=128 there is a “bucket” of k(=20)
addresses that are at distance from [2i,2i+1)

– these buckets are kept fresh from observing traffic
(preferring oldest, but live nodes), and proactive
lookup if needed

– lookup uses the 3 closest nodes in parallel
Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 194/223

7

Storm Botnet Technology

● Storm bots periodically search for a given key
– key is generated using the current date and a

random number from [0,31]

– value of that key contains an encrypted URL

– which in turn contains new binary updates and
other files to download

● for some reason
– if this lookup fails, bots rejoin the network with new

ID and repeat the search

● file sharing networks such as eDonkey can be
used to store these keys! (same protocol)

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 195/223

8

Measurements

● Crawler: kademlia client that
– performs queries for random keys

– records node ID, IP and port that is returned

● seed list
– 400 hard-wired IP-s in the Storm bot binary

– storm bot run in a honeypot for 5 hours: 4000 peers

● full crawls (entire 128 bit space)
● zone crawl (space with a fixed prefix)
● estimated size: around 500,000

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 196/223

9

Uneven distribution of storm bot IDs

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 197/223

10

Explanation of uneven distribution:
war against the Storm?

● Around 1% of returned IP addresses bogous
● But 45% of unique Ids have one of these

addresses
● These IDs are responsible for the non-

uniformity of the ID distribution as well
● possible explanation

– index poisoning

– we are witnessing efforts to fight the Storm Botnet

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 198/223

Whitehats vs Blackhats

May 2009: Torpig hijack

I Classical BotNet, specialized in data stealing (through pishing)
I Researchers managed to get the control of the Torpig botnet for 10 days
I The botnet get commands from C&C servers, changing domain name regularly
I Researchers registered future names before criminals
I New binary uploaded after 10 days; 70Gb of personal data retrieved;

Measurements: ≈180k nodes

27 december 2009: Mega-D shut down

I Botnet responsible for about 10% of whole spam for months
I Got the ISP hosting them to shut 11 of 13 C&C servers
I Hijacked DNS registery of the other ones

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 199/223

16

Tor

● Can provide anonymity for both clients and
servers (the latter using the “.onion” domain)

● So called “onion” routing
● Originally funded by US Naval Research Lab

– To provide protection for negotiators, agents, etc

– but if only the Navy uses it, everyone knows it's the
Navy: so it went public...

● Later taken over by Electronic Frontier
Foundation (EFF)

● Currently a few thousand nodes
Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 200/223

236

Onion Routing

A Node N that wishes to send a message to a node
M selects a path (N, V1, V2, …, Vk, M)

Each node forwards message received from previous
node
N can encrypt both the message and the next hop
information recursively using public keys: a node only
knows who sent it the message and who it should send to

N’s identity as originator is not revealed

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 201/223

237

Anonymnity on both sides
A requestor of an object receives the object from the
deliverer without these two entities exhanging identities
Utilizes a proxy

Using onion routing, deliverer reports to proxy (via onion
routing) the info it can deliver, but does not reveal its identity
Nodes along this onion-routed path, A, memorize their previous
hop
Requestor places request to proxy via onion-routing, each node
on this path, B, memorize previous hop
Proxy→Deliverer follows “memorized” path A
Deliverer sends article back to proxy via onion routing
Proxy→Requestor via “memorized” path B

Proxy
Requestor Deliverer

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 202/223

20

● the client never uses its public key
● onion: layers of AES encryption (a symmetric

key encryption) based on secret key negotiated
with Diffie Hellman during the circuit building

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 203/223

21

Problems: last step

● link between Tor exit and service is
unencrypted
– people hosting Tor exits can see all traffic (but not

the origin)

● Dan Egerstad: collected high value corporate
and government email addresses
– arrested in October 2007!

– Egerstad says
● traffic to these email accounts probably originated

from spies and not original owners
● web traffic is mostly porn...

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 204/223

22

Other problems

● DNS leak
– resolving DNS requests is still direct

– latest version includes DNS resolver (understands
.onion domain as well)

● traffic analysis
– techniques exist that capture correlated traffic

without global knowledge

● misuse
– bittorrent clients often support Tor: huge traffic

– criminals wanting to avoid detection

Màrk Jelasity, U. Szeged Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 205/223

Les systèmes P2P aujourd’hui

Infrastructure choisie
I Décentralisée, tirant profit des clients puissants

Interface choisie
I Put(key, data)/Get(key): hachage classique

I lookup(key): recherche responsable de clé

La recherche en P2P
I Améliorations des infrastructures P2P

I Exploration de nouvelles fonctions (cf. plus haut)
I Conditions extrêmes (taille, churn)

I Standardisation de l’interface (⇒ openDHT)

I Prototypage et développement d’applications

Recherches sur

les infrastructures

Interface

applications

(prototypes)

Sablier P2P

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 206/223

Défi: efficacité du routage vis-à-vis du réseau

20x

80x

81x

89x

Défi:
I Adéquation overlay et réseau physique

I Réduire nombre sauts et latence

Solution: Proximity Neighbor Selection

I Pour chaque case de la table, il y a
plusieurs candidats

I Choisir le noœud possible le plus proche
selon une métrique réseau (RTT)

Résultat:
I Les routes dans l’overlay convergent

physiquement

I Surcoût latence par rapport à IP:
rapport constant (< 3)

Castro, Druschel, Hu, Rowstron Proximity neighbor selection in tree-based structured
peer-to-peer overlays, Technical Report MSR-TR-2003-52, Microsoft Research, 2003.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 207/223

133

Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space

0.8

0.9

1

1.1

1.2

1.3

1.4

1000 10000 100000
Number of nodes

R
el

at
iv

e
D

is
ta

nc
e

Pastry

Complete routing table

Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 208/223

135

Pastry delay vs IP delay

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

Distance between source and destination

D
is

ta
nc

e
tr

av
el

ed
 b

y
P

as
tr

y
m

es
sa

ge Mean = 1.59

GATech top., .5M hosts, 60K nodes, 20K random messages
Ross&Rubenstein, Infocom’02 Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 209/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés

L

J

I

B

C

F

A

”F me précède”

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: participants mal intentionnés

Gênent transmission des messages

1. Détruisent ou modifient messages
2. Faussent tables de routage

Captent la gestion des objets

3. Choisissent leur ID
4. Utilisent de multiples ID (Attaque de Sybile)
5. Mentent lors des mises à jour des tables
6. Cherchent à partitionner le système au bootstrap

Solution Pastry

I Multiple paths (contre 1)
I Protocoles sécurisés d’appartenance (contre 2)
I Choix des ID sécurisé (contre 3 et 4)
I Protocoles sécurisés pour routage (contre 5)
⇒ Fonctionnent malgré 25% de nœuds mal intentionnés L

J

I

B

C

F

A

”F me précède”

Clé

Castro, Druschel, Ganesh, Rowstron, Wallach, Security for structured peer-to-peer overlay
networks, ODSI’02.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 210/223

Défi: churn
Churn dans systèmes réels
Article Système Durée mesurée
SGG02 Gnutella, Napster 50% < 60min
CLL02 Gnutella, Napster 31% < 10min
SW02 FastTrack 50% < 1min
BSV03 Overnet 50% < 60min
GDS03 Kazaa 50% < 2.4min

MTTF ≈ 1 heure ; c’est énorme

Ce problème reste
entier

(même si bamboo l’aborde)

Comportement de DHT existants face au churn

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

6.2 h

3.1 h

1.6 h

47 min

23 min

Temps (minutes)

Réussi
Consistent

P
o
u
rc

en
ta

g
e

d
e

L
o
o
k
u
p
s

session

Pastry

 0

 1

 2

 3

 4

 5

 8 16 32 64 128
L
a
te

n
c
e

m
o
y
e
n
n
e

(s
)

Mediane temps session (min)

Chord
Bamboo (No PNS)

Bamboo (PNS)

Chord

Rhea, Geels, Roscoe, Kubiatowicz, Handling Churn in a DHT, USENIX’04.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 211/223

Défi: churn
Churn dans systèmes réels
Article Système Durée mesurée
SGG02 Gnutella, Napster 50% < 60min
CLL02 Gnutella, Napster 31% < 10min
SW02 FastTrack 50% < 1min
BSV03 Overnet 50% < 60min
GDS03 Kazaa 50% < 2.4min

MTTF ≈ 1 heure ; c’est énorme

Ce problème reste
entier

(même si bamboo l’aborde)

Comportement de DHT existants face au churn

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

6.2 h

3.1 h

1.6 h

47 min

23 min

Temps (minutes)

Réussi
Consistent

P
o
u
rc

en
ta

g
e

d
e

L
o
o
k
u
p
s

session

Pastry

 0

 1

 2

 3

 4

 5

 8 16 32 64 128
L
a
te

n
c
e

m
o
y
e
n
n
e

(s
)

Mediane temps session (min)

Chord
Bamboo (No PNS)

Bamboo (PNS)

Chord

Rhea, Geels, Roscoe, Kubiatowicz, Handling Churn in a DHT, USENIX’04.

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 211/223

Quelques problématiques actuelles en P2P

I Recherche sous churn extrême, mobilité IP (meilleurs algorithmes de routage)

I Gestion des données sous churn extrême (création et recherches de réplicas)

I Tirer profit de la localité réseau (sans en dépendre)

I Outils analytiques adaptés (formalisation de systèmes en changement continu)

I Pannes byzantines (fonctionnement malgré participants malveillants)

I Intégrité des données (cryptographie, consistance)

I Généralisation (recherche approchée)

I Répartition de la charge et hétérogénéité

I Gestion des pare-feux, NAT et intranets

I Anonymicité, mesures anti-censure

I Certains de ces problèmes sont résolus dans certains travaux

I Jamais tous en même temps

I Bibliographie du domaine très fournie, difficile d’avoir un point de vue général

Risson, Moors, Survey of Research towards Robust Peer-to-Peer Networks: Search Methods,
Computer Networks, 50(17):3485-521, 2006

Martin Quinson Distributed Systems & P2P (2009-2010) Chap IV : Peer-to-Peer Systems 212/223

Chapter 5

Réseaux de capteurs sans fil

Réseaux de capteurs sans fil (Wireless Sensor Networks)

Principe: composants répartis pour faire des mesures

I Taille: une pièce → une boite d’allumettes

I Processeur: 8-bit → x86

I Mémoire: ko → Mo

I Radio: 20Kbps → 100 Kbps

I Sur batterie

Applications:

I Étude sismologique des bâtiments

I Transport des polluants: Même cause, même effet

I Écosystème des micro-organismes marins

I À chaque fois, maillage des mesures trop grossier

I ⇒ pas de modèle convenable

I Objectif: très nombreux petits senseurs pour affiner le maillage

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 214/223

Défis des SensorNets

Énergie

I Les composants sont sur batterie

I La durée de vie de l’ensemble devient une métrique de qualité

Difficultés de communications
I Puissance (électrique) du réseau: varie avec

1
distance4

I 10m ; 5000 ops/bit transmit ; 100m ; 50 000 000 ops/bit transmit

⇒ Système fortement décentralisé

⇒ Éviter les communications longue distance autant que possible

Pas de configuration

I Dissémination des capteurs ”aléatoire”

⇒ Besoin d’auto-organisation

Généralité contre spécificité

I Internet: une seule infrastructure pour toutes les applications

I Sensornet: chaque application a ses propres capteurs, sa propre infrastructure

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 215/223

Comment obtenir les données

Motivation et problème

I Clairement un objectif fondamental de ces infrastructures

I Impossible pour chaque composant de joindre un point central
(énergie et bande passante limitée)

⇒ Diffusion

Principe

I On ne sait pas quel nœud a quelle donnée

⇒ on demande une donnée, et la requête est propagée

I Les nœuds ayant l’information répondent

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 216/223

Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

1.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223

Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

2.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223

Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

3.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223

Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

4.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223

Schéma de communication: routage data-centric

Messages

I Paires {attribut, valeur}
I Trois types:

I Intérêt (des clients)
I Données (des sources)
I Renforcement (pour le contrôle)

Diffusion: deux phases

1. Inonde l’intérêt

2. Inonde les réponses (avec gradients)

3. Les clients renforcent (selon les gradients)

4. Passe les données sur les chemins renforcés

4.

client

source

Extension: mise place d’un arbre de diffusion

I Donne la possibilité de combiner les données au passage (min, max, etc)

I C’est encore plus dur. . .

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 217/223

Les SensorNet aujourd’hui

Physique

Lien

Topologie

Routage

Transport

Application

Scheduling

RadioMetrix
RFM

CC1000

Bluetooth

TMAC

WooMac

Pico

eyes
nordic

802.15.4

BMAC

Yao

FPSGAFSPAN
ReORg

SMAC

WiseMAC

PAMAS

PC

Resynch

DBFDSDV

DSR

MMRP

ARA GSR

TBRPF

TORA Ascent

GPSR

Arrive

Drip

MintRoute

GRAD

TrickleDeluge

Regions

EnviroTrack
TinyDB

Dir.Diffusion
SPIN

TTDD

Hood
FTSP

AODV

CGSR

R
a
m

e
s
h
 G

o
v

in
d
a
n

Ce n’est pas franchement un sablier...

I Composants développés séparément (+ suppositions différentes sur l’ensemble)

I Certains offrent une intégration verticale, mais rien en horizontal

I L’objectif semble être de se ramener à un sablier comme IP

I Oui, mais lequel?

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 218/223

Vers une infrastructure SensorNet unifiée
L’infrastructure de l’internet

I Objectif 1: connectivité universelle
I Problème: diversité des technologies; Solution: protocole IP universel

I Objectif 2: flexibilité des applications
I Problème: réseau adapté aux applications ; peu flexible (car réseau statique)
I Solution (end-to-end): services pas dans réseau, mais dans hôtes (modifiables)

I Résultat:
I Protège applications de diversité matérielle, et réseau de diversité applicative
I Accélère le développement et déploiement de chaque partie

Les SensorNets
I Applications data-centric ; abstraction end-to-end inapplicable

Traitement au sein du réseau souvent plus efficace

I Objectif: portabilité et reutilisabilité du code (dans la mesure du possible)

I Pas connectivité universelle, ni flexibilité d’application pour réseaux statiques

I Internet: couches opaques ⇒ abstraction simplifiée, mais efficacité décrue

I SensorNet: contraintes (énergétiques, etc) interdisent une telle perte

⇒ couches translucides (masquent les détails matériels, autorisent contrôle)
; Échange légère perte d’efficacité contre réutilisabilité bien meilleure

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 219/223

Possible sablier pour les SensorNets

Où est le goulot du sablier?

I Dans l’internet: routage end-to-end en best-effort (IP)

I Sensornets: saut unique par broadcast best-effort (SP – single-hop)?

I Abstraction assez expressive pour optimisations applicatives

I Abstraction assez pauvre pour capturer réalités matérielles sous-jacentes

Vision d’ensemble possible

Rich Common Link Interface (SP)

Plusieurs

protocoles

lien

et physique

IEEE
802.15.4

C
C

1
0
0
0

B
lu

e
T

o
o

th

In
fi

n
e
o

n

?
?

?***

Plusieurs

protocoles

reseau

Sensing
Application

Tracking
Application

Les applications composent

les briques necessaires

Aggregation

N −− 1

Data

Collection

N−1

Robust

Dissemination

1−N

Pt−Pt

Routing

1−1

Neighborhood

Sharing

1−k / k−1

R
a
m

e
sh

G
o
v
in

d
a
n

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 220/223

Conclusion sur les SensorNets

Pourquoi étudier ces systèmes

I Comme pour TCP/IP à l’époque, le besoin précède la théorie

I Ces systèmes sont déployés, on ne sait pas (vraiment) les utiliser

I C’est donc un thème porteur

Intérêts théoriques de ces systèmes

I La brique de base est le broadcast, ça change tout
on va pouvoir revisiter tous les algorithmes de base ;)

I C’est comme un réseau ad-hoc, mais sans mobilité
c’est plus simple pour commencer

Martin Quinson Distributed Systems & P2P (2009-2010) Chap V : Réseaux de capteurs sans fil 221/223

Sixième chapitre

Conclusion

Conclusion

Ce que nous avons vu
I Le domaine des P2P, et des DHT à très large échelle

I La consistance moins importante que l’échelle?
I Maturation rapide, le champ scientifique se structure

I Le domaine des SensorNets
I Encore une fois, les applications ont précédé la théorie
I Tout est à refaire (broadcast vs IP)
I Champ restant à défricher (d’un point de vue algorithmique, au moins)

Ce que nous ne verrons pas (manque de temps)

I Des systèmes plus ”classiques”
I Systèmes de fichiers distribués
I Bases de données distribuées
I PKI

Martin Quinson Distributed Systems & P2P (2009-2010) Chap VI : Conclusion 223/223

	Introduction
	Introduction
	References
	Table of contents

	Introduction
	What is a Distributed System?
	Example of Distributed Systems
	Limit between Computers and Distributed Systems

	Theoretical foundations
	Time and State of a Distributed System
	Ordering of events
	Abstract Clocks
	Global Observer
	Logical Clocks
	Vector Clocks

	Some Distributed Algorithms
	Mutual Exclusion
	Coordinator-based Algorithm
	Lamport's Algorithm
	Ricart and Agrawala's Algorithm
	Roucairol and Carvalho's Algorithm
	Token-Ring algorithm
	Suzuki and Kasami's Algorithm

	Leader Election
	Consensus
	Ordering Messages
	Group Protocols

	Conclusion on distributed algorithmic

	Internet
	Theory vs. Practice
	The Models of Internet
	Internet Design
	Brewer's Theorem

	Conclusion

	Peer-to-Peer Systems
	Introduction
	Overlays
	Current P2P Applications
	Worldwide Computer Vision

	Unstructured P2P File Sharing
	Napster
	Gnutella
	KaZaA

	Structured P2P: DHT Approaches
	DHT service, issues and seminal ideas
	Chord
	CAN
	Pastry

	Applications
	File sharing using DHT
	Persistent file storage
	Mobility Management
	Content Distribution Networks
	BitTorrent
	Anonymous Activities
	Storm Botnet
	Tor System

	Quelques défis supplémentaires
	Proximité réseau
	Confiance entre participants
	Dynamicité du système

	Conclusion

	Réseaux de capteurs sans fil
	Conclusion

